欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 926-937.doi: 10.3724/SP.J.1006.2023.24080

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯耐低钾基因型苗期筛选及综合评价

刘明1,2(), 范文静1,3, 赵鹏1, 靳容1, 张强强1, 朱晓亚1, 王静1, 李强1,2,*()   

  1. 1江苏徐淮地区徐州农业科学研究所/农业农村部甘薯生物学与遗传育种重点实验室, 江苏徐州 221131
    2江苏师范大学, 江苏徐州 221116
    3安徽农业大学农学院, 安徽合肥 230036
  • 收稿日期:2022-04-02 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-18
  • 通讯作者: *李强, E-mail: instrong@163.com
  • 作者简介:E-mail: liuming0506@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-10);国家重点研发计划项目(2018YFD1000704);江苏省重点研发计划项目(BE2021311)

Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage

LIU Ming1,2(), FAN Wen-Jing1,3, ZHAO Peng1, JIN Rong1, ZHANG Qiang-Qiang1, ZHU Xiao-Ya1, WANG Jing1, LI Qiang1,2,*()   

  1. 1Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
    2Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
    3College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2022-04-02 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-18
  • Contact: *E-mail: instrong@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10);National Key Research and Development Program of China(2018YFD1000704);Key Research and Development Program of Jiangsu Province(BE2021311)

摘要:

为建立甘薯苗期耐低钾能力评价体系, 筛选耐低钾和低钾敏感型甘薯材料, 通过水培试验设置了低钾胁迫(0 mmol L-1 K2O)和正常钾处理(10 mmol L-1 K2O), 对来自国内外不同薯区的214份甘薯品种(系)材料进行培养, 收集生物量、钾积累量、钾含量、钾利用效率等11个性状表征值, 计算各指标耐低钾胁迫指数。利用综合隶属函数法, 进行主成分分析、回归分析和聚类分析, 综合评价各甘薯材料耐低钾能力。结果表明, 不同甘薯材料在2个钾水平下的生物量和钾吸收利用特征均有明显差异; 低钾胁迫下地上部干重(SB)、地上部干物质增加量(SBI)、根系干物质增加量(RBI)、总干物质增加量(PBI)、地上部钾积累量(KAS)、根钾积累量(KAR)、总钾积累量(KAP)、地上部钾含量(KCS)和根系钾含量(KCR)等9个指标与正常钾处理相比均降低29%以上, 而根冠比(RSR)和钾生理利用效率(KUE)分别提高29.63%和120.56%。低钾胁迫下, 不同甘薯材料的SB、SBI、PBI、KAS、KAP、KCS、KCR和KUE等8个指标的变异系数均高于正常钾处理。对11个指标的耐低钾胁迫指数进行主成分分析, 选择了3个主成分, 累计方差贡献率达82.86%; 11个指标的耐低钾敏感指数均与耐低钾综合评价值(Y)极显著相关。选择了SBI、RBI、PBI、KAS、KAR、KAP等6个指标作为筛选评价指标, 根据聚类热图分析将214份甘薯材料划分为耐低钾型、中间型和不耐低钾型; 方差分析表明, 耐低钾型品种与其他类型品种相比具有较高的耐低钾胁迫指数, Y值也排列前位, 验证了聚类结果的准确性。综合本研究结果, SBI、RBI、PBI、KAS、KAR、KAP等6个指标可作为甘薯苗期耐低钾能力筛选的首选指标; 筛选出甘薯苗期耐低钾能力最强的6个品种, 分别为济紫薯18号、广紫薯2号、龙薯710、泰中6号、胜利百号、龙薯9号。

关键词: 甘薯, 耐低钾胁迫, 品种筛选, 评价指标

Abstract:

The purpose of this study was to establish a low potassium (K) tolerant evaluation system for sweetpotato at seedling stage and to screen sweetpotato materials with low-K-tolerant and low-K-sensitive. 214 sweetpotato varieties (lines) from domestic and abroad were cultured under low-K-stress (0 mmol L-1 K2O, LK) and normal K treatment (10 mmol L-1 K2O, CK) through a hydroponic experiment. 11 traits, such as biomass, K accumulation, K content, and K utilization efficiency were collected to calculate the low-K-stress tolerance index of each index. The low-K-tolerant ability of each sweetpotato material was comprehensively evaluated by principal component analysis (PCA), regression analysis, and cluster analysis. The results showed that the biomass and K uptake and utilization characteristics of different sweetpotato materials were different under two K levels. Under LK treatment, shoot biomass (SB), shoot biomass increase (SBI), root biomass increase (RBI), total biomass increase (PBI), K accumulation in shoot (KAS), K accumulation in root (KAR), K accumulation in plant (KAP), K concentration in shoot (KCS), and K concentration in root (KCR) decreased by more than 29% compared with CK, while root shoot ratio (RSR) and K physiological utilization efficiency (KUE) increased by 29.63% and 120.56%, respectively. Under LK treatment, the variation coefficients of SB, SBI, PBI, KAS, KAP, KCS, KCR, and KUE of different sweetpotato materials were higher than those of CK treatment. Principal component analysis was carried out on the low-K-stress tolerant index of 11 indexes. Three principal components (PC) were selected and the cumulative variance contribution rate was 82.86%. The low-K-tolerant index of 11 indicators was significantly correlated with the comprehensive evaluation value (Y) of low-K-tolerant. Selected SBI, RBI, PBI, KAS, KAR, KAP as screening evaluation indicators, 214 sweetpotato materials were divided into low-K-tolerant type, intermediate type and low-K-sensitive type according to cluster heat map analysis. The variance analysis showed that the low-K-tolerant varieties had higher low-K-stress tolerance index than other types of varieties, and the Y-value was also in the top, which verified the accuracy of the clustering results. Based on the results of this study, SBI, RBI, PBI, KAS, KAR, and KAP can be used as the first selection indexes for the screening of sweetpotato with different low-K-tolerance ability at seedling stage. Six genotypes with the strongest tolerance to low K at seedling stage were selected, which were Jizishu 18, Guangzishu 2, Longshu 710, Taizhong 6, Shenglibaihao, and Longshu 9.

Key words: sweetpotato, low-K-tolerant, variety screening, evaluation indicators

表1

供试甘薯材料"

编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
1 渝薯99 Yushu 99 108 宁紫薯1号 Ningzishu 1
2 渝红心薯8号 Yuhongxinshu 8 109 徐紫薯2号 Xuzishu 2
3 浙薯147 Zheshu 147 110 徐紫薯8号 Xuzishu 8
4 渝苏162 Yusu 162 111 徐紫薯6号 Xuzishu 6
5 浙薯6025 Zheshu 6025 112 绵紫薯9号 Mianzishu 9
6 渝苏153 Yushu 153 113 绵渝紫11 Mianyuzi 11
7 普薯32 Pushu 32 114 万紫薯56 Wanzishu 56
8 渝薯17 Yushu 17 115 鄂紫薯13 Ezishu 13
9 1399-2 116 鄂薯12 Eshu 12
10 S1-5 117 桂紫薯3号 Guizishu 3
11 福薯13 Fushu 13 118 福薯24号 Fushu 24
12 渝紫3号 Yuzi 3 119 川紫薯2号 Chuanzishu 2
13 江津乌苕尖 Jiangjinwutiaojian 120 桂经薯9号 Guijingshu 9
14 南薯007 Nanshu 007 121 商徐紫1号 Shangxuzi 1
15 渝薯2号 Yushu 2 122 吉徐紫2号 Jixuzi 2
16 龙薯9号 Longshu 9 123 徐紫薯3号 Xuzishu 3
17 济薯18 Jishu 18 124 渝紫7号 Yuzi 7
18 南薯012 Nanshu 012 125 彭紫薯3号 Pengzishu 3
19 苏薯1号 Sushu 1 126 渝紫263 Yuzi 263
20 二南苕/胜南苕 Ernantiao/Shengnanshao 127 徐紫薯5号 Xuzishu 5
21 济78268 Ji 78268 128 桂经薯6号 Guijingshu 6
22 徐22-5 Xu 22-5 129 桂经薯8号 Guijingshu 8
23 南薯15 Nanshu 15 130 南紫014 Nanzi 014
24 渝紫6号 Yuzi 6 131 南紫015 Nanzi 015
25 心香 Xinxiang 132 黔紫薯1号 Qianzishu 1
26 早秋 Zaoqiu 133 福宁紫3号 Funingzi 3
27 浙紫薯2号 Zhezishu 2 134 福宁紫4号 Funingzi 4
28 龙薯1号 Longshu 1 135 莆紫薯3号 Puzishu 3
29 徐17-10 Xu 17-10 136 莆紫薯18号 Puzishu 18
30 渝薯12 Yushu 12 137 济紫薯3号 Jizishu 3
31 南薯88 Nanshu 88 138 广紫薯9号 Guangzishu 9
32 1498-4 139 广紫薯10号 Guangzishu 10
33 浙薯81 Zheshu 81 140 广紫薯11号 Guangzishu 11
编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
34 1375-11 141 广紫薯1号 Guangzishu 1
35 渝薯33 Yushu 33 142 广紫薯2号 Guangzishu 2
36 渝薯6号 Yushu 6 143 广紫薯8号 Guangzishu 8
37 商丘52-7 Shangqiu 52-7 144 济紫薯18号 Jizishu 18
38 浙菜薯726 Zhecaishu 726 145 绫紫 Lingzi
39 13104-2 146 泰紫1506 Taizi 1506
40 浙薯13 Zheshu 13 147 泰紫2014-04 Taizi 2014-04
41 万薯10号 Wanshu 10 148 韩紫 Hanzi
42 红香蕉 Hongxiangjiao 149 徐紫秧10号 Xuziyang 10
43 济薯29 Jishu 29 150 龙薯4号 Longshu 4
44 岩薯5号 Yanshu 5 151 防紫9号 Fangzi 9
45 浙255 Zhe 255 152 防薯9号 Fangshu 9
46 济10216 Ji 10216 153 广薯98 Guangshu 98
47 济农51 Jinong 51 154 广薯146 Guangshu 146
48 济农290 Jinong 290 155 广薯72 Guangshu 72
49 冀紫薯2号 Jizishu 2 156 金山17 Jinshan 17
50 南紫020 Nanzi 020 157 金山20 Jinshan 20
51 南紫018 Nanzi 018 158 金山57 Jinshan 57
52 川薯228 Chuanshu 228 159 秦薯8号 Qinshu 8
53 川薯294 Chuanshu 294 160 栗子香 Lizixiang
54 龙薯15 Longshu 15 161 烟薯25 Yanshu 25
55 龙薯601 Longshu 601 162 烟薯26 Yanshu 26
56 郑薯20 Zhengshu 20 163 烟台红 Yantaihong
57 泰中6号 Taizhong 6 164 福建连城 Fujianliancheng
58 鲁薯8号 Lushu 8 165 柬埔寨1号 Jianpuzhai 1
59 泰薯12号 Taishu 12 166 临高(半紫) Lingao (banzi)
60 万薯7号 Wanshu 7 167 日本黑 Ribenhei
61 泰薯14号 Taishu 14 168 赤几紫 Chijizi
62 徐薯32 Xushu 32 169 川薯20 Chuanshu 20
63 徐薯33 Xushu 33 170 福宁紫1号 Funingzi 1
64 徐渝薯34 Xuyushu 34 171 阜紫1号 Fuzi 1
65 徐渝薯35 Xuyushu 35 172 黄吉2号 Huangji 2
66 苏薯8号 Sushu 8 173 济黑 Jihei
67 安平1号 Anping 1 174 龙紫9号 Longzi 9
68 冰淇淋 Bingqilin 175 汝城小紫 Ruchengxiaozi
69 济薯26 Jishu 26 176 广薯87 Guangshu 87
70 岩薯5号 Yanshu 5 177 长塘黄 Changtanghuang
71 红优 Hongyou 178 黄吉1号 Huangji 1
72 胜利百号 Shenglibaihao 179 小桂紫微薯 Xiaoguiziweishu
73 苏薯22 Sushu 22 180 安哥拉1 Angela 1
74 苏薯25 Sushu 25 181 川薯1号 Chuanshu 1
75 川薯20 Chuanshu 20 182 鄂薯3号 Eshu 3
76 鄂薯11 E’shu 11 183 福317 Fu 317
77 赣渝3号 Ganyu 3 184 福薯26 Fushu 26
78 豫21-16 Yu 21-16 185 刚果布2号 Gangguobu 2
编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
79 万9902-7 Wan 9902-7 186 广薯155 Guangshu 155
80 川薯220 Chuanshu 220 187 桂粉3号 Guifen 3
81 黔薯5号 Qianshu 5 188 红尾薯 Hongweishu
82 丹研红心薯Danyanhongxinshu 189 黄皮薯 Huangpishu
83 渝92-113-90 Yu 92-113-90 190 鸡蛋黄 Jidanhuang
84 渝5-2-48 Yu 5-2-48 191 冀薯98 Jishu 98
85 二郎苕 Erlangshao 192 九里香 Jiulixiang
86 绵9-6-3 Mian 9-6-3 193 六拾日 Liushiri
87 鲁薯18 Lushu 18 194 龙薯710 Longshu 710
88 宁4-6 Ning 4-6 195 秘鲁 Bilu
89 香苕 Xiangtiao 196 南充香种 Nanchongxiangzhong
90 南薯010 Nanshu 010 197 农岩7-3 Nongyan 7-3
91 福薯604 Fushu 604 198 青岛乐泉 Qingdaolequan
92 冀薯4 Jishu 4 199 泉薯10号 Quanshu 10
93 冀薯332 Jishu 332 200 泉薯830 Quanshu 830
94 湛薯12 Zhanshu 12 201 三明P355058 Sanming P35508
95 川1-60 Chuan 1-60 202 台农57 Tainong 57
96 龙紫薯6号 Longzishu 6 203 泰国 Taiguo
97 浙紫薯1号 Zhezishu 1 204 禺百红 Yubaihong
98 宁紫薯3号 Ningzishu 3 205 豫薯13 Yushu 13
99 济紫黑2号 Jizihei 2 206 湛薯16 Zhanshu 16
100 阜紫薯1号 Fuzishu 1 207 湛江橙 Zhanjiangcheng
101 泰中11号 Taizhong 11 208 湛薯118 Zhanshu 118
102 烟紫薯3号 Yanzishu 3 209 JY2 (日本红心品种) JY2 (Ribenhongxinpinzhong)
103 皖YW-36-1 Wan YW-36-1 210 浙紫5号 Zhezi 5
104 龙津薯3号 Longjinshu 3 211 大南伏 Dananfu
105 湛紫薯2号 Zhanzishu 2 212 浙薯70 Zheshu 70
106 烟紫薯2号 Yanzishu 2 213 宁紫6号 Ningzi 6
107 宁紫薯4号 Ningzishu 4 214 宜宾红心薯 Yibinhongxinshu

表2

不同钾水平下甘薯苗期各性状变异分析"

指标
Index
正常钾处理 Normal K treatment (CK) 低钾处理Low-K-stress treatment (LK)
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
地上部干重Shoot biomass (g plant-1) 0.53-4.43 2.05 37.24 0.22-2.74 1.16 38.39
地上部干物质增加量Shoot biomass increase (g plant-1) 0.16-3.46 1.32 48.47 -0.87-1.36 0.16 246.61
根系干物质增加量Root biomass increase (g plant-1) 0.10-1.57 0.55 49.05 0.07-0.91 0.39 39.16
总干物质增加量Plant biomass increase (g plant-1) 0.33-4.85 1.87 45.78 -0.52-2.01 0.55 85.31
根冠比Root-shoot ratio 0.08-0.63 0.27 33.04 0.09-0.76 0.35 29.68
地上部钾积累量K accumulation in shoot (g plant-1) 0.09-1.22 0.46 49.49 0.01-0.23 0.05 64.63
根系钾积累量K accumulation in root (g plant-1) 0.02-0.70 0.22 58.05 0.00-0.08 0.02 52.97
总钾积累量K accumulation in plant (g plant-1) 0.14-1.83 0.67 48.60 0.02-0.23 0.08 53.92
地上部钾含量K concentration in shoot (%) 8.86-117.01 22.05 37.16 1.74-18.41 4.81 61.19
根系钾含量K concentration in root (%) 14.30-54.71 38.20 19.53 2.00-15.03 6.71 42.47
钾生理利用效率K physiological utilization efficiency (%) 0.55-5.51 2.87 22.35 -16.67-21.93 6.33 92.35

表3

11 个指标的前3个主成分加权系数、特征值、方差贡献率及累积贡献率"

指标
Index
主成分 Principal components
成分1 Factor 1 成分2 Factor 2 成分3 Factor 3
地上部干重 Shoot biomass 0.668 0.400 -0.230
地上部干物质增加量 Shoot biomass increase 0.769 -0.023 -0.494
根系干物质增加量 Root biomass increase 0.546 0.730 0.319
总干物质增加量 Plant biomass increase 0.893 0.245 -0.290
根冠比 Root-shoot ratio 0.059 0.549 0.682
地上部钾积累量 K accumulation in shoot 0.821 -0.456 -0.022
根系钾积累量 K accumulation in root 0.734 0.279 0.546
总钾积累量 K accumulation in plant 0.908 -0.289 0.176
地上部钾含量 K concentration in shoot 0.532 -0.743 0.112
根系钾含量 K concentration in root 0.489 -0.506 0.433
钾生理利用效率 K physiological utilization efficiency 0.396 0.445 -0.597
特征值 Eigenvalues 4.851 2.429 1.834
方差的贡献率 Variance contribution (%) 44.100 22.081 16.677
累积贡献率 Cumulative variance contribution (%) 44.100 66.181 82.858

表4

11个耐低钾胁迫指数与耐低钾综合评价值(Y)的相关系数"

指标
Trait
相关系数
Correlation coefficient
P
P-value
地上部干重 Shoot biomass 0.696** 0.000
地上部干物质增加量 Shoot biomass increase 0.594** 0.000
根系干物质增加量 Root biomass increase 0.809** 0.000
总干物质增加量 Plant biomass increase 0.840** 0.000
根冠比 Root-shoot ratio 0.379** 0.000
地上部钾积累量 K accumulation in shoot 0.603** 0.000
根系钾积累量 K accumulation in root 0.883** 0.000
总钾积累量 K accumulation in plant 0.779** 0.000
地上部钾含量 K concentration in shoot 0.271** 0.000
根系钾含量 K concentration in root 0.378** 0.000
钾生理利用效率 K physiological utilization efficiency 0.382** 0.000

图1

不同甘薯基因型耐低钾能力的系统聚类图 SBI: 地上部干物质增加量; RBI: 根系干物质增加量; PBI: 总干物质增加量; KAS: 地上部钾积累量; KAR: 根系钾积累量; KAP: 总钾积累量。"

图2

不同耐低钾型甘薯农艺性状综合评价 SB: 地上部干重; RSR: 根冠比; KCS: 地上部钾含量; KCR: 根系钾含量; KUE: 钾生理利用效率; SBI: 地上部干物质增加量; RBI: 根系干物质增加量; PBI: 总干物质增加量; KAS: 地上部钾积累量; KAR: 根系钾积累量; KAP: 总钾积累量。"

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
[2] 张海燕, 董顺旭, 解备涛, 汪宝卿, 张立明, 段文学. 钾肥用量对瘠薄地甘薯产量和钾肥利用率的影响. 核农学报, 2020, 34: 2299-2306.
doi: 10.11869/j.issn.100-8551.2020.10.2299
Zhang H Y, Dong S X, Xie B T, Wang B Q, Zhang L M, Duan W X. Effects of amount of potassium fertilizer on yield and potassium utilization efficiency of sweetpotato in barren land. J Nucl Agric Sci, 2020, 34: 2299-2306. (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2020.10.2299
[3] 汪顺义, 李欢, 刘庆, 史衍玺. 施钾对甘薯根系生长和产量的影响及其生理机制. 作物学报, 2017, 43: 1057-1066.
doi: 10.3724/SP.J.1006.2017.01057
Wang S Y, Li H, Liu Q, Shi Y X. Effect of potassium application on root grow and yield of sweet potato and its physiological mechanism. Acta Agron Sin, 2017, 43: 1057-1066. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01057
[4] 唐忠厚, 张爱君, 陈晓光, 靳容, 刘明, 李洪民, 丁艳锋. 低钾胁迫对甘薯块根淀粉理化特性的影响及其基因型差异. 中国农业科学, 2017, 50: 513-525.
Tang Z H, Zhang A J, Chen X G, Jin R, Liu M, Li H M, Ding Y F. Starch physico-chemical properties and their difference in three sweetpotato (Ipomoea batatas (L.) Lam.) genotypes under low potassium stress. Sci Agric Sin, 2017, 50: 513-525. (in Chinese with English abstract)
[5] Wu J T, Zhang X Z, Li T X, Yu H Y, Huang P. Differences in the efficiency of potassium (K) uptake and use in barley varieties. Agric Sci China, 2011, 10: 101-108.
doi: 10.1016/S1671-2927(11)60312-X
[6] Wang J D, Wang H Y, Zhang Y C, Zhou J M, Chen X Q. Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Field Crops Res, 2015, 170: 76-82.
doi: 10.1016/j.fcr.2014.10.007
[7] 吴宇佳, 张文, 符传良, 郑道君, 刘国彪, 谢良商. 不同钾效率基因型香蕉根际钾营养与根系特性研究. 生态环境学报, 2018, 27: 478-483.
Wu Y J, Zhang W, Fu C L, Zheng D J, Liu G B, Xie L S. Investigation of K nutrition in rhizosphere and characteristics of roots for different K efficiency genotypes of banana. Ecol Environ Sci, 2018, 27: 478-483. (in Chinese with English abstract)
[8] 王晓磊, 于海秋, 刘宁, 依兵, 曹敏建. 耐低钾玉米自交系延缓叶片衰老的生理特性. 作物学报, 2012, 38: 1672-1679.
doi: 10.3724/SP.J.1006.2012.01672
Wang X L, Yu H Q, Liu N, Yi B, Cao M J. Physiological characteristics of delaying leaf senescence in maize inbred lines tolerant to potassium deficiency. Acta Agron Sin, 2012, 38: 1672-1679. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01672
[9] 华含白, 李召虎, 田晓莉. 辽棉18与新棉99B苗期耐低钾能力的差异及其机制. 作物学报, 2009, 35: 475-482.
Hua H B, Li Z H, Tian X L. Difference and its Mechanism in tolerance to low-potassium between Liaomian 18 and NuCOTN99B at seedling stage. Acta Agron Sin, 2009, 35: 475-482. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00475
[10] Zhao X H, Yu H Q, Wen J, Wang X G, Qi D, Wang J, Wang Q. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. J Integr Agric, 2016, 15: 785-794.
doi: 10.1016/S2095-3119(15)61246-1
[11] Wang Y, Wu W H. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr Opin Plant Biol, 2015, 25: 46-52.
doi: 10.1016/j.pbi.2015.04.007 pmid: 25941764
[12] 陆潭, 陈华涛, 张威, 陈新. 耐低钾大豆品种筛选及低钾胁迫下Lee 68的差异表达基因分析. 大豆科学, 2020, 39: 489-499.
Lu T, Chen H T, Zhang W, Chen X. Screening of tolerant soybean varieties and analysis of differential expressed genes of Lee 68 under low-potassium stress. Soybean Sci, 2020, 39: 489-499. (in Chinese with English abstract)
[13] 罗曦, 吴方喜, 林强, 连玲, 何炜, 谢鸿光, 陈丽萍, 朱永生, 魏毅东, 蒋家焕, 谢华安, 张建福. 水稻苗期耐低钾品种筛选及相关性状的QTL定位. 植物遗传资源学报, 2019, 20: 1262-1270.
Luo X, Wu F X, Lin Q, Lian L, He W, Xie H G, Chen L P, Zhu Y S, Wei Y D, Jiang J H, Xie H A, Zhang J F. Screening of rice germplasm resources and mapping QTLs for traits related with potassium deficiency resistance at seedling stage. J Plant Genet Resour, 2019, 20: 1262-1270. (in Chinese with English abstract)
[14] 赵信林, 王火焰, 刘晓伟, 高帅帅, 陈照明, 朱德进, 周健民. 长三角地区耐低钾小麦品种筛选. 江苏农业科学, 2018, 46(18): 73-76.
Zhao X L, Wang H Y, Liu X W, Gao S S, Chen Z M, Zhu D J, Zhou J M. Screening of wheat cultivars with tolerance to low potassium in the Yangtze River delta. Jiangsu Agric Sci, 2018, 46(18): 73-76. (in Chinese with English abstract)
[15] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020, 32: 538-551.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N C, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020, 32: 538-551. (in Chinese with English abstract)
[16] 宁运旺, 马洪波, 许仙菊, 汪吉东, 张辉, 许建平, 陈杰, 张永春. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响. 中国农业科学, 2013, 46: 486-495.
Ning Y W, Ma H B, Xu X J, Wang J D, Zhang H, Xu J P, Chen J, Zhang Y C. Effects of deficiency of N, P, or K on growth traits and nutrient uptakes of sweetpotato at early growing stage. Sci Agric Sin, 2013, 46: 486-495. (in Chinese with English abstract)
[17] 库文珍, 彭克勤, 萧浪涛, 张雪芹, 沈志锦, 黄欣. 低钾胁迫对不同基因型水稻苗期根系生长和内源激素含量的影响. 亚热带植物科学, 2008, 37(1): 21-24.
Ku W Z, Peng K Q, Xiao L T, Zhang X Q, Shen Z J, Huang X. Effect of low potassium stress on root growth and endogenous phytohormones contents of different rice genotypes at seedling stage. Subtrop Plant Sci, 2008, 37(1): 21-24. (in Chinese with English abstract)
[18] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53: 3214-3224.
Chen L, Wang J J, Wang H G, Cao X N, Liu S C, Tian X, Qin H B, Qiao Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Sci Agric Sin, 2020, 53: 3214-3224. (in Chinese with English abstract)
[19] 徐顺莉, 房伟民, 管志勇, 蒋甲福, 陈素梅, 廖园, 陈发棣. 耐低钾切花菊品种筛选及其苗期耐性生理研究. 园艺学报, 2013, 40: 2463-2471.
Xu S L, Fang W M, Guan Z Y, Jiang J F, Chen S M, Liao Y, Chen F D. Screening cut chrysanthemum varieties in low potassium tolerant and patience physiology in seedling. Acta Hortic Sin, 2013, 40: 2463-2471. (in Chinese with English abstract)
[20] 田晓莉, 王刚卫, 朱睿, 杨培珠, 段留生, 李召虎. 棉花耐低钾基因型筛选条件和指标的研究. 作物学报, 2008, 34: 1435-1443.
Tian X L, Wang G W, Zhu R, Yang P Z, Duan L S, Li Z H. Conditions and indicators for screening cotton (Gossypium hirsutum) genotypes tolerant to low-potassium. Acta Agron Sin, 2008, 34: 1435-1443. (in Chinese with English abstract)
[21] 唐忠厚, 张允刚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋. 耐低钾和钾高效型甘薯品种(系)的筛选及评价指标. 作物学报, 2014, 40: 542-549.
doi: 10.3724/SP.J.1006.2014.00542
Tang Z H, Zhang Y G, Wei M, Chen X G, Shi X M, Zhang A J, Li H M, Ding Y F. Screening and evaluation indicators for low potassium-tolerant and potassium efficient sweetpotato (Ipomoea batatas L.) varieties (lines). Acta Agron Sin, 2014, 40: 542-549. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00542
[22] 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20: 1349-1357.
Du B J, Gao H J, Chang J, Zhang L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. J Plant Nutr Fert, 2014, 20: 1349-1357. (in Chinese with English abstract)
[23] 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建. 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016, 24: 1347-1355.
Chen C, Gong H Q, Zhang J Z, Xu Y J, Gao H J. Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chin J Eco-Agric, 2016, 24: 1347-1355. (in Chinese with English abstract)
[24] 王西志, 王斌, 李迎春, 韩鹏辉, 彭正萍. 不同钾营养效率玉米品种的筛选. 中国土壤与肥料, 2012, (1): 64-68.
Wang X Z, Wang B, Li Y C, Han P H, Peng Z P. Screening of maize varieties with different potassium nutrient efficiencies. Soil Fert Sci China, 2012, (1): 64-68 (in Chinese with English abstract).
[25] 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30: 326-337.
Gui H P, Dong Q, Zhang H H, Wang X R, Pang N C, Wang Z, Liu J, Zheng C S, Fu X Q, Zhang X L, Song M Z. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage. Cotton Sci, 2018, 30: 326-337. (in Chinese with English abstract)
[26] 张正社, 牛娜, 宋瑜龙, 马守才, 张改生, 王军卫. 耐低钾山羊草基因型的筛选与鉴定. 草地学报, 2017, 25: 832-838.
doi: 10.11733/j.issn.1007-0435.2017.04.021
Zhang Z S, Niu N, Song Y L, Ma S C, Zhang G S, Wang J W. Screening and identification of Aegilops germplasm for tolerance to low potassium stress. Acta Agrest Sin, 2017, 25: 832-838. (in Chinese with English abstract)
[27] 杨佳蒴, 赵文青, 胡伟, 王友华, 陈兵林, 周治国. 棉花苗期耐低钾能力筛选指标研究及其与产量、品质的关系. 棉花学报, 2014, 26: 301-309.
Yang J S, Zhao W Q, Hu W, Wang Y H, Chen B L, Zhou Z G. Indicators of cotton (Gossypium hirsutum L.) cultivar screening for low-potassium tolerance in seedling stage and its relationship with yield and quality. Cotton Sci, 2014, 26: 301-309. (in Chinese with English abstract)
[1] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[2] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[3] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[4] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[5] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[6] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[7] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[8] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[9] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[10] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[11] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[12] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展[J]. 作物学报, 2022, 48(1): 15-26.
[13] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[14] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[15] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .