作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1480-1495.doi: 10.3724/SP.J.1006.2023.24113
刘佳1,**(), 邹晓悦1,2,**(), 马继芳1, 王永芳1, 董志平1, 李志勇1,*(), 白辉1,*()
LIU Jia1,**(), ZOU Xiao-Yue1,2,**(), MA Ji-Fang1, WANG Yong-Fang1, DONG Zhi-Ping1, LI Zhi-Yong1,*(), BAI Hui1,*()
摘要:
MAPK在植物的生长发育调节、生物和非生物胁迫反应、激素信号转导中具有重要作用。系统分析谷子SiMPKs基因家族成员全基因组分布、结构、进化及其响应不同胁迫的表达特性, 对于阐明其生物学功能具有重要意义。本研究利用谷子和水稻MAPK蛋白保守结构域及特异TXY基序的氨基酸序列在全基因组水平鉴定了谷子SiMPKs家族成员, 分析其蛋白质理化性质、系统进化、染色体定位、基因结构、蛋白质保守基序、启动子顺式作用元件及共线性等。利用荧光定量PCR技术, 分析了谷子SiMPKs在不同组织部位和谷锈菌、玉米螟病虫害生物胁迫以及不同激素处理下的表达模式。结果显示, 共鉴定到15个谷子SiMPK成员, 其编码的蛋白质含有220~611个氨基酸, 相对分子量范围25.77~69.63 kD, 等电点范围5.46~9.34。系统进化分析表明, SiMPK基因分为4组, A、B、C组包含TEY基序, D组包含TDY基序。SiMPK基因分布在1号、3号、4号、5号、8号和9号染色体上, 含有3~11个外显子, 所有SiMPK蛋白均含有motif 1与motif 2。上游2000 bp启动子区域预测到多个与胁迫、激素和植物生长发育等相关的顺式作用元件。qRT-PCR结果表明, 大部分基因具有明显的组织表达特异性; 除SiMPK21-2和SiMPK6外, 其余成员对谷锈菌侵染、玉米螟取食、SA和MeJA激素处理等1~3种胁迫具有明显响应。以上结果为进一步研究SiMPK基因在谷子应对病虫害生物胁迫中的功能奠定了理论基础。
[1] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266 |
[2] |
Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and developmental biology of plant mitogen-activated protein kinases. Annu Rev Plant Biol, 2018, 69: 237-265.
doi: 10.1146/annurev-arplant-042817-040314 pmid: 29489398 |
[3] | Chen J, Wang L, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 2: 1679. |
[4] |
Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529 |
[5] |
Wang G, Wang T, Jia Z H, Xuan J P, Pan D L, Guo Z R, Zhang J Y. Genome-wide bioinformatics analysis of MAPK gene family in Kiwifruit (Actinidia chinensis). Int J Mol Sci, 2018, 19: 2510.
doi: 10.3390/ijms19092510 |
[6] |
MAPK Group. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167 |
[7] |
Jonak C, Okrész L, Bögre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol, 2002, 5: 415-424.
doi: 10.1016/S1369-5266(02)00285-6 |
[8] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[9] |
Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530 |
[10] |
Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744 |
[11] | Liu Y K, Zhang D, Wang L, Li D Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 2013, 316: 1446-1460. |
[12] |
Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20: 750.
doi: 10.1186/s12864-019-6144-9 pmid: 31623562 |
[13] |
Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes (Basel), 2017, 8: 284.
doi: 10.3390/genes8100284 |
[14] |
Pedley K F, Martin G B. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol, 2005, 8: 541-547.
pmid: 16043387 |
[15] |
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109 |
[16] |
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002 |
[17] |
Bush S M, Krysan P J. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot, 2007, 58: 2181-2191.
doi: 10.1093/jxb/erm092 |
[18] |
Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015, 84: 672-681.
doi: 10.1111/tpj.2015.84.issue-4 |
[19] | Liu X, Li J, Noman A, Lou Y. Silencing OsMAPK20-5has different effects on rice pests in the field. Plant Signal Behav, 2019, 14: e1640562. |
[20] |
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714 pmid: 12615946 |
[21] |
Hong Y, Liu Q, Cao Y, Zhang Y, Chen D, Lou X, Cheng S, Cao L. The OsMPK15negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Front Plant Sci, 2019, 10: 752.
doi: 10.3389/fpls.2019.00752 |
[22] |
Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857 |
[23] |
Liu X, Li J, Xu L, Wang Q, Lou Y. Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. Int J Mol Sci, 2018, 19: 1182.
doi: 10.3390/ijms19041182 |
[24] |
贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
|
[25] |
刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
doi: 10.3864/j.issn.0578-1752.2019.22.001 |
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.001 |
|
[26] |
李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 459-470.
doi: 10.3864/j.issn.0578-1752.2021.03.001 |
Li S G, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54: 459-470. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.001 |
|
[27] |
赵立强, 潘文嘉, 马继芳, 瓮巧云, 董立, 全建章, 邢继红, 董志平, 董金皋. 一个谷子新抗锈基因的AFLP标记. 中国农业科学, 2010, 43: 4349-4355.
doi: 10.3864/j.issn.0578-1752.2010.21.003 |
Zhao L Q, Pan W J, Ma J F, Weng Q Y, Dong L, Quan J Z, Xing J H, Dong Z P, Dong J G. Identification of AFLP markers linked to a novel rust resistance gene in foxtail millet. Sci Agric Sin, 2010, 43: 4349-4355. (in Chinese with English abstract) | |
[28] | 董立, 马继芳, 董志平. 谷子病虫草害防治原色生态图谱. 北京: 中国农业出版社, 2013. pp 3-6. |
Dong L, Ma J F, Dong Z P. Foxtail Millet Disease Pest and Weed Prevention Atlas. Beijing: China Agriculture Press, 2013. pp 3-6. (in Chinese) | |
[29] | 梁克恭, 刘维, 王雅儒, 冯凌云, 崔光先, 宋燕春, 武小菲, 郑桂春, 董志平. 粟品种资源抗粟锈病鉴定研究. 沈阳农业大学学报, 1992, 23(1): 13-18. |
Liang K G, Liu W, Wang Y R, Feng L Y, Cui G X, Song Y C, Wu X F, Zheng G C, Dong Z P. Rust resistance evaluation for millet varieties. J Shenyang Agric Univ, 1992, 23(1): 13-18. (in Chinese with English abstract) | |
[30] |
白辉, 宋振君, 王永芳, 全建章, 马继芳, 刘磊, 李志勇, 董志平. 谷子抗锈病反应相关MYB转录因子的鉴定与表达. 中国农业科学, 2019, 52: 4016-4027.
doi: 10.3864/j.issn.0578-1752.2019.22.007 |
Bai H, Song Z J, Wang Y F, Quan J Z, Ma J F, Liu L, Li Z Y, Dong Z P. Identification and expression analysis of MYB transcription factors related to rust resistance in foxtail millet. Sci Agric Sin, 2019, 52: 4016-4027. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.007 |
|
[31] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[32] |
Mohanta T K, Arora P K, Mohanta N, Parida P, Bae H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics, 2015, 16: 58.
doi: 10.1186/s12864-015-1244-7 pmid: 25888265 |
[33] |
Singh A, Nath O, Singh S, Kumar S, Singh I K. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene, 2017, 13: 25-35.
doi: 10.1016/j.plgene.2017.12.001 |
[34] |
Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 2022, 114: 110311.
doi: 10.1016/j.ygeno.2022.110311 |
[35] |
Yao Y, Zhao H, Sun L, Wu W, Li C, Wu Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genomics, 2022, 23: 96.
doi: 10.1186/s12864-022-08293-2 |
[36] |
Ali A, Chu N, Ma P, Javed T, Zaheer U, Huang M T, Fu H Y, Gao S J. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. Physiol Plant, 2021, 171: 86-107.
doi: 10.1111/ppl.v171.1 |
[37] |
Zhang X, Xu X, Yu Y, Chen C, Wang J, Cai C, Guo W. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton. Sci Rep, 2016, 6: 29781.
doi: 10.1038/srep29781 pmid: 27417377 |
[38] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[39] |
Goyal R K, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis B E, Frick M, Laroche A, Foroud N A. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics, 2018, 19: 178.
doi: 10.1186/s12864-018-4545-9 pmid: 29506469 |
[40] |
Xiao X, Tang Z, Li X, Hong Y, Li B, Xiao W, Gao Z, Lin D, Li C, Luo L, Niu X, He C, Chen Y. Overexpressing OsMAPK12-1 inhibits plant growth and enhances resistance to bacterial disease in rice. Funct Plant Biol, 2017, 44: 694-704.
doi: 10.1071/FP16397 |
[41] |
Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Mol Plant Pathol, 2018, 19: 1624-1638.
doi: 10.1111/mpp.2018.19.issue-7 |
[1] | 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768. |
[2] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[3] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[4] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[5] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[6] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[7] | 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925. |
[8] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[9] | 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657. |
[10] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
[11] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[12] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[13] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[14] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[15] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
|