作物学报 ›› 2023, Vol. 49 ›› Issue (4): 917-925.doi: 10.3724/SP.J.1006.2023.24064
陈慧(), 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌*()
CHEN Hui(), XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin*()
摘要:
蛋白翻译后修饰对蛋白的功能非常重要。SUMO化修饰就是一种非常重要的蛋白翻译后修饰, 它对植物生长发育的关键过程有很大的影响。甘蓝型油菜作为重要的油料和经济作物在SUMO化修饰方面却鲜有报道。为弥补这一空白, 本研究对甘蓝型油菜中的SUMO化修饰进行了探究。首先通过生物信息学方法在甘蓝型油菜中鉴定到31个SUMO蛋白成员, 分为3类: “典型”群组、“非典型”群组和SUMO-V。然后对甘蓝型油菜中AtSUMO1基因的同源基因Bna.SUMO1.C08进行表达模式分析, 发现该基因在根、叶和角果中表达比较高。亚细胞定位结果发现, Bna.SUMO1.C08蛋白定位于细胞核和内质网中。最后在甘蓝型油菜中过表达Bna.SUMO1.C08基因发现其能够增强植株对PEG胁迫的抵抗能力。本研究为后续甘蓝型油菜中SUMO化修饰的研究奠定了一定的基础。
[1] |
Vierstra R D. The expanding universe of ubiquitin and ubiquitin-like uodifiers. Plant Physiol, 2012, 160: 2-14.
doi: 10.1104/pp.112.200667 pmid: 22693286 |
[2] |
Augustine R C, York S L, Rytz T C, Vierstra R D. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol, 2016, 171: 2191-2210.
doi: 10.1104/pp.16.00353 pmid: 27208252 |
[3] |
Augustine R C, Vierstra R D. SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol, 2018, 45: 143-154.
doi: S1369-5266(17)30239-X pmid: 30014889 |
[4] |
Saracco S A, Miller M J, Kurepa J, Vierstra R D. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol, 2007, 145: 119-134.
pmid: 17644626 |
[5] |
Miura K, Lee J, Miura T, Hasegawa P M. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol, 2010, 51: 103-113.
doi: 10.1093/pcp/pcp171 |
[6] |
Miura K, Lee J, Gong Q, Ma S, Jin J B, Yoo C Y, Miura T, Sato A, Bohnert H J, Hasegawa P M. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol, 2011, 155: 1000-1012.
doi: 10.1104/pp.110.165191 pmid: 21156857 |
[7] |
Son G H, Park B S, Song J T, Seo H S. FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot, 2014, 65: 339-351.
doi: 10.1093/jxb/ert383 pmid: 24218331 |
[8] |
Li X, Zhou S, Liu Z, Lu L, Dang H, Li H, Chu B, Chen P, Ma Z, Zhao S, Li Z, Nocker S, Ma F, Guan Q. Fine-tuning of SUMOylation modulates drought tolerance of apple. Plant Biotechnol J, 2022, 20: 903-919.
doi: 10.1111/pbi.13772 pmid: 34978131 |
[9] |
Wang F, Liu Y, Shi Y, Han D, Wu Y, Ye W, Yang H, Li G, Cui F, Wan S, Lai J, Yang C. SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance. Plant Physiol, 2020, 183: 41-50.
doi: 10.1104/pp.20.00080 pmid: 32205452 |
[10] |
Fang Q, Zhang J, Zhang Y, Fan N, van den Burg H A, Huang C. Regulation of aluminum resistance in Arabidopsis involves the SUMOylation of the zinc finger transcription factor STOP1. Plant Cell, 2020, 32: 3921-3938.
doi: 10.1105/tpc.20.00687 |
[11] |
Verma V, Srivastava A K, Gough C, Campanaro A, Srivastava M, Morrell R, Joyce J, Bailey M, Zhang C, Krysan P J, Sadanandom A. SUMO enables substrate selectivity by mitogen-activated protein kinases to regulate immunity in plants. Proc Natl Acad Sci USA, 2021, 118: e2021351118.
doi: 10.1073/pnas.2021351118 |
[12] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[13] |
Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: 327-331.
pmid: 15215404 |
[14] |
Gasteiger E. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418 |
[15] |
Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783 |
[16] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[17] |
Zhang H, Gao S, Lercher M J, Hu S, Chen W. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res, 2012, 40: W569-W572.
doi: 10.1093/nar/gks576 |
[18] |
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335 |
[19] |
Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics, 2014, 15: 3.
doi: 10.1186/1471-2164-15-3 |
[20] |
Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling M R, Borm T, Bonnema G, Wu J, Wang X. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet, 2016, 48: 1218-1224.
doi: 10.1038/ng.3634 pmid: 27526322 |
[21] |
Kurepa J, Walker J M, Smalle J, Gosink M M, Davis S J, Durham T L, Sung D, Vierstra R D. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. J Biol Chem, 2003, 278: 6862-6872.
doi: 10.1074/jbc.M209694200 |
[22] |
Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W. Organization and regulation of soybean SUMOylation system under abiotic stress conditions. Front Plant Sci, 2017, 8: 1458.
doi: 10.3389/fpls.2017.01458 pmid: 28878795 |
[23] |
Foyer C H, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 2009, 11: 861-905.
doi: 10.1089/ars.2008.2177 |
[24] |
Sun X, Wang P, Jia X, Huo L, Che R, Ma F. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J, 2018, 16: 545-557.
doi: 10.1111/pbi.12794 |
[25] |
Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208.
doi: 10.3390/ijms21155208 |
[26] |
You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015, 6: 1092.
doi: 10.3389/fpls.2015.01092 pmid: 26697045 |
[1] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[2] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[3] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[4] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[5] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[6] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[7] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[8] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[9] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[10] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[11] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[12] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[13] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[14] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[15] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
|