作物学报 ›› 2023, Vol. 49 ›› Issue (4): 906-916.doi: 10.3724/SP.J.1006.2023.21029
朱治1,2(), 李龙2, 李超男2, 毛新国2, 郝晨阳2, 朱婷2, 王景一2,*(), 常建忠1,*(), 景蕊莲2
ZHU Zhi1,2(), LI Long2, LI Chao-Nan2, MAO Xin-Guo2, HAO Chen-Yang2, ZHU Ting2, WANG Jing-Yi2,*(), CHANG Jian-Zhong1,*(), JING Rui-Lian2
摘要:
MYB转录因子在植物生长发育过程中发挥着重要作用。本研究克隆了小麦3B染色体上的TaMYB5-3B基因, 基因组序列全长3005 bp, 其中编码区上游为2112 bp, 编码区为893 bp, 包含2个外显子和1个内含子, 编码一个R2R3-MYB蛋白。序列多态性分析表明, 在TaMYB5-3B的-2048、-1632、-1178、-1156、-504、-461、-433和61 bp处各有1个SNP位点, 分别是G/A转换、G/A转换、G/A转换、T/C转换、C/T转换、A缺失、T缺失和T/A颠换, 这8个SNP位点连锁。基于启动子区SNP-1632的变异开发分子标记, 检测小麦自然群体的基因型, 与表型性状进行关联分析, 结果显示TaMYB5-3B与株高、穗下节长和千粒重显著相关。TaMYB5-3B在群体中有2种单倍型Hap-3B-1和Hap-3B-2, 其中Hap-3B-2是植株较矮、千粒重较高的优异单倍型。在我国的小麦育种历程中Hap-3B-2受到了正向选择, 在育成品种中的频率逐步增加, 但仍然有进一步的应用潜力。研究结果为深入探讨小麦株高和产量的形成机制提供参考, 也为小麦株型和产量分子育种提供了基因资源与选择标记。
[1] |
Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
doi: 10.1371/journal.pone.0066428 |
[2] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573-581.
doi: 10.1016/j.tplants.2010.06.005 |
[3] |
Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory cl locus of Zea mays encodes a protein with homology to MYB-related proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553-3558.
doi: 10.1002/j.1460-2075.1987.tb02684.x pmid: 3428265 |
[4] | Li J L, Han G L, Sun C F, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav, 2019, 14: 1-9. |
[5] | 陈清, 汤浩茹, 董晓莉, 侯艳霞, 罗娅, 蒋艳, 黄琼瑶. 植物MYB转录因子的研究进展. 基因组学与应用生物学, 2009, 28: 365-372. |
Chen Q, Tang H R, Dong X L, Hou Y X, Luo Y, Jiang Y, Huang Q Y. Progress in the study of plant MYB transcription factors. Genom Appl Biol, 2009, 28: 365-372. (in Chinese with English abstract) | |
[6] |
Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12: 667242.
doi: 10.3389/fpls.2021.667242 |
[7] |
Mu R L, Cao Y R, Liu Y F, Lei G, Zou H F, Liao Y, Wang H W, Zhang W K, Ma B, Du J Z. An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res, 2009, 19: 1291-1304.
doi: 10.1038/cr.2009.83 |
[8] | Yang Y, Zhang L B, Chen P, Liang T, Li X, Liu H T. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J, 2020, 39: e101928. |
[9] |
Seo P J, Xiang F, Qiao M, Park J Y, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 2009, 151: 275-289.
doi: 10.1104/pp.109.144220 |
[10] |
Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiol, 2020, 184: 988-1003.
doi: 10.1104/pp.20.00743 |
[11] |
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin bio-syntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol, 2010, 51: 463-474.
doi: 10.1093/pcp/pcq011 pmid: 20118109 |
[12] |
Li G L, Xu B X, Zhang Y P, Xu Y W, Khan N U, Xie J Y, Sun X M, Guo H F, Wu Z Y, Wang X Q, Zhang H L, Li J J, Xu J L, Wang W S, Zhang Z Y, Li Z C. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2021, 20: 158-167.
doi: 10.1111/pbi.13702 |
[13] |
Ren D Y, Cui Y J, Hu H T, Xu Q K, Rao Y C, Yu X Q, Zhang Y, Wang Y X, Peng Y L, Zeng D L, Hu J, Zhang G H, Gao Z Y, Zhu L, Chen G, Shen L, Zhang Q, Guo L B, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.14481 |
[14] |
Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A, Li H Y, Zha T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12: e0180825.
doi: 10.1371/journal.pone.0180825 |
[15] |
Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S. Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. Theor Appl Genet, 2011, 122: 1427-1438.
doi: 10.1007/s00122-011-1542-7 |
[16] |
Jiu S T, Guan L, Leng X P, Zhang K K, Haider M S, Yu X, Zhu X D, Zheng T, Ge M Q, Wang C, Jia H F, Shang-Guan L F, Zhang C X, Tang X P, Abdullah M, Javed H U, Han J, Dong Z G, Fang J G. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. Plant Biotechnol J, 2021, 19: 1216-1239.
doi: 10.1111/pbi.13543 |
[17] |
Zheng X W, Liu C, Qiao L, Zhao J J, Han R, Wang X L, Ge C, Zhang W Y, Zhang S W, Qiao L Y, Zheng J, Hao C Y. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154 |
[18] |
Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867 |
[19] |
Kage U, Kumar A, Dhokane D, Karre S, Kushalappa A C. Functional molecular markers for crop improvement. Crit Rev Biotechnol, 2016, 36: 917-930.
doi: 10.3109/07388551.2015.1062743 pmid: 26171816 |
[20] |
Salgotra R K, Stewart C N Jr. Functional markers for precision plant breeding. Int J Mol Sci, 2020, 21: 4792.
doi: 10.3390/ijms21134792 |
[21] |
张宏娟, 李玉莹, 苗丽丽, 王景一, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数. 作物学报, 2019, 45: 1615-1627.
doi: 10.3724/SP.J.1006.2019.91009 |
Zhang H J, Li Y Y, Miao L L, Wang J Y, Li C N, Yang D L, Mao X G, Jing R L. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat. Acta Agron Sin, 2019, 45: 1615-1627. (in Chinese with English abstract) | |
[22] |
Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540-2553.
doi: 10.1111/pce.13577 |
[23] |
Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279 |
[24] |
Cao S H, Xu D G, Hanif M, Xia X C, He Z H. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, 133: 1811-1823.
doi: 10.1007/s00122-020-03562-8 pmid: 32062676 |
[25] |
Khobra R, Sareen S, Meena B K, Kumar A, Tiwari V, Singh G P. Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol Mol Biol Plants, 2019, 25: 589-600.
doi: 10.1007/s12298-018-0629-x |
[26] |
Foulkes M, Slafer G, Davies W, Berry P, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2011, 62: 469-486.
doi: 10.1093/jxb/erq300 pmid: 20952627 |
[27] |
Yang X Y, Li J G, Pei M, Gu H, Chen Z L, Qu L J. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep, 2007, 26: 219-228.
pmid: 16972096 |
[28] |
王诺菡, 于霁雯, 吴嫚, 马启峰, 李兴丽, 裴文锋, 李海晶, 黄双领, 张金发, 喻树迅. 棉花GhMYB0基因的克隆、表达分析及功能鉴定. 作物学报, 2014, 40: 1540-1548.
doi: 10.3724/SP.J.1006.2014.01540 |
Wang N H, Yu J W, Wu M, Ma Q F, Li X L, Pei W F, Li H J, Huang S L, Zhang J F, Yu S X. Cloning, expression, and functional analysis of GhMYB0 gene from cotton (Gossypium hirsumtum L.). Acta Agron Sin, 2014, 40: 1540-1548. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01540 |
|
[29] |
Yang H, Xue Q, Zhang Z Z, Du J Y, Yu D Y, Fang H. GmMYB181, a soybean R2R3-MYB protein, increases branch number in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 1027.
doi: 10.3389/fpls.2018.01027 pmid: 30065741 |
[30] |
Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S J, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[31] |
Mao H D, Jian C, Cheng X X, Chen B, Mei F M, Li F F, Zhang Y F, Li S M, Du L Y, Li T, Hao C Y, Wang X J, Zhang X Y, Kang Z S. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol J, 2022, 20: 846-861.
doi: 10.1111/pbi.13764 |
[32] |
Carter A H, Garland-Campbell K, Kidwell K K. Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Sci, 2011, 51: 84-95.
doi: 10.2135/cropsci2010.03.0185 |
[33] |
Liu J, Wu B H, Singh R P, Velu G. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J Cereal Sci, 2019, 88: 57-64.
doi: 10.1016/j.jcs.2019.05.008 |
[34] |
Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459 |
[35] |
Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008, 117: 595-608.
doi: 10.1007/s00122-008-0804-5 pmid: 18516583 |
[36] |
Hao C Y, Jiao C Z, Hou J, Li T, Liu H X, Wang Y Q, Zheng J, Liu H, Bi Z H, Xu F F, Zhao J, Ma L, Wang Y M, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H F, Zhang X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant, 2020, 13: 1733-1751.
doi: 10.1016/j.molp.2020.09.001 pmid: 32896642 |
[37] |
Guo W L, Xin M M, Wang Z H, Yao Y Y, Hu Z R, Song W J, Yu K H, Chen Y M, Wang X B, Guan P F, Appels R, Peng H R, Ni Z F, Sun Q X. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun, 2020, 11: 5085.
doi: 10.1038/s41467-020-18738-5 pmid: 33033250 |
[38] |
Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
doi: 10.1093/jxb/eraa271 |
[39] |
Xue Y H, Wang J Y, Mao X G, Li C N, Li L, Yang X, Hao C Y, Chang X P, Li R Z, Jing R L. Association analysis revealed that TaPYL4 genes are linked to plant growth related traits in multiple environments. Front Plant Sci, 2021, 12: 641087.
doi: 10.3389/fpls.2021.641087 |
[40] |
Ma Q J, Sun M H, Lu J, Kang H, You C X, Hao Y J. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnol J, 2019, 17: 625-637.
doi: 10.1111/pbi.13003 |
[41] | Deng S Z, Xu L, Xu Z, Lv W Y, Chen Z X, Yang N, Talbot N J, Wang Z Y. A putative PKA phosphorylation site S227 in MoSom1 is essential for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Cell Microbiol, 2021, 23: e13370. |
[42] |
Zhuang M J, Li C N, Wang J Y, Mao X G, Li L, Yin J, Du Y, Wang X, Jing R L. The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway. J Exp Bot, 2021, 72: 6977-6989.
doi: 10.1093/jxb/erab357 |
[43] |
Zhang B, Xu W N, Liu X, Mao X G, Li A, Wang J Y, Chang X P, Zhang X Y, Jing R L. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-Box genes governing yield-related traits in hexaploid wheat. Plant Physiol, 2017, 174: 1177-1191.
doi: 10.1104/pp.17.00113 pmid: 28424214 |
[1] | 杨晓明, 程须珍, 朱振东, 刘昌燕, 陈新. 食用豆抗豆象种质创新与遗传改良研究进展[J]. 作物学报, 2023, 49(5): 1153-1169. |
[2] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[3] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[4] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[5] | 张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则[J]. 作物学报, 2023, 49(5): 1282-1291. |
[6] | 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261. |
[7] | 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139. |
[8] | 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892. |
[9] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[10] | 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718. |
[11] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[12] | 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794. |
[13] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[14] | 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832. |
[15] | 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342. |
|