欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 917-925.doi: 10.3724/SP.J.1006.2023.24064

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究

陈慧(), 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌*()   

  1. 华中农业大学/作物遗传改良全国重点实验室/国家油菜工程技术研究中心, 湖北武汉 430070
  • 收稿日期:2022-03-22 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-12
  • 通讯作者: *易斌, E-mail: yibin@mail.hzau.edu.cn
  • 作者简介:E-mail: 15661644378@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD01008)

Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus

CHEN Hui(), XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin*()   

  1. National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center for Rapeseed/Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-03-22 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-12
  • Contact: *E-mail: yibin@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD01008)

摘要:

蛋白翻译后修饰对蛋白的功能非常重要。SUMO化修饰就是一种非常重要的蛋白翻译后修饰, 它对植物生长发育的关键过程有很大的影响。甘蓝型油菜作为重要的油料和经济作物在SUMO化修饰方面却鲜有报道。为弥补这一空白, 本研究对甘蓝型油菜中的SUMO化修饰进行了探究。首先通过生物信息学方法在甘蓝型油菜中鉴定到31个SUMO蛋白成员, 分为3类: “典型”群组、“非典型”群组和SUMO-V。然后对甘蓝型油菜中AtSUMO1基因的同源基因Bna.SUMO1.C08进行表达模式分析, 发现该基因在根、叶和角果中表达比较高。亚细胞定位结果发现, Bna.SUMO1.C08蛋白定位于细胞核和内质网中。最后在甘蓝型油菜中过表达Bna.SUMO1.C08基因发现其能够增强植株对PEG胁迫的抵抗能力。本研究为后续甘蓝型油菜中SUMO化修饰的研究奠定了一定的基础。

关键词: 甘蓝型油菜, SUMO化修饰, Bna.SUMO1.C08

Abstract:

Post-translational modifications are very important for protein function. SUMOylation is a very important post-translational modification, which has great influence on the key processes of plant growth and development. As an important oil and economic crops, there is few studies on SUMO modification in Brassica napus. To remedy this gap, SUMOylation in Brassica napus was investigated in this study. Firstly, 31 SUMO proteins were identified in Brassica napus by bioinformatics methods, which were divided into three groups (“canonical” SUMO, “non-canonical” SUMO, and SUMO-V). Secondly, the relative expression pattern indicated that, Bna.SUMO1.C08, a homologous gene of AtSUMO1, was highly expressed in roots, leaves, and silique. Subcellular localization revealed that Bna.SUMO1.C08 was localized in the nucleus and endoplasmic reticulum. Finally, Bna.SUMO1.C08 was overexpressed in Brassica napus and Bna.SUMO1.C08 could enhance plant resistance to PEG stress. This study laid a foundation for the subsequent research on SUMO modification in Brassica napus.

Key words: Brassica napus, SUMOylation, Bna.SUMO1.C08

附表1

甘蓝型油菜SUMO蛋白家族成员基本信息表"

基因名
Gene name
序列号
Sequence number
基因长度
Gene length (bp)
蛋白长度
Protein length (aa)
分子量
Molecular weight (Da)
等电点
Isoelectric point
Bna.SUMO1.C08 BnaC08T0170600ZS 304 101 11,083.39 4.91
Bna.SUMO1.A08 BnaA08T0169400ZS 304 101 11,124.43 4.91
Bna.SUMO1.C01 BnaC01T0209100ZS 316 105 11,589.98 4.93
Bna.SUMO1.A03 BnaA03T0494800ZS 304 101 11,123.50 4.91
Bna.SUMO1.A01 BnaA01T0162300ZS 303 100 11,120.40 4.93
Bna.SUMO1.C07 BnaC07T0472900ZS 295 98 10,889.23 4.91
Bna.SUMO1.A05 BnaA05T0335100ZS 259 86 10,309.86 10.61
Bna.SUMO1.C04 BnaC04T0237000ZS 256 85 9964.39 9.18
Bna.SUMO1.C06 BnaC06T0107300ZS 211 70 8117.07 9.25
Bna.SUMO1.C03 BnaC03T0634700ZS 211 70 8158.22 9.73
Bna.SUMO2.C09 BnaC09T0378000ZS 313 104 11,668.17 4.93
Bna.SUMO2.A10 BnaA10T0112600ZS 313 104 11,716.22 4.93
Bna.SUMO2.A02 BnaA02T0129200ZS 295 98 11,017.38 4.93
Bna.SUMO2.C02 BnaC02T0161400ZS 481 160 18,387.54 5.26
Bna.SUMO3.C03 BnaC03T0307000ZS 328 109 12,774.63 8.69
Bna.SUMO4.C07 BnaC07T0331100ZS 1213 404 46,871.13 9.15
Bna.SUMO4.A09 BnaA09T0050000ZS 244 81 9306.37 5.26
Bna.SUMO5.A04 BnaA04T0211000ZS 304 101 11,358.08 9.55
Bna.SUMO5.C03 BnaC03T0183400ZS 364 121 13,485.51 9.57
Bna.SUMO5.C04b BnaC04T0521300ZS 304 101 11,358.08 9.55
Bna.SUMO5.A05 BnaA05T0114400ZS 307 102 11,257.98 9.33
Bna.SUMO5.A03 BnaA03T0157500ZS 166 55 6198.18 9.52
Bna.SUMO5.A06 BnaA06T0124100ZS 325 108 12,451.37 8.66
Bna.SUMO5.C04c BnaC04T0143500ZS 295 98 10,885.65 9.61
Bna.SUMO5.C05 BnaC05T0152200ZS 313 104 11,998.78 8.69
Bna.SUMO5.C08 BnaC08T0244100ZS 292 97 11,140.70 5.04
Bna.SUMO5.C04a BnaC04T0143300ZS 307 102 11,279.03 9.73
Bna.SUMO6.A06 BnaA06T0362200ZS 1192 397 45,931.67 6.45
Bna.SUMO6.C09 BnaC09T0036100ZS 271 90 10,505.94 5.12
Bna.SUM-V.C06 BnaC06T0314000ZS 1042 347 38,854.96 5.23
Bna.SUM-V.A07 BnaA07T0276200ZS 724 241 27,254.87 5.32

图1

甘蓝型油菜SUMO蛋白成员蛋白序列分析 A: 系统进化树分析。红色标注的Group 1为“典型”群组; 蓝色标注的Group 2为“非典型”群组; 紫色标注的Group 3为SUMO相关蛋白。B: Motif、Domain和基因结构分析。第1列为Motif; 第2列为Domain; 第3列为基因结构。C: 蛋白序列比对。红色长方体标注为β-grasp domain范围; 圆点标注为各作用位点。"

图2

甘蓝型油菜SUMO蛋白基因染色体定位和共线性分析 A: SUMO蛋白基因染色体位置可视化。B: 拟南芥、白菜、甘蓝和甘蓝型油菜物种物种内和物种间共线性分析。"

图3

Bna.SUMO1.C08表达模式分析和亚细胞定位 A: 表达模式分析。Bna.SUMO1.C08主要在根、叶和角果中表达。B: 亚细胞定位。Bna.SUMO1.C08定位于细胞核和内质网中。标尺: 1 μm。"

图4

过表达Bna.SUMO1.C08的转基因植株在mRNA水平上的鉴定 A: 过表达Bna.SUMO1.C08基因的载体结构图。B: 过表达植株Bna.SUMO1.C08的表达量检测。"

图5

PEG处理下过表达Bna.SUMO1.C08植株和野生型植株表型 A, B: 根长表型及统计。C, D: DAB染色和NBT染色。E, F: POD酶和SOD酶活性检测。*P < 0.05; **P < 0.01; ***P < 0.001。"

[1] Vierstra R D. The expanding universe of ubiquitin and ubiquitin-like uodifiers. Plant Physiol, 2012, 160: 2-14.
doi: 10.1104/pp.112.200667 pmid: 22693286
[2] Augustine R C, York S L, Rytz T C, Vierstra R D. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol, 2016, 171: 2191-2210.
doi: 10.1104/pp.16.00353 pmid: 27208252
[3] Augustine R C, Vierstra R D. SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol, 2018, 45: 143-154.
doi: S1369-5266(17)30239-X pmid: 30014889
[4] Saracco S A, Miller M J, Kurepa J, Vierstra R D. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol, 2007, 145: 119-134.
pmid: 17644626
[5] Miura K, Lee J, Miura T, Hasegawa P M. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol, 2010, 51: 103-113.
doi: 10.1093/pcp/pcp171
[6] Miura K, Lee J, Gong Q, Ma S, Jin J B, Yoo C Y, Miura T, Sato A, Bohnert H J, Hasegawa P M. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol, 2011, 155: 1000-1012.
doi: 10.1104/pp.110.165191 pmid: 21156857
[7] Son G H, Park B S, Song J T, Seo H S. FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot, 2014, 65: 339-351.
doi: 10.1093/jxb/ert383 pmid: 24218331
[8] Li X, Zhou S, Liu Z, Lu L, Dang H, Li H, Chu B, Chen P, Ma Z, Zhao S, Li Z, Nocker S, Ma F, Guan Q. Fine-tuning of SUMOylation modulates drought tolerance of apple. Plant Biotechnol J, 2022, 20: 903-919.
doi: 10.1111/pbi.13772 pmid: 34978131
[9] Wang F, Liu Y, Shi Y, Han D, Wu Y, Ye W, Yang H, Li G, Cui F, Wan S, Lai J, Yang C. SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance. Plant Physiol, 2020, 183: 41-50.
doi: 10.1104/pp.20.00080 pmid: 32205452
[10] Fang Q, Zhang J, Zhang Y, Fan N, van den Burg H A, Huang C. Regulation of aluminum resistance in Arabidopsis involves the SUMOylation of the zinc finger transcription factor STOP1. Plant Cell, 2020, 32: 3921-3938.
doi: 10.1105/tpc.20.00687
[11] Verma V, Srivastava A K, Gough C, Campanaro A, Srivastava M, Morrell R, Joyce J, Bailey M, Zhang C, Krysan P J, Sadanandom A. SUMO enables substrate selectivity by mitogen-activated protein kinases to regulate immunity in plants. Proc Natl Acad Sci USA, 2021, 118: e2021351118.
doi: 10.1073/pnas.2021351118
[12] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[13] Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: 327-331.
pmid: 15215404
[14] Gasteiger E. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418
[15] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783
[16] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[17] Zhang H, Gao S, Lercher M J, Hu S, Chen W. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res, 2012, 40: W569-W572.
doi: 10.1093/nar/gks576
[18] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335
[19] Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics, 2014, 15: 3.
doi: 10.1186/1471-2164-15-3
[20] Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling M R, Borm T, Bonnema G, Wu J, Wang X. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet, 2016, 48: 1218-1224.
doi: 10.1038/ng.3634 pmid: 27526322
[21] Kurepa J, Walker J M, Smalle J, Gosink M M, Davis S J, Durham T L, Sung D, Vierstra R D. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. J Biol Chem, 2003, 278: 6862-6872.
doi: 10.1074/jbc.M209694200
[22] Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W. Organization and regulation of soybean SUMOylation system under abiotic stress conditions. Front Plant Sci, 2017, 8: 1458.
doi: 10.3389/fpls.2017.01458 pmid: 28878795
[23] Foyer C H, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 2009, 11: 861-905.
doi: 10.1089/ars.2008.2177
[24] Sun X, Wang P, Jia X, Huo L, Che R, Ma F. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J, 2018, 16: 545-557.
doi: 10.1111/pbi.12794
[25] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208.
doi: 10.3390/ijms21155208
[26] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015, 6: 1092.
doi: 10.3389/fpls.2015.01092 pmid: 26697045
[1] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[2] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[3] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[4] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[5] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[6] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[7] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[8] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[9] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[10] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[11] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[12] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[13] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[14] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[15] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .