欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 938-954.doi: 10.3724/SP.J.1006.2023.24066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生SWEET基因全基因组鉴定及表达分析

孙全喜1(), 苑翠玲1, 牟艺菲1, 闫彩霞1, 赵小波1, 王娟1, 王奇1, 孙慧2, 李春娟1, 单世华1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2东北农业大学, 黑龙江哈尔滨 150038
  • 收稿日期:2022-03-25 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-18
  • 通讯作者: *单世华, E-mail: shansh1971@163.com
  • 作者简介:E-mail: squanxi@163.com
  • 基金资助:
    山东省自然科学基金项目(ZR2021MC128);山东省农业良种工程项目(2020LZGC001);山东省农业良种工程项目(2021LZGC025);山东省现代农业产业技术体系(SDAIT-04-02)

Genome-wide identification and expression analysis of SWEET genes from peanut genomes

SUN Quan-Xi1(), YUAN Cui-Ling1, MOU Yi-Fei1, YAN Cai-Xia1, ZHAO Xiao-Bo1, WANG Juan1, WANG Qi1, SUN Hui2, LI Chun-Juan1, SHAN Shi-Hua1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Northeast Agricultural University, Harbin 150038, Heilongjiang, China
  • Received:2022-03-25 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-18
  • Contact: *E-mail: shansh1971@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2021MC128);Shandong Elite Variety Project(2020LZGC001);Shandong Elite Variety Project(2021LZGC025);Agro-industry Technology Research System of Shandong Province(SDAIT-04-02)

摘要:

SWEET (sugars will eventually be exported transporter)蛋白是一类结构保守、不依赖能量的糖转运蛋白, 在植物生长发育、响应生物/非生物逆境胁迫等生理过程发挥重要作用。目前, 尚未见花生SWEET基因相关报道。本研究首次全基因组挖掘了花生SWEET基因, 对其分子特征及表达模式进行了细致分析。结果表明, 栽培种花生和2个祖先野生种基因组分别存在55、25、28个SWEET基因, 随机不均匀分布在各染色体上。来源于野生种和栽培种的同源基因在染色体位置相近, 但也存在个别缺失, 这验证了花生野生种和栽培种的进化关系, 也暗示了基因组复制加倍过程中存在同源基因的丢失或扩张。基因内含子-外显子数目和位置以及启动子中顺式作用元件种类和数量均存在差异, 暗示了花生SWEET基因生物学功能的多样性。系统进化分析将花生SWEET基因分为4个亚家族Clade I~Clade IV, 同一亚家族同一分支的基因具有相似的外显子-内含子结构。分析Clevenger等组织表达谱发现部分基因表现为组织优势表达, 这为深入了解SWEET基因行使功能部位提供了参考。此外, 基于课题组前期发表的干旱和高盐胁迫转录组分析和RT-qPCR验证, 我们挖掘出AhSWEET3aAhSWEET4e等响应花生干旱或高盐胁迫的基因, 功能有待进一步鉴定。研究结果为下一步深入分析花生SWEET基因功能提供了理论参考。

关键词: SWEET基因家族, 分子特征, 表达分析, 非生物胁迫, 花生

Abstract:

SWEET (sugars will eventually be exported transporter) proteins are structurally conserved and energy independent sugar transporters, which play important roles in many physiological processes, such as plant growth development and response to biotic and abiotic stresses. At present, there is no research study about SWEET gene in peanut yet. In this study, we explored SWEET gene in the whole genome of peanut for the first time and analyzed its molecular characteristics and expression pattern in detail. These results showed that there were 55, 25, and 28 SWEET genes in the genomes of cultivated peanut and two ancestral wild peanuts, respectively, which were randomly and unevenly distributed on each chromosome. Orthologous genes from wild peanut and cultivated peanut usually shared the similar chromosome location, which confirmed that cultivated peanut originated from two ancestral wild peanuts. There were also some orthologous gene lost, which might be attributed to gene deletion or expansion during genome replication and doubling process. Gene structure and cis-elements in the promoter region were different in the SWEET genes, suggesting the diversity of biological functions. Phylogenetic analysis divided Arachis SWEET proteins into four subfamilies Clade I-Clade IV. Genes in the same clade of the same subfamily exhibited the similar gene structure. Based on Clevenger et al. tissue expression analysis, we found that some genes were tissue preferentially expressed, which provided a reference for further understanding the functional location of SWEET genes. Moreover, we identified several drought or salt stress responsive genes, such as AhSWEET3a and AhSWEET4e by re-analysis transcriptome expression data under abiotic stress and RT-qPCR. Their functions were still needed to be further identified. These results provide a theoretical reference for further analysis of SWEET gene function in peanut.

Key words: SWEET gene family, molecular characteristics, the relative expression pattern, abiotic stress, peanut

表1

本研究所用PCR引物"

基因
Gene
正向引物
Forward sequence (5°-3°)
反向引物
Reverse sequence (5°-3°)
AhSWEET3a GATATATTCGTTGCGGGAC TGTCTTTCCTTTTCCAGTATC
AhSWEET3c ATATTTGTTGCGGGACCAAGT CTTTTCCGGTATTTGCAGTG
AhSWEET4e CTCTTTGTCCTGATAAGCAAT TTCCTTGCAGGAGCAATAG
AhSWEET14a CTACGTTACTCTCCCGAAC GTAGCTTCTCATCTTGAACC
AhSWEET14b CAACATCGAAGAAAGCAAGTT CCTTAATAATTCCAAACTCTC
AhSWEET14d GGATATCTATGTTACACTTCC CTCACGGGCTTGTTCTTC
AhSWEET15h CATATGCATTGCTCTGCCAAA TCTCTTCCTTTGTTTTGTTGC
AhSWEET17a CTCCAAAAGGCACTTTCTTT CATGATTTTTCTTCTGGCCAA

表2

花生基因组SWEET基因家族成员"

拟南芥同源基因
Homologous genes in Arabidopsis
基因名称
Gene ID
基因编号
Gene code
染色体位置
Chromosomal location
氨基酸长度Amino acid length (aa) 分子量MW
(kD)
理论等电点
Theoretical (pI)
MtN3/saliva/SWEET结构域位置
MtN3/saliva/SWEET domain position
跨膜区
TMD
AtSWEET1 AdSWEET1a Aradu.K52XK Chr8:9267256…9269602 222 24.3 9.55 104-190 6
AdSWEET1c Aradu.42GVF Chr6:102416530...102419691 244 26.7 8.71 7-96, 129-215 7
AiSWEET1b Araip.S4KSY Chr7:116428599…116430875 222 24.2 9.55 17-71, 104-190 6
AiSWEET1d Araip.1W4C1 Chr6:126537940…126541378 216 23.9 8.50 103-189 5
AhSWEET1a Arahy.3965TZ Chr17:124639742…124642102 246 27.0 9.30 6-95, 128-214 7
AhSWEET1b Arahy.9QS057 Chr8:9055736…9058263 246 27.1 9.30 6-95, 128-214 7
AhSWEET1c Arahy.070EBZ Chr6:107629228…107632964 227 25.0 8.93 7-96, 115-198 5
AhSWEET1d Arahy.92QAUW Chr16:140501345…140505058 222 24.3 9.32 7-96, 102-193 6
AtSWEET2 AdSWEET2a Aradu.28KIR Chr7:75718293...75721951 235 26.2 8.38 15-104, 137-223 7
AiSWEET2a Araip.8E1XH Chr3:135782137…135782998 216 24.1 6.40 55-144 5
AiSWEET2b Araip.RW4FB Chr8:42747070…42751934 222 24.6 5.09 15-73, 124-210 6
AiSWEET2c Araip.LSW2G Chr8:42679546…42683180 235 26.1 7.62 15-104, 137-223 7
AiSWEET2d Araip.ZP7QC Chr3:135779119…135779975 222 24.7 6.39 61-150 5
AhSWEET2b Arahy.0067NC Chr7:75623404…75627352 235 26.2 8.38 15-104, 137-223 7
AhSWEET2a Arahy.8S8XL0 Chr7:75586852…75596799 235 26.2 8.40 15-104, 137-223 7
AhSWEET2c Arahy.T9263C Chr18:38164093…38168064 352 39.8 7.01 15-104, 137-223 9
AtSWEET3 AdSWEET3b Aradu.0C27S Chr6:102696867...102699789 273 29.9 9.16 7-98, 133-219 7
AdSWEET3c Aradu.HBL25 Chr8:8606536…8607991 262 33.6 9.29 7-98, 132-218 7
AiSWEET3a Araip.REH1B Chr6:126858655…126861067 268 29.3 9.16 7-98, 133-219 7
AiSWEET3d Araip.7QQ27 Chr7:115102590…115104076 297 33.1 8.80 7-98, 167-253 7
AhSWEET3a Arahy.7NL1KT Chr16:140828255…140830164 246 27.2 9.27 4-76, 111-197 6
AhSWEET3b Arahy.FUEI9J Chr6:107865617…107869328 269 29.5 9.16 7-98, 133-219 7
AhSWEET3c Arahy.T958MW Chr8:8373613…8375544 286 29.0 9.02 7-98, 133-218 7
AhSWEET3d Arahy.USDQ8P Chr17:123218056…123220023 262 28.9 9.01 7-98, 132-218 7
AtSWEET4 AdSWEET4a Aradu.IX4YQ Chr5:99793946…99796067 242 26.8 8.68 9-98, 132-219 7
AdSWEET4e Aradu.T2X2K Chr5:96617432…96620296 226 25.0 8.55 9-96, 110-197 6
AdSWEET4h Aradu.ZB8C2 Chr5:99808879…99815495 250 27.6 9.08 9-98, 132-219 7
AdSWEET4i Aradu.GAX6N Chr8:45864882…45870280 100 11.5 9.94 6-64 3
AiSWEET4c Araip.ML28J Chr5:124657132…124659199 198 22.0 8.77 1-68, 82-169 5
AiSWEET4d Araip.JQ4TL Chr9:22944513…22947059 281 31.3 8.47 48-137, 171-258 8
AiSWEET4e Araip.793GC Chr5:129433061…129435840 248 27.6 8.72 9-98, 132-219 7
AiSWEET4j Araip.J86Y5 Chr5:124624546…124628766 250 27.8 9.18 9-98, 132-219 7
AhSWEET4a Arahy.555XQU Chr5:105662134…105663519 206 23.0 8.18 4-74, 96-183 8
AhSWEET4b Arahy.D0QYDS Chr20:141781184…141782559 224 25.6 9.04 4-77, 121-202 6
AhSWEET4c Arahy.K3L8DV Chr15:134629653…134631174 221 24.9 8.84 4-77, 111-198 6
AhSWEET4d Arahy.7WW6WM Chr19: 23346369…23350117 281 31.3 8.47 48-137, 171-258 7
AhSWEET4e Arahy.6E534E Chr5:102891039…102894100 248 27.6 8.72 9-98, 132-219 7
AhSWEET4f Arahy.78PE2K Chr15:139799000…139802016 250 28.0 8.65 30-100, 134-221 6
AhSWEET4g Arahy.6J07HI Chr15:134596895…134602246 250 27.8 9.18 9-98, 132-219 7
AhSWEET4h Arahy.FJF87M Chr5:105677242…105683115 250 27.6 9.19 9-98, 132-219 7
AhSWEET4i Arahy.UY8AVE Chr17:40936681…40937328 104 11.3 6.51 1-75 2
AtSWEET5 AdSWEET5a Aradu.93DN3 Chr1:69869107…69871113 227 25.8 8.82 9-98, 132-218 7
AdSWEET5b Aradu.H4VY0 Chr3:89372637…89374336 248 27.3 9.17 12-101, 135-216 7
AiSWEET5a Araip.0637R Chr1:100554587…100555063 125 14.3 9.45 5-93 3
AiSWEET5b Araip.2E2K8 Chr3:89091887…89093629 253 27.9 9.37 12-101, 135-221 7
AiSWEET5c Araip.N9ELU Chr1:100553386…100554554 140 16.2 8.95 46-131 4
AhSWEET5a Arahy.CT4JMD Chr11:111850823…111855576 827 91.9 8.13 692-765 4
AhSWEET5b Arahy.J6YH7R Chr1: 86826649…86831389 962 10.7 8.34 746-835, 869-955 7
AtSWEET7 AhSWEET7 Arahy.TFC15A Chr19:23496407…23501260 86 95.4 9.07 68-149, 173-259 7
AtSWEET9 AdSWEET9c Aradu.JS1AI Chr4:122862465…122865150 261 29.8 6.51 11-98, 132-218 7
AiSWEET9a Araip.BV9QU Chr3:439278…440730 239 27.3 8.19 1-76, 110-196 6
AiSWEET9c Araip.RTL2U Chr4:132851944…132854554 239 27.3 8.19 1-76, 110-196 6
AhSWEET9a Arahy.B7EMS2 Chr13:447142…449632 302 34.4 8.75 9-52 1
AhSWEET9b Arahy.D36163 Chr14:142500897…142503628 261 29.8 6.99 11-98, 132-218 7
AhSWEET9c Arahy.S3T63E Chr4:128065367…128068098 261 29.7 6.99 11-98, 132-218 7
AtSWEET10 AdSWEET10c Aradu.JR6CM Chr3:40489078…40490220 78 16.3 9.19 1-64 4
AdSWEET10d Aradu.XS7EJ Chr8:48311533…48314172 156 34.3 9.15 10-97, 162-229 7
AdSWEET10e Aradu.4S8PR Chr8:45870283...45873364 180 25.0 9.55 14-93, 146-213 5
AdSWEET10h Aradu.R8LYK Chr4:106216896…106217683 178 23.5 9.92 3-72, 106-192 6
AdSWEET10j Aradu.UZC91 Chr3:106064010…106065654 249 28.3 9.71 10-98, 132-218 7
AiSWEET10d Araip.NW3CH Chr8:128878406…128879824 297 17.6 8.06 33-106 3
AiSWEET10j Araip.AI6C6 Chr3:107769962…107771673 213 26.4 9.26 10-98 6
AhSWEET10a Arahy.2I1JD4 Chr18:134293195…134295606 203 32.6 9.25 8-95, 129-215 7
AhSWEET10b Arahy.443QJ6 Chr4:112235225…112235986 162 18.5 9.03 6-77 4
AhSWEET10c Arahy.LDZB47 Chr4:43437401…43438082 60 15.0 9.50 1-69 4
AhSWEET10d Arahy.5X4IC8 Chr8:50270957…50274308 285 32.8 9.05 10-97, 131-217 7
AhSWEET10e Arahy.58XTYC Chr8:47810282…47810830 109 12.6 5.17 1-60 3
AhSWEET10f Arahy.BQV36K Chr8:47807401…47807793 72 80.9 9.60 1-42 2
AhSWEET10g Arahy.V92L7T Chr8:47802082…47802616 76 89.8 10.17 1-43 1
AhSWEET10h Arahy.F35YNL Chr4:112236821…112237853 182 21.0 9.97 6-75, 109-175 5
AhSWEET10i Arahy.5R858N Chr13:117476330…117478145 249 28.3 9.71 10-98, 132-218 7
AhSWEET10j Arahy.5ZV8II Chr3:114918073…114919873 249 28.2 9.71 10-98, 132-218 7
AtSWEET14 AdSWEET14a Aradu.VJ1BE Chr8:48272679…48275246 301 24.3 8.57 8-95, 129-215 7
AdSWEET14d Aradu.U6YR6 Chr3:106101550…106103052 279 31.5 8.99 9-96, 131-217 7
AiSWEET14b Araip.W20Z4 Chr8:128825355…128827183 260 29.6 9.10 7-70, 131-208 6
AiSWEET14d Araip.X0SC5 Chr3:107805141…107806659 278 31.4 9.09 9-96, 131-217 7
AhSWEET14a Arahy.9TLR89 Chr18:134237012…134239717 264 30.4 6.77 8-95, 101-178 5
AhSWEET14b Arahy.DV46W1 Chr8:50231164…50233873 264 30.4 7.57 8-95, 111-178 5
AhSWEET14c Arahy.S8PXCS Chr3:114967061…114969119 279 31.5 8.99 9-96, 131-217 7
AhSWEET14d Arahy.ZMPK13 Chr13:117517211…117519601 344 38.8 8.91 9-96, 131-217 7
AtSWEET15 AdSWEET15i Aradu.8101U Chr4:123472889…123474884 287 31.8 9.06 10-97, 131-229 7
AdSWEET15j Aradu.5U8FQ Chr3:129837253...129840537 285 31.8 9.04 13-100, 134-220 7
AdSWEET15k Aradu.TVV1L Chr10:6211511…6213515 250 29.0 8.41 12-99 4
AdSWEET15m Aradu.BR4HD Chr3:129849290…129851008 172 19.6 9.65 12-98, 97-167 5
AiSWEET15d Araip.519SW Chr9:28810509…28814571 264 30.3 9.76 160-233 5
AiSWEET15e Araip.FWQ8E Chr10:10538850…10540643 292 32.5 8.81 11-98, 132-216 7
AiSWEET15f Araip.8Y88R Chr7:15516941…15518734 292 32.5 8.81 11-98, 132-216 7
AiSWEET15h Araip.99BCA Chr4:133515941…133517784 274 30.3 8.95 10-98, 132-217 7
AiSWEET15i Araip.Z7DRI Chr3:130664924…130667334 258 28.8 9.24 13-100, 134-216 7
AhSWEET15a Arahy.ANYB6V Chr13:115603608…115606491 343 38.1 9.55 183-256 2
AhSWEET15b Arahy.D1TE9J Chr14:12548365…12551538 373 41.8 9.95 181-255 2
AhSWEET15c Arahy.S28F9G Chr12:9945485…9951264 488 54.5 9.56 265-338 2
AhSWEET15d Arahy.P4WV5Z Chr19:29592152…29610025 375 42.3 9.69 145-237 2
AhSWEET15e Arahy.BFG4SY Chr20:11037095…11039132 250 28.0 9.03 11-98, 132-201 6
AhSWEET15f Arahy.YD7UU4 Chr10:5867956…5870716 288 32.0 8.95 12-99, 133-217 7
AhSWEET15g Arahy.C2ZJE6 Chr14:143132241…143134705 274 30.3 8.95 10-97, 131-217 7
AhSWEET15h Arahy.Y269WP Chr4:128696711…128699175 274 30.3 8.95 10-97, 131-217 7
AhSWEET15i Arahy.2H0Q3A Chr13:141355072…141358480 253 28.4 8.94 13-100 6
AhSWEET15j Arahy.5TG8XZ Chr3:138456949…138460261 293 32.8 8.49 13-100, 134-220 7
AhSWEET15k Arahy.J4JRGL Chr13: 141369029…141370440 144 16.7 9.43 43-130 4
AhSWEET15l Arahy.KZTL0S Chr3:138469501…138471333 233 26.4 9.59 12-99, 133-218 7
AhSWEET15n Arahy.Y9X9P4 Chr3:138488011…138489816 197 22.4 9.07 24-86, 116-189 5
AtSWEET17 AdSWEET17a Aradu.F9D34 Chr6:5690214…5692510 312 34.2 9.15 6-93, 127-213 7
AdSWEET17c Aradu.P8CD0 Chr4:17364376…17367186 222 24.5 5.61 21-108, 142-203 6
AiSWEET17a Araip.5K37A Chr6:12618373…12628766 192 21.8 9.27 1-83 2
AiSWEET17d Araip.LD519 Chr4:17245576…17249063 243 28.3 7.66 21-108, 145-231 7
AhSWEET17a Arahy.777NZN Chr6:5321486…5324822 300 33.7 9.28 9-98, 132-219 6
AhSWEET17b Arahy.NLT8YT Chr16:16641434…16643685 232 25.5 9.32 48-135, 169-232 7
AhSWEET17c Arahy.385DXU Chr4:17831697…17835610 244 26.8 7.78 59-97, 131-217 6
AhSWEET17d Arahy.QI357H Chr14:18059619…18063941 273 30.1 6.89 39-126, 160-246 7

图1

花生基因组SWEET基因的染色体定位"

图2

拟南芥、水稻和花生SWEET蛋白的聚类分析 At: 拟南芥; Os: 水稻; Ad: 野生花生A. duranensis; Ai: 野生花生A. ipaensis; Ah: 栽培种花生A. hypogaea。"

图3

花生SWEET基因结构"

表3

花生SWEET基因启动子序列顺式作用元件"

基因名称
Gene name
ABRE
元件
ABRE
ARE
元件
ARE
AuxRR核心区
AuxRR-
core
CGTCA结构域
CGTCA-
motif
DRE1
元件
DRE1
ERE元件
ERE
GCN4
结构域GCN4 motif
GARE
结构域
GARE-
motif
P盒
P-box
LTR元件
LTR
MBS
元件
MBS
富含TC重复序列
TC-rich repeats
TCA元件
TCA-
element
TGA元件
TGA-
element
TGACG结构域
TGACG-
motif
W盒
W-box
WUN
结构域WUN-motif
as-1
元件
as-1
AhSWEET1a 3 1 1 4 1 1 1
AhSWEET1b 3 1 1 4 1 1 1
AhSWEET1c 3 3 4 1 1 1 2 1 1
AhSWEET1d 7 2 2 4 1 2 2 2 1
AhSWEET2a 1 3 1 2 1 3 1 1
AhSWEET2b 3 1 4 2 1 2 1 1 1
AhSWEET2c 3 1 3 2 1 1 1 1 4 3 3 2 1
AhSWEET3a 5 1 2 1 1 1
AhSWEET3b 3 4 1
AhSWEET3c 5 1 1 1 1 1 1 1 1
AhSWEET3d 2 1 1 2 1 1 1 1 1
AhSWEET4a 3 3 3 1 2 3
AhSWEET4b 3 2 3 1 2 1 1 2
AhSWEET4c 3 2 3 1 1 1
AhSWEET4d 3 3 1 6 2 3 2 1
AhSWEET4e 2 3 1 1 1 2 1 1
AhSWEET4f 1 5 1 1 1 2 2
AhSWEET4g 5 1 3 1 1 1 4
AhSWEET4h 6 1 1 1 1 1 1 1 1
AhSWEET4i 2 3 2 1 2 2
AhSWEET5a 9 4 2 2 1 2 2 1 1 2
AhSWEET5b 8 3 2 1 1 1 1
AhSWEET7 1 2 1 1 2 1 1 2 1 2
AhSWEET9a 3 7 1 2 1 1 7 1 7
AhSWEET9b 2 1 3 1 1 2 3 1 3
AhSWEET9c 2 1 3 1 1 2 3 1 3
AhSWEET10a 3 1 3 1 1 1 1 1 1 1 1
AhSWEET10b 1 2 1 2 1 1
AhSWEET10c 4 3 1 1 2 1 1 1 1 1
AhSWEET10d 6 1 2 5 1 2 1 2 2 2 1 1 2
AhSWEET10e 2 1 1 2 1 1
AhSWEET10f 2 2 3 2 2
AhSWEET10g 3 1 1 2 1 1
AhSWEET10h 1 2 1 2 2
AhSWEET10i 7 1 6 1 1 1 1
AhSWEET10j 6 1 1 5 1 1 1
AhSWEET14a 10 2 1 2 1
AhSWEET14b 4 4 4 1
AhSWEET14c 10 1 2 2 1 1 1
AhSWEET14d 10 3 1 1 2 1 1
AhSWEET15a 1 3 3 1 1 3 1 1 3
AhSWEET15b 1 2 3 1 1 3 1 1 3
AhSWEET15c 1 3 2 1 1 2 1 1 2
AhSWEET15d 1 3 2 1 1 1 2 1 1 2
AhSWEET15e 6 2 1 3 1 1 1 1 1 2 1 1
AhSWEET15f 4 2 2 3 1 2 1 1 2
AhSWEET15g 4 1 1 7 1 1 1 1 1 1 1
AhSWEET15h 4 1 1 7 1 1 2 1 1 1 1 1
AhSWEET15i 8 1 1 1 1 1 2 1 1 1 1 1
AhSWEET15j 6 3 1 1 1 2 1 1 1
AhSWEET15k 6 8 1 3 1 1
AhSWEET15l 2 2 6 1 1 4 2
AhSWEET15m 2 2 1
AhSWEET17a 2 2 1 6 1 1 2 1 1 1 1
AhSWEET17b 2 2 1 4 1 1 1 2 1 1 1
AhSWEET17c 6 1 2 1 1 1
AhSWEET17d 5 1 2 1 1

图4

基于转录组测序结果分析SWEET基因在不同发育时期22个不同组织表达模式"

图5

干旱和盐胁迫条件下花生SWEET基因表达模式"

图6

不同胁迫条件下花生SWEET基因表达分析"

[1] 代小冬, 杜培, 秦利, 刘华, 张忠信, 高伟, 刘娟, 徐静, 董文召, 张新友. 花生抗旱性研究进展. 热带作物学报, 2021, 42: 1788-1794.
Dai X D, Du P, Qin L, Liu H, Zhang Z X, Gao W, Liu J, Xu J, Dong W Z, Zhang X Y. Research progress of peanut drought resistance. Chin J Trop Crops, 2021, 42: 1788-1794. (in Chinese with English abstract)
[2] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种. 作物学报, 2021, 47: 556-565.
doi: 10.3724/SP.J.1006.2021.04107
Yan C X, Wang J, Zhao X B, Song X X, Jiang C S, Sun Q X, Yuan C L, Zhang H, Shan S H. Identification and screening of saline alkali tolerant peanut varieties in the whole growth period. Acta Agron Sin, 2021, 47: 556-565. (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04107
[3] Han S, Zhou X, Shi L, Zhang H, Geng Y, Fang Y, Xia H, Liu H, Li P, Zhao S, Miao L, Hou L, Zhang Z, Xu J, Ma C, Wang Z, Li H, Zheng Z, Huang B, Dong W, Zhang J, Tang F, Li S, Gao M, Zhang X, Zhao C, Wang X. The AhNPR3 regulates the gene expression of WRKY and PR genes, and mediate the immune response of peanut (Arachis hypogaea L.). Plant J, 2022, 110: 735-747.
doi: 10.1111/tpj.15700
[4] Anjali A, Fatima U, Manu M S, Ramasamy S, Senthil-Kumar M. Structure and regulation of SWEET transporters in plants: an update. Plant Physiol Biochem, 2020, 156: 1-6.
doi: 10.1016/j.plaphy.2020.08.043
[5] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606
[6] Yuan M, Wang S P. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047
[7] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005
[8] Chen L Q, Qu X Q, Hou B H. Sosso D, Osorio S. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351
[9] 胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33: 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Advances in the structure, function and regulation of plant sweet gene family. Biotechnol Bull, 2017, 33: 27-37. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
[10] Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. Iubmb Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993
[11] Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3: 942-955.
doi: 10.1093/mp/ssq044
[12] Le H R, Spinner L, Klemens P A, Chakraborti D, de Marco F, Vilaine F, Wolff N. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant, 2015, 8: 1687-1690.
doi: 10.1016/j.molp.2015.08.007
[13] Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiol, 2016, 170: 1460-1479.
doi: 10.1104/pp.15.01926
[14] Chen Q C, Hu T, Li X H, Song C P, Zhu J K, Chen L Q, Zhao Y. Phosphorylation of SWEET sucrose transporters regulates plant root : shoot ratio under drought. Nat Plants, 2022, 8: 68-77.
doi: 10.1038/s41477-021-01040-7
[15] Seo P J, Kang S K, Kim S G, Park J M, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[16] Klemens P, Patzke K, De Itmer J, Spinner L, Hir R L. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. J Exp Bot, 2012, 63: 4107-4121.
doi: 10.1093/jxb/ers093
[17] Liu X Z, Zhang Y, Yang C, Tian Z H, Li J X. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep, 2016, 6: 24563.
doi: 10.1038/srep24563 pmid: 27102826
[18] Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15in rice. Physiol Plant, 2020, 171: 620-637.
doi: 10.1111/ppl.13210
[19] Yao L, Ding C Q, Hao X Y, Zeng J M, Yang Y J, Wang X C, Wang L. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant Cell Physiol, 2020, 61: 1669-1682.
doi: 10.1093/pcp/pcaa091 pmid: 32645157
[20] Zhou A M, Ma H P, Feng S, Gong S F, Wang J G. SWEET17, a tonoplast-localized sugar transporter from Dianthus spiculifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis. Int J Mol Sci, 2018, 19: 1564.
doi: 10.3390/ijms19061564
[21] Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci, 2016, 7: 1446.
pmid: 27746793
[22] Zhao X B, Li C J, Wan S B, Zhang T T, Shan S H. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep, 2018, 45: 119-131.
doi: 10.1007/s11033-018-4145-4
[23] Zhang H, Zhao X B, Sun Q X, Yan C X, Wang J, Yuan C L, Li C J, Shan S H, Liu F Z. Comparative transcriptome analysis reveals molecular defensive mechanism of Arachis hypogaea in response to salt stress. Int J Genomics, 2020, 2020: 6524093.
[24] Chi X, Hu R, Yang Q, Zhang X, Pan L, Chen N, Chen M N, Yang Z, Wang T, He Y. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genomics, 2012, 287: 167-176.
doi: 10.1007/s00438-011-0665-5 pmid: 22203160
[25] Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan P. Genome-wide identification of the SWEET gene family in wheat. Gene, 2018, 642: 284-292.
doi: S0378-1119(17)31009-0 pmid: 29155326
[26] Manck-Gotzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci, 2016, 7: 487.
doi: 10.3389/fpls.2016.00487 pmid: 27148312
[27] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析. 作物学报, 2021, 47: 2184-2198.
doi: 10.3724/SP.J.1006.2021.04240
Li P, Liu C, Song H, Yao P P, Su P L, Wei Y W, Yang Y X, Li C Q. Identification and analysis of tobacco nonspecific lipid transfer protein gene family. Acta Agron Sin, 2021, 47: 2184-2198. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04240
[28] Bertioli D J, Cannon S B, Froenicke L, Huang G D, Cannon E K S, Liu X, Gao D Y, Clevenger J, Dash S, Ren L H, Farmer A D. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[29] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析. 作物学报, 2021, 47: 2394-2406.
doi: 10.3724/SP.J.1006.2021.04259
Xie P, Liu W, Kang Y, Hua W, Qian L W, Guan C Y, He X. Identification and expression analysis of CBF gene family in Brassica napus. Acta Agron Sin, 2021, 47: 2394-2406. (in Chinese with English abstract)
[30] Wang S, Yokosho K, Guo R, Whelan J, Shou H. The soybean sugar transporter GmSWEET15mediates sucrose export from endosperm to early embryo. Plant Physiol, 2019, 180: 2133-2141.
doi: 10.1104/pp.19.00641
[31] Sun M X, Huang X Y, Yang G, Yang J, Guan X F, Yang Z N. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod, 2013, 26: 83-91.
doi: 10.1007/s00497-012-0208-1
[32] Frank W, Márcio A F, Annick D, José L R, Elliot M M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet, 2006, 2: e117.
doi: 10.1371/journal.pgen.0020117
[33] Engel M L, Holmes-Davis R, McCormick S. Green sperm, identification of male gamete promoters in Arabidopsis. Plant Physiol, 2006, 141: 802-802.
doi: 10.1104/pp.104.900193
[1] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[2] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[3] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[4] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[5] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[6] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[7] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[8] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[9] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[10] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[11] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[12] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[13] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[14] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[15] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .