欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 687-702.doi: 10.3724/SP.J.1006.2023.24042

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析

齐燕妮1(), 李闻娟1, 赵丽蓉2, 李雯2, 王利民1, 谢亚萍1, 赵玮1, 党照1, 张建平1,*()   

  1. 1甘肃省农业科学院作物研究所, 甘肃兰州 730070
    2甘肃农业大学农学院 / 甘肃省干旱生境作物重点实验室 / 甘肃省作物遗传改良与种质资源创新重点实验室, 甘肃兰州 730070
  • 收稿日期:2022-02-21 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-19
  • 通讯作者: 张建平
  • 作者简介:E-mail: xbsdqyn@126.com
  • 基金资助:
    甘肃省农业科学院现代生物育种项目(2020GAAS08);甘肃省农业科学院现代生物育种项目(2022GAAS04);财政部和农业农村部国家现代农业产业技术体系建设专项(油料);国家自然科学基金项目(31760426);甘肃省知识产权计划项目(21ZSCQ026);甘肃省科技计划项目(21JR7RA722);甘肃省科技计划项目(21JR1RA354)

Identification and expression analysis of CYP79 gene family, a key enzyme for cyanogenic glycoside synthesis in flax

QI Yan-Ni1(), LI Wen-Juan1, ZHAO Li-Rong2, LI Wen2, WANG Li-Min1, XIE Ya-Ping1, ZHAO Wei1, DANG Zhao1, ZHANG Jian-Ping1,*()   

  1. 1Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University / Key Laboratory of Arid Land Crop Science in Gansu Province / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
  • Received:2022-02-21 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-19
  • Contact: ZHANG Jian-Ping
  • Supported by:
    Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2020GAAS08);Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2022GAAS04);China Agriculture Research System (Oil) of MOF and MARA;National Natural Science Foundation of China(31760426);Intellectual Property Planning project of Gansu Province(21ZSCQ026);Science and Technology Project of Gansu Province(21JR7RA722);Science and Technology Project of Gansu Province(21JR1RA354)

摘要:

CYP79蛋白是生氰糖苷合成关键酶, 但关于亚麻CYP79基因的研究鲜有报道。本研究对包括亚麻在内的9种作物的CYP79基因家族进行了鉴定, 并分析了亚麻CYP79基因的序列特征、复制事件、共线性关系、系统进化、顺式作用元件及表达模式。结果表明, 在亚麻、白亚麻、毛果杨、木薯、芝麻、高粱、大豆、葡萄及水稻中分别鉴定到9、9、3、2、5、7、6、16和4个CYP79家族成员; 系统进化分析显示, CYP79基因的进化具有物种特异性; LuCYP79不均匀分布在4条染色体上, 具有1~3个外显子, 其启动子区含大量激素与逆境响应相关元件; 共克隆到8个亚麻CYP79基因的全长DNA序列及5个成员的全长cDNA序列; LuCYP79蛋白序列长度为282~565 aa, 等电点为5.84~9.14, 分子量为31.56~62.86 kD, 均为亲水性蛋白, 定位于内质网; 共有5对基因发生复制事件, 占全部基因的77.8%, 全部经历了强烈的纯化选择, 其中LuCYP79-1LuCYP79-9在拟南芥和木薯中均具有同源基因。表达分析表明, LuCYP79家族成员具有组织特异性, 且各成员在不同遗传背景下表达模式不同, 其中LuCYP79-1LuCYP79-7LuCYP79-8LuCYP79-9在4个品种中的表达差异显著。相关分析表明, 50 d时的LuCYP79-1/LuCYP79-7与成熟亚麻籽中生氰糖苷含量呈极显著正相关, 20 d时的LuCYP79-7/LuCYP79-8及(LuCYP79-7+LuCYP79-9)/LuCYP79-8分别与成熟亚麻籽中生氰糖苷含量呈极显著正相关, 初步推测其可能是亚麻籽生氰糖苷合成的关键基因。研究结果对进一步阐明亚麻CYP79蛋白的功能具有积极意义, 并为培育低生氰糖苷亚麻品种提供了理论参考。

关键词: 亚麻, CYP79基因家族, 生氰糖苷, 生物信息学, 表达分析

Abstract:

CYP79 is a key enzyme in the synthesis of cyanogenic glycoside. However, there is no systematical study of CYP79 genes in flax. In this study, we identified CYP79 gene family in 9 crops including flax, and focused on the sequence characteristics, duplication events, collinearity, evolution, cis-acting elements and expression patterns of LuCYP79 genes. The results revealed that a total of 9, 9, 3, 2, 5, 7, 6, 16, and 4 CYP79 family members were identified in flax, pale flax, poplar, cassava, sesame, sorghum, soybean, grape, and rice, respectively. Phylogenetic analysis showed that the evolution of CYP79 genes was species-specific. LuCYP79 were distributed unevenly on four chromosomes and had 1-3 exons. The promoter region of LuCYP79 contained lots of elements involved in response to hormone and stress. 8 full-length DNA sequences and 5 full-length cDNA sequences of flax LuCYP79 genes were cloned. LuCYP79 proteins contained 282-565 amino acid residues with molecular weight of 31.56-62.86 kD, and isoelectric point of 5.84-9.14. All LuCYP79 members were hydrophilic protein and located in endoplasmic reticulum. There were five pairs of LuCYP79 genes with duplication events, accounting for 77.8% of all genes, and all the duplication genes underwent strong purification selection. Both LuCYP79-1 and LuCYP79-9 had homologous genes in Arabidopsis and cassava. The relative expression levels showed that LuCYP79 family members were tissue-specific and had different expression patterns under different genetic backgrounds. There were significantly different in the relative expression of LuCYP79-1, LuCYP79-7, LuCYP79-8, and LuCYP79-9 in the four cultivars. Moreover, correlation analysis showed that LuCYP79-1/LuCYP79-7 in 50 days flaxseed was significantly positively correlated with the concentration of cyanogenic glycosides in mature flaxseed. LuCYP79-7/LuCYP79-8 and (LuCYP79-7+LuCYP79-9)/LuCYP79-8 in 20 days flaxseed were significantly positively correlated with the concentration of cyanogenic glycosides in mature flaxseed, respectively. It was preliminarily speculated that they might be the key genes in the synthesis of cyanogenic glycoside in flaxseed. These results have positive significance for further elucidating the function of CYP79 proteins in flax and provide theoretical references for breeding flax varieties with low cyanogenic glycoside.

Key words: flax, CYP79 gene family, cyanogenic glycoside, bioinformatics, the relative expression level

附表1

LuCYP79基因家族克隆引物"

基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
LuCYP79-1 ATGAACATCGACGGCCAGGAGAAG TCAGTTGGTAATCTTGGGGTACAAGTG
LuCYP79-2 ATGACCATGAAAACCTCCGACG TCAGTTGGTAACCAAAGGGTACAAG
LuCYP79-3 ATGCCCATGAACACCTCCGACCGAT TCAGTTGGTAATCTTGGGGTACAAGTGG
LuCYP79-4 ATGAAGTCATCTCCGATCAACACTATTAC TCATTTGGTAGAGCGGCTGGGTAC
LuCYP79-5 ATGGCAAATAACCTCCCTCCGAG TCATTTGGCTAAGGCAGGGTACAAG
LuCYP79-6 ATGGAAACCATGATCCTCCTCGTC TCAAGAGAGTGTAGGGTATAAATGAGG
LuCYP79-7 ATGAACACCTTCACAATCATCCTCC TCATTTGACGACAACGACAGGGTAC
LuCYP79-8 ATGGCGGCCATGAACACCTCC TCATTTGGCTAAGGCAGGGTACAAG
LuCYP79-9 ATGGCCATGAACACCTCCGAC TCAGTTGGTAATCTTAGGGTACAAGTGGG

附表2

本研究荧光定量PCR引物"

基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
LuCYP79-1 ACCGCTGCTGTCACTACCACG CTGCTCCTTCTGATGCGTTGG
LuCYP79-2 GGGAAGGTGATTAAGGAGGCTAATAAG CCACTGCGTTTGACGGGTTG
LuCYP79-3 GCAAGCGAATAAGACGATGAGGG GGTTGGTGATTTCATTGCGGGAG
LuCYP79-4 CTCCGACCGATGTCTATCCACCAC CCAGTCATAATGCTACCTGCTCCT
LuCYP79-5 CGGCACAATGACATCTACCACCTC CTGCAATAAGCCTACCTGCTCTTC
LuCYP79-6 TAAGGAGTCGAATAAGGCGTTGC CACTGCGTTGGATGGATTGTCTA
LuCYP79-7 CACCGCCGTCATAATCCTCCTC GCCGCTGGCTTCTTCCTCGTT
LuCYP79-8 CGGACCGATGGAGATTGACC TCCCTCGCACATGCCTTGAC
LuCYP79-9 TCTCACCGACGTTCTTATTACCCTT GGACTAGCCTATCTTTACCGACCAC

表1

亚麻CYP79基因家族主要特征"

基因名称
Gene name
基因号
Gene ID
染色体位置
Chromosome location
外显子数量
No. of
exons
蛋白序列长度
Protein length (aa)
分子量
Molecular weight (kD)
等电点
pI
亚细胞定位
Subcellular location
LuCYP79-1 L.us.o.m.scaffold38.16 Chr2:4491546-4492641(+) 2 282 31.56 5.84 ER
LuCYP79-2 L.us.o.m.scaffold38.15 Chr2:4495863-4497662(+) 2 554 62.17 9.14 ER
LuCYP79-3 L.us.o.m.scaffold38.14 Chr2:4499744-4501641(+) 2 558 62.57 9.01 ER
LuCYP79-4 L.us.o.m.scaffold137.29 Chr6:18190484-18192183(+) 2 537 60.32 8.97 ER
LuCYP79-5 L.us.o.m.scaffold137.31 Chr6:18195750-18196883(+) 1 377 41.69 8.11 ER
LuCYP79-6 L.us.o.m.scaffold96.139 Chr12:3278067-3280521(-) 3 521 58.68 6.97 ER
LuCYP79-7 L.us.o.m.scaffold13.272 Chr12:15779026-15781011(-) 2 525 59.10 8.12 ER
LuCYP79-8 L.us.o.m.scaffold13.263 Chr12:15823701-15825571(+) 2 549 60.89 7.26 ER
LuCYP79-9 L.us.o.m.scaffold28.185 Chr15:6106894-6109113(-) 2 565 62.86 9.03 ER

附表3

本研究8个物种CYP79基因家族成员"

物种
Species
基因号
Gene ID
物种
Species
基因号
Gene ID
物种
Species
基因号
Gene ID
白亚麻
Linum bienne
L.bie.m.scaffold143.40 芝麻
Sesamum indicum
rna5687 葡萄
Vitis vinifera
VIT_206s0009g01780.1
L.bie.m.scaffold143.49 rna5689 VIT_206s0009g02820.1
L.bie.m.scaffold349.34 rna5691 VIT_206s0009g02843.1
L.bie.m.scaffold349.35 rna5692 VIT_206s0009g02850.1
L.bie.m.scaffold349.36 rna9755 VIT_206s0009g02895.1
L.bie.m.scaffold593.11 高粱
Sorghum bicolor
Sobic.001G012300.1.p VIT_206s0009g02930.1
L.bie.m.scaffold593.12 Sobic.001G185900.2.p VIT_206s0009g02980.1
L.bie.m.scaffold593.6 Sobic.001G185900.2.p VIT_206s0009g03120.1
L.bie.m.scaffold852.13 Sobic.001G187500.1.p VIT_206s0009g03130.1
毛果杨
Populus trichocarpa
Potri.004G055200.1.p Sobic.001G187600.1.p VIT_213s0067g02720.1
Potri.013G157200.1.p Sobic.007G090457.1.p VIT_213s0067g02730.1
Potri.013G157400.1.p Sobic.010G172200.1.p VIT_213s0067g02780.1
木薯
Manihot esculenta
Manes.12G133500.1.p 大豆
Glycine max
Glyma.11G197300.1.p VIT_213s0067g02790.1
Manes.13G094200.1.p Glyma.11G197400.1.p VIT_213s0067g02830.1
水稻
Oryza sativa
LOC_Os03g37290.1 Glyma.13G051600.1.p VIT_213s0106g00280.1
LOC_Os04g08824.1 Glyma.18G052200.1.p VIT_218s0001g13760.1
LOC_Os04g08828.1 Glyma.20G065000.1.p
LOC_Os04g09430.1 Glyma.20G065100.1.p

图1

LuCYP79基因全长DNA扩增(A)和cDNA扩增(B)"

图2

LuCYP79系统进化、基因结构及Motif分析"

附图1

亚麻CYP79蛋白的亲疏水性分析"

附图2

亚麻CYP79蛋白的二级和三级结构"

附图3

LuCYP79家族保守基序"

附表4

亚麻CYP79蛋白二级结构预测"

蛋白名称Protein name α-螺旋
Alpha helix
β-转角
Beta turn
延伸链
Extended strand
无规则卷曲
Random coil
LuCYP79-9 120 (42.55%) 7 (2.48%) 35 (12.41%) 120 (42.55%)
LuCYP79-5 255 (46.03%) 22 (3.97%) 58 (10.47%) 219 (39.53%)
LuCYP79-4 240 (43.01%) 32 (5.73%) 86 (15.41%) 200 (35.84%)
LuCYP79-7 231 (43.02%) 23 (4.28%) 71 (13.22%) 212 (39.48%)
LuCYP79-8 177 (46.95%) 9 (2.39%) 48 (12.73%) 143 (37.93%)
LuCYP79-6 240 (46.07%) 21 (4.03%) 64 (12.28%) 196 (37.62%)
LuCYP79-3 234 (44.57%) 19 (3.62%) 68 (12.95%) 204 (38.86%)
LuCYP79-2 243 (44.26%) 21 (3.83%) 76 (13.84%) 209 (38.07%)
LuCYP79-1 247 (43.72%) 25 ( 4.42%) 76 (13.45%) 217 (38.41%)

图3

亚麻LuCYP79家族SFSTG(K/R)RGC(A/I)A和FXP(E/D)RH保守位点"

图4

LuCYP79基因在亚麻染色体的分布 灰色线条和红色矩形分别代表片段复制和串联复制。"

表2

LuCYP79基因复制事件、选择压力及分歧时间"

基因对
Gene pairs
复制事件
Duplication event
非同义
替换率
Ka
同义
替换率
Ks
Ka/Ks 选择类型
Selection type
分歧时间
Divergence time (MYa)
LuCYP79-1/LuCYP79-2 串联复制
Tandem duplication
0.0722 0.6753 0.1069 纯化选择
Purifying selection
55.3525
LuCYP79-2/LuCYP79-3 串联复制
Tandem duplication
0.0678 0.6603 0.1027 纯化选择
Purifying selection
54.1230
LuCYP79-4/LuCYP79-5 串联复制
Tandem duplication
0.1213 1.1045 0.1098 纯化选择
Purifying selection
90.5328
LuCYP79-1/LuCYP79-9 片段复制
Segmental duplication
0.0055 0.0164 0.3354 纯化选择
Purifying selection
1.3443
LuCYP79-4/LuCYP79-8 片段复制
Segmental duplication
0.1277 1.0731 0.1190 纯化选择
Purifying selection
87.9590

图5

亚麻基因组内LuCYP79基因共线性及其与拟南芥和木薯间的共线性 A: 灰色线条表示具有共线性的LuCYP79基因对。B: 灰色线条表示亚麻与其他物种的共线性区域, 彩色线条表示与不同物种具有共线性的CYP79基因对。"

表3

LuCYP79启动子顺式作用元件"

顺式元件Cis-element 典型序列
Typical sequence
特性
Characteristic
基因
Gene name
ARE AAACCA 厌氧诱导必需的顺式作用元件
Cis-acting regulatory element essential for the anaerobic induction
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
G-box CACGTG/TACGTG 光响应顺式作用元件
Cis-acting regulatory element involved in light responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
GT1-motif GGTTAAT/GGTTAA 光响应元件
Light responsive element
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-9
Box 4 ATTAAT 光响应保守模块的一部分
Part of a conserved DNA module involved in light responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
GATA-motif GATAGGG 光响应元件的一部分
Part of a light responsive element
LuCYP79-1, LuCYP79-3, LuCYP79-5, LuCYP79-7, LuCYP79-8, LuCYP79-9
ABRE CGTACGTGCA/
CGCACGTGTC
脱落酸响应顺式元件
Cis-acting element involved in the abscisic acid responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8, LuCYP79-9
TGACG-motif TGACG MeJA响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8
CGTCA-motif CGTCA MeJA响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-3, LuCYP79-4, LuCYP79-5, LuCYP79-6, LuCYP79-7, LuCYP79-8
TGA-element AACGAC 生长素响应元件
Auxin-responsive element
LuCYP79-1, LuCYP79-2, LuCYP79-5, LuCYP79-8
AuxRR-core GGTCCAT 生长素响应顺式作用元件
Cis-acting regulatory element involved in auxin responsiveness
LuCYP79-4, LuCYP79-5
AuxRE TGTCTCAATAAG 生长素响应元件的一部分
Part of an auxin-responsive element
LuCYP79-7
GARE-motif TCTGTTG 赤霉素响应元件
Gibberellin-responsive element
LuCYP79-2, LuCYP79-9
P-box CCTTTTG 赤霉素响应元件
Gibberellin-responsive element
LuCYP79-2
顺式元件Cis-element 典型序列
Typical sequence
特性
Characteristic
基因
Gene name
LTR CCGAAA 低温响应顺式作用元件
Cis-acting element involved in low-temperature responsiveness
LuCYP79-1, LuCYP79-2, LuCYP79-4, LuCYP79-6, LuCYP79-7
MBS CAACTG 参与干旱诱导的MYB结合位点
MYB binding site involved in drought-inducibility
LuCYP79-1, LuCYP79-2, LuCYP79-8, LuCYP79-9
TC-rich repeats GTTTTCTTAC 参与防御和胁迫响应的顺式作用元件
Cis-acting element involved in defense and stress responsiveness
LuCYP79-2
RY-element CATGCATG 参与种子特异性调控的顺式调控元件
Cis-acting regulatory element involved in seed-specific regulation
LuCYP79-4, LuCYP79-5, LuCYP79-7
CAT-box GCCACT 分生组织相关的顺式调控元件
Cis-acting regulatory element related to
meristem expression
LuCYP79-5, LuCYP79-6, LuCYP79-7
A-box CCGTCC 顺式调控元件
Cis-acting regulatory element
LuCYP79-3, LuCYP79-7
GC-motif CCCCCG 参与缺氧特异性诱导的类增强子元件
Enhancer-like element involved in anoxic specific inducibility
LuCYP79-1, LuCYP79-7
O2-site GATGA(C/T)(A/G)TG (A/G)/GATGATGTGG 参与玉米醇溶蛋白新陈代谢调节的顺式调控元件
Cis-acting regulatory element involved in zein metabolism regulation
LuCYP79-1, LuCYP79-2, LuCYP79-6
MBSI TTTTTACGGTTA 参与黄酮类合成基因调控的MYB结合位点
MYB binding site involved in flavonoid biosynthetic genes regulation
LuCYP79-3
HD-Zip 1 CAAT(A/T)ATTG 参与栅栏叶肉细胞分化的元件
Element involved in differentiation of the palisade mesophyll cells
LuCYP79-1

图6

CYP79家族系统进化树"

图7

LuCYP79家族在4个亚麻品种不同发育阶段种子中的表达模式"

图8

LuCYP79家族在4个亚麻品种种子发育阶段的累积表达量"

图9

LuCYP79基因在4个亚麻品种不同发育阶段、不同组织中的表达模式 R1~R4: 出苗后10 d、20 d、30 d、40 d根; R5: 开花初根; R6~R10: 开花后10 d、20 d、30 d、40 d、50 d根; S1~S4: 苗期10 d、20 d、30 d、40 d茎; S5: 开花初茎; S6~S10: 开花后10 d、20 d、30 d、40 d、50 d茎; L1~L4: 苗期10 d、20 d、30 d、40 d叶; L5: 开花初叶; L6~L10: 开花后10 d、20 d、30 d、40 d、50 d叶; F: 花; 10~50 d: 开花后10~50 d种子。"

图10

4个亚麻品种成熟籽粒中生氰糖苷含量 不同小写字母表示在0.05水平具有显著性差异。"

图11

LuCYP79基因表达量与成熟亚麻籽中生氰糖苷含量的相关性 Y: 成熟亚麻籽中生氰糖苷含量; A、B及C中的x分别代表LuCYP79-1与LuCYP79-7、LuCYP79-7与LuCYP79-8及LuCYP79-7+LuCYP79-9与LuCYP79-8基因表达量的比值。"

[1] Zohary D. Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the near east. Genet Resour Crop Evol, 1999, 46: 133-142.
doi: 10.1023/A:1008692912820
[2] Oomah B D. Flaxseed as a functional food source. J Sci Food Agric, 2001, 81: 889-894.
doi: 10.1002/jsfa.898
[3] Turner T D, Mapiye C, Aalhus J L, Beaulieu A D, Patience J F, Zijlstra R T. Flaxseed fed pork: n-3 fatty acidenrichment and contribution to dietary recommendations. Meat Sci, 2014, 96: 541-547.
doi: 10.1016/j.meatsci.2013.08.021 pmid: 24012977
[4] Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modernfunctional food. J Food Sci Technol, 2014, 9: 1633-1653.
[5] Oomah B D, Mazza G, Kenaschuk E O. Cyanogenic compounds in flaxseed. J Agric Food Chem, 1992, 40: 1346-1348.
doi: 10.1021/jf00020a010
[6] Conn E E. Cyanogenic glycosides. Biochem Plants, 1981, 7: 479-500.
[7] Nelson L. Acute cyanide toxicity mechanisms and manifestations. J Emerg Nurs, 2006, 32: 8-10.
pmid: 16860675
[8] Ganjewala D, Kumar S, Devi A, Ambika K. Advances in cyanogenic glycosides biosynthesis and analyses in plants. Acta Biol Szegediensis, 2010, 54: 1-14.
[9] Sibbesen O, Koch B, Halkier B A, Moller B L. Cytochrome P-450TYR is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. J Biol Chem, 1995, 270: 3506-3511.
doi: 10.1074/jbc.270.8.3506 pmid: 7876084
[10] Wang C W, Dissing M M, Agerbirk N, Crocoll C, Halkier B A. Characterization of Arabidopsis CYP79C1 and CYP79C2 by glucosinolate pathway engineering in Nicotiana benthamiana shows substrate specificity toward a range of aliphatic and aromatic amino acids. Front Plant Sci, 2020, 11: 57.
doi: 10.3389/fpls.2020.00057
[11] Andersen M D, Busk P K, Svendsen I, Møller B L. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin: cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem, 2000, 275: 1966-1975.
doi: 10.1074/jbc.275.3.1966 pmid: 10636899
[12] Irmisch S, McCormick A C, Boeckler G A, Schmidt A, Reichelt M, Schneider B, Block K, Schnitzler J, Gershenzon J, Unsicker S B, Köllner T G. Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell, 2013, 25: 4737-4754.
doi: 10.1105/tpc.113.118265
[13] Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner T G. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol, 2015, 15: 128-139.
doi: 10.1186/s12870-015-0526-1 pmid: 26017568
[14] Bak S, Nielsen H L, Halkier B A. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol, 1998, 38: 725-734.
pmid: 9862490
[15] Petersen B L, Andreasson E, Bak S, Agerbirk N, Halkier B A. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta, 2001, 212: 612-618.
pmid: 11525519
[16] Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell, 2001, 13: 351-367.
doi: 10.1105/tpc.13.2.351 pmid: 11226190
[17] Chen S X, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen C E, Hansen C H, Rasmussen H, Pickett J A, Halkier B A. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glueosinolates in Arabidopsis. Plant J, 2003, 33: 923-937.
doi: 10.1046/j.1365-313X.2003.01679.x
[18] Bak S, Paquette S M, Morant M, Morant V M, Saito S, Bjarnholt N, Zagrobelny M, Jorgensen K, Osmani S, Simonsen H T, Perez R S, Heeswijck T B, Jorgensen B, Moller B L. Cyanogenic glycosides a case study for evolution and application of cytochromes P450. Phytochem Rev, 2006, 5: 309-329.
doi: 10.1007/s11101-006-9033-1
[19] Hull A K, Vij R, Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA, 2000, 97: 2379-2384.
pmid: 10681464
[20] Wittstock U, Halkier B A. Cytochrome 450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem, 2000, 275: 14659-14666.
doi: 10.1074/jbc.275.19.14659 pmid: 10799553
[21] Jorgensen K, Morant A V, Morant M, Jensen N B, Olsen C E, Kannangara R, Motawia M S, Moller B L, Bak S. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava isolation biochemical characterization and expression pattern of CYP71E7 the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol, 2011, 155: 282-292.
doi: 10.1104/pp.110.164053
[22] Luck K, Jia Q D, Huber M, Handrick V, Wong G K, Nelson D R, Chen F, Gershenzon J, Köllner T G. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. Plant Mol Biol, 2017, 95: 169-180.
doi: 10.1007/s11103-017-0646-0
[23] Halkier B A, Hansen C H, Naur P, Mikkelsen M D, Wittstock U. The Role of Cytochromes P 450 in Biosynthesis and Evolution of Glucosinolates. Amsterdam: Elsevier Science Press, 2002. pp 223-248.
[24] Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: anupgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817
[25] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools on the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275
[26] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
[27] Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple collinearity scans. Bioinformatics, 2013, 29: 1458-1460.
doi: 10.1093/bioinformatics/btt150
[28] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[29] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[30] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30: 2725-2729.
doi: 10.1093/molbev/mst197 pmid: 24132122
[31] Zhang J P, Qi Y N, Wang L M, Wang L L, Yan X C, Dang Z, Li W J, Zhao W, Pei X W, Li X M, Liu M, Tan M L, Wang L, Long Y, Wang J, Zhang X W, Dang Z H, Zheng H K, Liu T M. Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. iScience, 2020, 23: 100967.
doi: 10.1016/j.isci.2020.100967
[32] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 71.
doi: 10.1186/1471-2229-10-71
[33] Antonov J, Goldstein D R, Oberli A, Baltzer A, Pirotta M, Fleischmann A, Altermatt H J, Jaggi R. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest, 2005, 85: 1040-1050.
pmid: 15951835
[34] 寇向龙, 徐美蓉, 张建平, 赵宾宾, 韩舜愈. 响应面法优化亚麻籽氢氰酸提取条件. 食品工业科技, 2016, 37(21): 201-204.
Kou X L, Xu M R, Zhang J P, Zhao B B, Han S Y. Optimization of extraction conditions for hydrocyanic acid in flaxseed by response surface methodology. Sci Technol Food Ind, 2016, 37(21): 201-204. (in Chinese with English abstract)
[35] Mikkelsen M D, Hansen C H, Wittstock U, Halkier B A. Cytochrome 450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem, 2000, 275: 33712-33717.
doi: 10.1074/jbc.M001667200 pmid: 10922360
[36] 李占省, 刘玉梅, 方智远, 杨丽梅, 庄木, 张扬勇, 吕红豪. 青花菜 P450 CYP79F1 全长克隆、表达及其与不同器官中莱菔硫烷含量的相关性分析. 中国农业科学, 2018, 51: 2357-2367.
Li Z S, Liu Y M, Fang Z Y, Yang L M, Zhuang M, Zhang Y Y, Lyu H H. Full length cloning, expression and correlation analysis of P450 CYP79F1 gene with sulforaphane content in different broccoli organs. Sci Agric Sin, 2018, 51: 2357-2367. (in Chinese with English abstract)
[37] Ren R, Wang H F, Guo C C, Zhang N, Zeng L P, Chen Y M, Ma H, Qi J. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant, 2018, 11: 414-428.
doi: S1674-2052(18)30022-4 pmid: 29317285
[38] Zhu Y, Wu N N, Song W L, Yin G J, Qin Y J, Yan Y M, Hu Y K. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629
[39] 华静静, 陈晓静. 植物体中WD40蛋白的研究进展. 黑龙江农业科学, 2015, (5): 153-156.
Hua J J, Chen X J. Progress of WD40 proteins in plant. Heilongjiang Agric Sci, 2015, (5): 153-156 (in Chinese with English abstract).
[40] Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström A S, Schaffrath R, Breunig K D. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol, 2010, 76: 1082-1094.
doi: 10.1111/j.1365-2958.2010.07163.x pmid: 20398216
[41] 杨琳, 王宇, 杨剑飞, 李玉花. 花青素积累相关负调控因子的研究进展. 园艺学报, 2014, 41: 1873-1884.
Yang L, Wang Y, Yang J F, Li Y H. Research advances on negative regulators of anthocyanin accumulation. Acta Hortic Sin, 2014, 41: 1873-1884. (in Chinese with English abstract)
[1] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[2] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[3] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[4] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[5] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[6] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 林焕泰, 张天杰, 史梦婷, 郭燕芳, 高三基, 王锦达. 割手密萜烯合成酶(TPS)基因家族分析及其在生物胁迫下的表达分析[J]. 作物学报, 2022, 48(12): 3029-3044.
[11] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[12] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
[13] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[14] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[15] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .