作物学报 ›› 2023, Vol. 49 ›› Issue (4): 893-905.doi: 10.3724/SP.J.1006.2023.24065
陈晓汉(), 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄()
CHEN Xiao-Han(), WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong()
摘要:
成熟叶绿体是高等植物光合作用的重要场所, 是影响作物产量的重要器官。BnABCI8是ABC转运蛋白I亚族的成员, 在甘蓝型油菜中有2个功能拷贝, 分别是BnA09.ABCI8和BnC09.ABCI8, 其氨基酸序列在不同物种中是非常保守的。表达模式分析发现, BnABCI8在油菜植株各个组织中均有表达, 且在叶和花中表达量较高; 亚细胞定位证明, BnABCI8能够定位在叶绿体中; 表型鉴定发现, BnA09.ABCI8和BnC09.ABCI8的同时突变及BnA09.ABCI8的单突变均会导致黄色的子叶和褪绿的真叶, 且双突变体褪绿更为严重; 透射电镜结果显示, 双突变体中叶绿体不能够形成正常的类囊体膜; BnABCI8的敲除导致叶绿素合成途径相关基因的表达下调, 且叶片中积累了大量的Fe离子。这些结果表明, BnABCI8的突变造成叶绿体结构异常, 叶绿素合成受阻, 叶片中Fe离子大量积累, 而Fe离子的积累又可能会引发一系列的反应如活性氧积累, 细胞死亡和叶绿素降解等, 最终导致了叶色突变。
[1] |
Timmis J N, Ayliffe M A, Huang C Y, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 2004, 5: 123-135.
doi: 10.1038/nrg1271 pmid: 14735123 |
[2] |
Neuhaus H E, Emes M J. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 111-140.
doi: 10.1146/annurev.arplant.51.1.111 |
[3] |
Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309-312.
pmid: 15951223 |
[4] |
Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095-1105.
doi: 10.1105/tpc.10.7.1095 pmid: 9668130 |
[5] |
Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133.
doi: 10.1111/tpj.12110 |
[6] |
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40.
doi: 10.1104/pp.107.100321 pmid: 17535821 |
[7] |
Albrecht V, Ingenfeld A, Apel K. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol, 2006, 60: 507-518.
doi: 10.1007/s11103-005-4921-0 |
[8] |
Hayashi-Tsugane M, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, Tsugane K, Maekawa M. A mutable albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. Plant Cell Physiol, 2014, 55: 3-15.
doi: 10.1093/pcp/pct149 pmid: 24151203 |
[9] | 王晓珠, 孙万梅, 马义峰, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 拟南芥ABC转运蛋白研究进展. 植物生理学报, 2017, 53: 133-144. |
Wang X Z, Sun W M, Ma Y F, Han E Q, Han L, Sun L P, Peng Z H, Wang B J. Research progress of ABC transporters in Arabidopsis thaliana. Plant Physiol J, 2017, 53: 133-144. (in Chinese with English abstract) | |
[10] | 贺彦. 水稻ATP结合盒式转运基因OsABCI7的克隆与功能分析. 中国农业科学院博士学位论文, 北京, 2020. |
He Y. Map-based Cloning and Functional Analysis of the ATP-binding Cassette Transporter OsABCI7 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract) | |
[11] |
Zhang X D, Zhao K X, Yang Z M. Identification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus. Gene, 2018, 664: 139-151.
doi: S0378-1119(18)30434-7 pmid: 29709635 |
[12] |
Zuo J, Wu Z, Li Y, Shen Z, Feng X, Zhang M, Ye H. Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol, 2017, 173: 2096-2109.
doi: 10.1104/pp.16.01760 pmid: 28250070 |
[13] |
Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang D A. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J, 2014, 79: 106-117.
doi: 10.1111/tpj.12544 |
[14] |
Rea P A. Plant ATP-binding cassette transporters. Annu Rev Plant Biol, 2007, 58: 347-375.
pmid: 17263663 |
[15] |
Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet, 2005, 6: 123-142.
pmid: 16124856 |
[16] |
Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC transporters. Arabidopsis Book, 2011, 9: e0153.
doi: 10.1199/tab.0153 |
[17] |
Møller S G, Kunkel T, Chua N H. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev, 2001, 15: 90-103.
doi: 10.1101/gad.850101 |
[18] |
Xu X M, Adams S, Chua N H, Møller S G. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem, 2005, 280: 6648-6654.
doi: 10.1074/jbc.M413082200 |
[19] |
von Voithenberg L V, Park J, Stübe R, Lux C, Lee Y, Philippar K. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front Plant Sci, 2019, 10: 1264.
doi: 10.3389/fpls.2019.01264 pmid: 31736987 |
[20] |
Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS One, 2012, 7: e47037.
doi: 10.1371/journal.pone.0047037 |
[21] |
Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
doi: 10.1007/s11032-020-01174-0 |
[22] |
Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014, 14: 327.
doi: 10.1186/s12870-014-0327-y |
[23] |
Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y, Gao C, Wang K. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870 |
[24] |
Yang Z, Liu M, Ding S, Zhang Y, Yang H, Wen X, Chi W, Lu C, Lu Q. Plastid deficient 1 is essential for the accumulation of plastid-encoded RNA polymerase core subunit β and chloroplast development in Arabidopsis. Int J Mol Sci, 2021, 22: 13648.
doi: 10.3390/ijms222413648 |
[25] |
Liu T T, Tao B L, Wu H F, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Zhu L X, Shen J X. Bn.YCO affects chloroplast development in Brassica napus L. Crop J, 2021, 9: 992-1002.
doi: 10.1016/j.cj.2020.10.015 |
[26] |
Zhang H Y, Li X T, Yang Y B T, Hu K N, Zhou X M, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. BnaA02.YTG1, encoding a tetratricopeptide repeat protein, is required for early chloroplast biogenesis in Brassica napus. Crop J, 2022, 10: 597-610.
doi: 10.1016/j.cj.2021.06.010 |
[27] | 孙璇. 一种叶色黄绿白菜型油菜突变体性状研究. 山西农业大学硕士学位论文, 山西太谷, 2018. |
Sun X. Study on the Character of a Yellow-green Leaf Mutant in Brassica napus. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2018 (in Chinese with English abstract). | |
[28] | 李玉荣. BSR-Seq方法定位玉米黄化突变基因. 华中农业大学硕士学位论文, 湖北武汉, 2014. |
Li Y R. Etiolation Mutant Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq) Method in Maize. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract) | |
[29] |
Duy D, Wanner G, Meda A R, von Wirén N, Soll J, Philippar K. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell, 2007, 19: 986-1006.
doi: 10.1105/tpc.106.047407 |
[30] |
Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly E L, Guerinot M L. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA, 2008, 105: 10619-10624.
doi: 10.1073/pnas.0708367105 |
[31] |
Shimoni-Shor E, Hassidim M, Yuval-Naeh N, Keren N. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell Environ, 2010, 33: 1029-1038.
doi: 10.1111/j.1365-3040.2010.02124.x |
[32] |
Zeng X, Tang R, Guo H, Ke S, Teng B, Hung Y H, Xu Z, Xie X M, Hsieh T F, Zhang X Q. A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Plant Mol Biol, 2017, 94: 137-148.
doi: 10.1007/s11103-017-0598-4 pmid: 28285416 |
[1] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[2] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[3] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[4] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[5] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[6] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[7] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[8] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[9] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[10] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[11] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[12] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[13] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[14] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[15] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
|