作物学报 ›› 2023, Vol. 49 ›› Issue (4): 938-954.doi: 10.3724/SP.J.1006.2023.24066
孙全喜1(), 苑翠玲1, 牟艺菲1, 闫彩霞1, 赵小波1, 王娟1, 王奇1, 孙慧2, 李春娟1, 单世华1,*()
SUN Quan-Xi1(), YUAN Cui-Ling1, MOU Yi-Fei1, YAN Cai-Xia1, ZHAO Xiao-Bo1, WANG Juan1, WANG Qi1, SUN Hui2, LI Chun-Juan1, SHAN Shi-Hua1,*()
摘要:
SWEET (sugars will eventually be exported transporter)蛋白是一类结构保守、不依赖能量的糖转运蛋白, 在植物生长发育、响应生物/非生物逆境胁迫等生理过程发挥重要作用。目前, 尚未见花生SWEET基因相关报道。本研究首次全基因组挖掘了花生SWEET基因, 对其分子特征及表达模式进行了细致分析。结果表明, 栽培种花生和2个祖先野生种基因组分别存在55、25、28个SWEET基因, 随机不均匀分布在各染色体上。来源于野生种和栽培种的同源基因在染色体位置相近, 但也存在个别缺失, 这验证了花生野生种和栽培种的进化关系, 也暗示了基因组复制加倍过程中存在同源基因的丢失或扩张。基因内含子-外显子数目和位置以及启动子中顺式作用元件种类和数量均存在差异, 暗示了花生SWEET基因生物学功能的多样性。系统进化分析将花生SWEET基因分为4个亚家族Clade I~Clade IV, 同一亚家族同一分支的基因具有相似的外显子-内含子结构。分析Clevenger等组织表达谱发现部分基因表现为组织优势表达, 这为深入了解SWEET基因行使功能部位提供了参考。此外, 基于课题组前期发表的干旱和高盐胁迫转录组分析和RT-qPCR验证, 我们挖掘出AhSWEET3a和AhSWEET4e等响应花生干旱或高盐胁迫的基因, 功能有待进一步鉴定。研究结果为下一步深入分析花生SWEET基因功能提供了理论参考。
[1] | 代小冬, 杜培, 秦利, 刘华, 张忠信, 高伟, 刘娟, 徐静, 董文召, 张新友. 花生抗旱性研究进展. 热带作物学报, 2021, 42: 1788-1794. |
Dai X D, Du P, Qin L, Liu H, Zhang Z X, Gao W, Liu J, Xu J, Dong W Z, Zhang X Y. Research progress of peanut drought resistance. Chin J Trop Crops, 2021, 42: 1788-1794. (in Chinese with English abstract) | |
[2] |
闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种. 作物学报, 2021, 47: 556-565.
doi: 10.3724/SP.J.1006.2021.04107 |
Yan C X, Wang J, Zhao X B, Song X X, Jiang C S, Sun Q X, Yuan C L, Zhang H, Shan S H. Identification and screening of saline alkali tolerant peanut varieties in the whole growth period. Acta Agron Sin, 2021, 47: 556-565. (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04107 |
|
[3] |
Han S, Zhou X, Shi L, Zhang H, Geng Y, Fang Y, Xia H, Liu H, Li P, Zhao S, Miao L, Hou L, Zhang Z, Xu J, Ma C, Wang Z, Li H, Zheng Z, Huang B, Dong W, Zhang J, Tang F, Li S, Gao M, Zhang X, Zhao C, Wang X. The AhNPR3 regulates the gene expression of WRKY and PR genes, and mediate the immune response of peanut (Arachis hypogaea L.). Plant J, 2022, 110: 735-747.
doi: 10.1111/tpj.15700 |
[4] |
Anjali A, Fatima U, Manu M S, Ramasamy S, Senthil-Kumar M. Structure and regulation of SWEET transporters in plants: an update. Plant Physiol Biochem, 2020, 156: 1-6.
doi: 10.1016/j.plaphy.2020.08.043 |
[5] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606 |
[6] |
Yuan M, Wang S P. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047 |
[7] |
Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005 |
[8] |
Chen L Q, Qu X Q, Hou B H. Sosso D, Osorio S. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351 |
[9] |
胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33: 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004 |
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Advances in the structure, function and regulation of plant sweet gene family. Biotechnol Bull, 2017, 33: 27-37. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004 |
|
[10] |
Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. Iubmb Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993 |
[11] |
Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3: 942-955.
doi: 10.1093/mp/ssq044 |
[12] |
Le H R, Spinner L, Klemens P A, Chakraborti D, de Marco F, Vilaine F, Wolff N. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant, 2015, 8: 1687-1690.
doi: 10.1016/j.molp.2015.08.007 |
[13] |
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiol, 2016, 170: 1460-1479.
doi: 10.1104/pp.15.01926 |
[14] |
Chen Q C, Hu T, Li X H, Song C P, Zhu J K, Chen L Q, Zhao Y. Phosphorylation of SWEET sucrose transporters regulates plant root : shoot ratio under drought. Nat Plants, 2022, 8: 68-77.
doi: 10.1038/s41477-021-01040-7 |
[15] |
Seo P J, Kang S K, Kim S G, Park J M, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8 |
[16] |
Klemens P, Patzke K, De Itmer J, Spinner L, Hir R L. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. J Exp Bot, 2012, 63: 4107-4121.
doi: 10.1093/jxb/ers093 |
[17] |
Liu X Z, Zhang Y, Yang C, Tian Z H, Li J X. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep, 2016, 6: 24563.
doi: 10.1038/srep24563 pmid: 27102826 |
[18] |
Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15in rice. Physiol Plant, 2020, 171: 620-637.
doi: 10.1111/ppl.13210 |
[19] |
Yao L, Ding C Q, Hao X Y, Zeng J M, Yang Y J, Wang X C, Wang L. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant Cell Physiol, 2020, 61: 1669-1682.
doi: 10.1093/pcp/pcaa091 pmid: 32645157 |
[20] |
Zhou A M, Ma H P, Feng S, Gong S F, Wang J G. SWEET17, a tonoplast-localized sugar transporter from Dianthus spiculifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis. Int J Mol Sci, 2018, 19: 1564.
doi: 10.3390/ijms19061564 |
[21] |
Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci, 2016, 7: 1446.
pmid: 27746793 |
[22] |
Zhao X B, Li C J, Wan S B, Zhang T T, Shan S H. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep, 2018, 45: 119-131.
doi: 10.1007/s11033-018-4145-4 |
[23] | Zhang H, Zhao X B, Sun Q X, Yan C X, Wang J, Yuan C L, Li C J, Shan S H, Liu F Z. Comparative transcriptome analysis reveals molecular defensive mechanism of Arachis hypogaea in response to salt stress. Int J Genomics, 2020, 2020: 6524093. |
[24] |
Chi X, Hu R, Yang Q, Zhang X, Pan L, Chen N, Chen M N, Yang Z, Wang T, He Y. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genomics, 2012, 287: 167-176.
doi: 10.1007/s00438-011-0665-5 pmid: 22203160 |
[25] |
Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan P. Genome-wide identification of the SWEET gene family in wheat. Gene, 2018, 642: 284-292.
doi: S0378-1119(17)31009-0 pmid: 29155326 |
[26] |
Manck-Gotzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci, 2016, 7: 487.
doi: 10.3389/fpls.2016.00487 pmid: 27148312 |
[27] |
李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析. 作物学报, 2021, 47: 2184-2198.
doi: 10.3724/SP.J.1006.2021.04240 |
Li P, Liu C, Song H, Yao P P, Su P L, Wei Y W, Yang Y X, Li C Q. Identification and analysis of tobacco nonspecific lipid transfer protein gene family. Acta Agron Sin, 2021, 47: 2184-2198. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04240 |
|
[28] |
Bertioli D J, Cannon S B, Froenicke L, Huang G D, Cannon E K S, Liu X, Gao D Y, Clevenger J, Dash S, Ren L H, Farmer A D. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068 |
[29] |
解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析. 作物学报, 2021, 47: 2394-2406.
doi: 10.3724/SP.J.1006.2021.04259 |
Xie P, Liu W, Kang Y, Hua W, Qian L W, Guan C Y, He X. Identification and expression analysis of CBF gene family in Brassica napus. Acta Agron Sin, 2021, 47: 2394-2406. (in Chinese with English abstract) | |
[30] |
Wang S, Yokosho K, Guo R, Whelan J, Shou H. The soybean sugar transporter GmSWEET15mediates sucrose export from endosperm to early embryo. Plant Physiol, 2019, 180: 2133-2141.
doi: 10.1104/pp.19.00641 |
[31] |
Sun M X, Huang X Y, Yang G, Yang J, Guan X F, Yang Z N. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod, 2013, 26: 83-91.
doi: 10.1007/s00497-012-0208-1 |
[32] |
Frank W, Márcio A F, Annick D, José L R, Elliot M M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet, 2006, 2: e117.
doi: 10.1371/journal.pgen.0020117 |
[33] |
Engel M L, Holmes-Davis R, McCormick S. Green sperm, identification of male gamete promoters in Arabidopsis. Plant Physiol, 2006, 141: 802-802.
doi: 10.1104/pp.104.900193 |
[1] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[2] | 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230. |
[3] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[4] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[5] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[6] | 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876. |
[7] | 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686. |
[8] | 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413. |
[9] | 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471. |
[10] | 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238. |
[11] | 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85. |
[12] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[13] | 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904. |
[14] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[15] | 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079. |
|