欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 893-905.doi: 10.3724/SP.J.1006.2023.24065

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

BnABCI8影响甘蓝型油菜叶绿体发育

陈晓汉(), 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄()   

  1. 华中农业大学作物遗传改良国家重点实验室/国家油菜工程技术研究中心, 湖北武汉 430070
  • 收稿日期:2022-03-23 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-01
  • 通讯作者: 沈金雄
  • 作者简介:E-mail: 809365931@qq.com
  • 基金资助:
    国家自然科学基金项目(31930032)

BnABCI8 affects chloroplast development of Brassica napus

CHEN Xiao-Han(), WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong()   

  1. National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-03-23 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-01
  • Contact: SHEN Jin-Xiong
  • Supported by:
    National Natural Science Foundation of China(31930032)

摘要:

成熟叶绿体是高等植物光合作用的重要场所, 是影响作物产量的重要器官。BnABCI8是ABC转运蛋白I亚族的成员, 在甘蓝型油菜中有2个功能拷贝, 分别是BnA09.ABCI8BnC09.ABCI8, 其氨基酸序列在不同物种中是非常保守的。表达模式分析发现, BnABCI8在油菜植株各个组织中均有表达, 且在叶和花中表达量较高; 亚细胞定位证明, BnABCI8能够定位在叶绿体中; 表型鉴定发现, BnA09.ABCI8BnC09.ABCI8的同时突变及BnA09.ABCI8的单突变均会导致黄色的子叶和褪绿的真叶, 且双突变体褪绿更为严重; 透射电镜结果显示, 双突变体中叶绿体不能够形成正常的类囊体膜; BnABCI8的敲除导致叶绿素合成途径相关基因的表达下调, 且叶片中积累了大量的Fe离子。这些结果表明, BnABCI8的突变造成叶绿体结构异常, 叶绿素合成受阻, 叶片中Fe离子大量积累, 而Fe离子的积累又可能会引发一系列的反应如活性氧积累, 细胞死亡和叶绿素降解等, 最终导致了叶色突变。

关键词: 甘蓝型油菜, BnABCI8, ABC转运蛋白, 叶绿体发育, 叶绿素合成, 杂色突变体

Abstract:

Mature chloroplast is an important place for photosynthesis of higher plants and important organs that affects crop yield. BnABCI8 is a member of the ABC transporter I subfamily, and there are two functional copies of BnA09.ABCI8 and BnC09.ABCI8 in Brassica napus. Their amino acid sequences are very conserved in different species. The relative expression patterns showed that BnABCI8 was expressed in all tissues of Brassica napus, and the relative expression level in leaves and flowers was higher. Subcellular localization indicated that BnABCI8 was located in chloroplast. Phenotypic identification showed that the double mutation of BnA09.ABCI8 and BnC09.ABCI8 and the single mutation of BnA09.ABCI8 both resulted in yellow cotyledons and chlorotic true leaves, among which double mutant was more severe chlorosis. Transmission electron microscope demonstrated that the chloroplasts in the double mutants could not form normal thylakoid membranes. The knock-out of BnABCI8 resulted in the decrease of the relative expression level of related genes in the chlorophyll synthesis pathway, and significantly increased the iron content in mutant leaves. These results indicated that the mutation of BnABCI8 resulted in abnormal chloroplast structure, hindered the synthesis of chlorophyll, and significantly increased the iron content in the leaves. In addition, the accumulation of iron ion might lead to a series of reactions such as accumulation of reactive oxygen species, cell death and chlorophyll degradation, and eventually led to mutation of leaf color.

Key words: Brassica napus, BnABCI8 gene, ABC transporter, chloroplast development, chlorophyll synthesis, variegated mutant

附表1

本研究中用到的引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
作用
Function
C83-A09F cttgcatgcctgcaggtcgacATGGCGTCTCTCCTCGCG 亚细胞定位
Subcellular localization assay
C83-A09R tctaccggtacccggggatccGAACCCACTGATCCTTCAAGCTT
C83-C09FF cttgcatgcctgcaggtcgacATGGCGTCTCTCCTCGCG
C83-C09RR tctaccggtacccggggatccGAACCCACTGATCCTTCAAGCTT
C83F ATTTCATTTGGAGAGGACCTCG
C83R TGTGCCCATTAACATCACCATC
QA09F ATCCAGGTTAAGAATCCATCAGCG qPCR
分析
qPCR
analysis
QA09R TCTGCAGAACCCTGAGATCATCG
QC09F ATCCAGGTTAAGAACCCATCAGCC
QC09R TCTGCAGAACCCAGAGATCATTG
QHEMA1F TCCGAGGAACAACAACAGAACCAG
QHEMA1R TGTATATCTGTCGGGTGCAGAGT
QHEMCF CGGTTCCGTCTCCGTCAT
QHEMCR GGCATTAGGTGCGGATTCAG
QHEME2F CGAAATCTTCCCGGTCAATTCGTTG
QHEME2R AGAGGCTCAGTGGTTGCAGAG
QCHLHF GCACGCTTGGTTTGCATCCTATT
QCHLHR CATGTGACTTCCCTGTTCTAGGGTCA
QCHLDF GATTGCTATTTCAGGTCGTAGAGG
引物名称
Primer name
引物序列
Primer sequence (5'-3')
作用
Function
QCHLDR GTTCGTCTTCCCACTCATCAG
QCHLMF GCGACGATCGTTTCCTTGAC
QCHLMR AAATACTCCCTCACCACCTCCTT
QDVRF TCCAGTGGATACATACAACCAATGGCT
QDVRR ATTGGTTTGGAAGGTGGAAGCGAGA
QPORCF CCGACAAGATCTCCATCAAGGAG
QPORCR CGGCGATGCTTCGTTCGAT
QCHLGF CGAGTTGGAGCACTCTCTCTCCA
QCHLGR CTCTTCCCAGAAGAGTTGGAGTCC
QCAOF GTCTATTGTCTTCCTTCTTCCTC
QCAOR TCCTTTCACTCCCTTCTTTCTG
actionQ3F CTATCCTCCGTCTCGATCTCGC
actionQ3R CTTAGCCGTCTCCAGCTCTTGC
HA09-1-F ggagtgagtacggtgtgcACAGTACTTCCAAAACCTAGACTACGAC Hi-tom
分析
Hi-tom analysis
HA09-1-R gagttggatgctggatggGCCGAGCTTGTCGAAATACTCGA
HA09-2-F ggagtgagtacggtgtgcCCGCTTTGAACTCAGCTGTGT
HA09-2-R gagttggatgctggatggCTTCGTGACGAAATTATAAATCCCTCCT
HC09-1-F ggagtgagtacggtgtgcGCAATACTTCCAAAACCTAGACTACGAC
HC09-1-R gagttggatgctggatggGCCGAGCTTGTCGAAGTAGTCAA
HC09-2-F ggagtgagtacggtgtgcCTGCTCTGAACTCCGCCG
HC09-2-R gagttggatgctggatggGTGACGAAATTGTAGATCCCTCCCTTC
F-1 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGCGTtggagtgagtacggtgtgc
F-2 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGTAGtggagtgagtacggtgtgc
F-3 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttACGCtggagtgagtacggtgtgc
F-4 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttCTCGtggagtgagtacggtgtgc
F-5 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGCTCtggagtgagtacggtgtgc
F-6 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttAGTCtggagtgagtacggtgtgc
F-7 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttCGACtggagtgagtacggtgtgc
F-8 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGATGtggagtgagtacggtgtgc
F-9 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttATACtggagtgagtacggtgtgc
F-10 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttCACAtggagtgagtacggtgtgc
F-11 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttGTGCtggagtgagtacggtgtgc
F-12 ACTCTTTCCCTACACGACGCTCTTCCGATCTgcttACTAtggagtgagtacggtgtgc
R-A GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGCGTtgagttggatgctggatgg
R-B GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGTAGtgagttggatgctggatgg
R-C GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtACGCtgagttggatgctggatgg
R-D GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtCTCGtgagttggatgctggatgg
R-E GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGCTCtgagttggatgctggatgg
R-F GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtAGTCtgagttggatgctggatgg
R-G GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtCGACtgagttggatgctggatgg
R-H GACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtGATGtgagttggatgctggatgg
5UDI427 AATGATACGGCGACCACCGAGATCTACACGCCTTCAAACACTCTTTCCCTACACGACGC
5UDI428 AATGATACGGCGACCACCGAGATCTACACAGGAACCTACACTCTTTCCCTACACGACGC
7UDI427 CAAGCAGAAGACGGCATACGAGATTCACGAAGGTGACTGGAGTTCAGACGTGTGCTCTT
引物名称
Primer name
引物序列
Primer sequence (5'-3')
作用
Function
7UDI428 CAAGCAGAAGACGGCATACGAGATCTTAGCCAGTGACTGGAGTTCAGACGTGTGCTCTT
Cas9F CGAGAAGAAGAACGGCCTGTTCG 基因编辑
Gene editing
Cas9R AGTTGCCCCTAGCGAGTGGG
U626-IDF TGTCCCAGGATTAGAATGATTAGGC
U629-IDR AGCCCTCTTCTTTCGATCCATCAAC
crp1-BsF-ABCI8 ATATATGGTCTCGATTGACTCCTTCACAATCCCCAAGTT
crp1-F0-ABCI8 TGACTCCTTCACAATCCCCAAGTTTTAGAGCTAGAAATAGC
crp2-R0-ABCI8 AACCGTGTTCTTGGGGATATAGCAATCTCTTAGTCGACTCTAC
crp2-BsR-ABCI8 ATTATTGGTCTCGAAACCGTGTTCTTGGGGATATAGCAA

图1

植物中ABCI8同源蛋白之间的进化关系 A: BnABCI8及其同源蛋白的系统发育树。分支上的数字是1000次重复的引导值(%)。B: BnABCI8及其5种同源蛋白的氨基酸序列。"

图2

BnABCI8的表达模式 数值表示为±SD (n = 3)。"

图3

BnABCI8的亚细胞定位 A, E: P35S::BnaA09.ABCI8:GFP和P35S::BnaC09.ABCI8:GFP转化烟草后的绿色荧光图像; B, F: 叶绿体在烟草中的红色荧光图像; C, G: 明场下的图像; D, H: 分别由A~C和E~G的合并图像。"

图4

BnABCI8的基因结构和CRISRP阳性植株鉴定 A: BnA09.ABCI8和BnC09.ABCI8的基因结构; B: 转基因阳性植株电泳鉴定。Marker大小分别为2 kb、1 kb、750 bp、500 bp、200 bp, 目的条带大小为686 bp。"

图5

T1代突变体的鉴定 A: 部分植株的编辑情况。黄色标记表示PAM位点以及插入的碱基, 红色破折号表示缺失。B: 突变体中BnABCI8的相对表达量。*、**分别表示在0.05和0.01概率水平差异显著。"

图6

突变体子叶的表型观察 A~C: 野生型幼苗10 d龄; D~F: 单突变体10 d龄; G~I: 双突变体10 d龄; J~L: 双突变体17 d龄。"

图7

突变体的表型观察 A: 野生型56 d龄; B: 单突变体56 d龄; C: 双突变体56 d龄。"

图8

双突变体真叶表型观察及叶绿素含量测定 A, C: 30 d双突变体和野生型的真叶和叶绿素含量比较图; B, D: 56 d的双突变体和野生型的真叶和叶绿素含量比较图。数值表示为±SD (n = 3)。*、**分别表示在0.05和0.01概率水平差异显著。"

图9

叶绿素合成途径相关基因的相对表达量 数值表示为±SD (n = 3)。*、**分别表示在0.05和0.01概率水平差异显著。"

图10

叶片中Fe的含量 a09表示BnA09.ABCI8突变的单突变体; a09 c09表示BnA09.ABCI8和BnC09.ABCI8突变的双突变体。数值表示为±SD (n = 3)。*、**分别表示在0.05和0.01概率水平差异显著。"

图11

野生型和双突变体的叶绿体超微结构 A~C: 野生型叶绿体结构; D~F: 双突变体叶绿体结构; Cp: 叶绿体; Tm: 类囊体膜。"

[1] Timmis J N, Ayliffe M A, Huang C Y, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 2004, 5: 123-135.
doi: 10.1038/nrg1271 pmid: 14735123
[2] Neuhaus H E, Emes M J. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 111-140.
doi: 10.1146/annurev.arplant.51.1.111
[3] Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309-312.
pmid: 15951223
[4] Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095-1105.
doi: 10.1105/tpc.10.7.1095 pmid: 9668130
[5] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133.
doi: 10.1111/tpj.12110
[6] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40.
doi: 10.1104/pp.107.100321 pmid: 17535821
[7] Albrecht V, Ingenfeld A, Apel K. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol, 2006, 60: 507-518.
doi: 10.1007/s11103-005-4921-0
[8] Hayashi-Tsugane M, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, Tsugane K, Maekawa M. A mutable albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. Plant Cell Physiol, 2014, 55: 3-15.
doi: 10.1093/pcp/pct149 pmid: 24151203
[9] 王晓珠, 孙万梅, 马义峰, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 拟南芥ABC转运蛋白研究进展. 植物生理学报, 2017, 53: 133-144.
Wang X Z, Sun W M, Ma Y F, Han E Q, Han L, Sun L P, Peng Z H, Wang B J. Research progress of ABC transporters in Arabidopsis thaliana. Plant Physiol J, 2017, 53: 133-144. (in Chinese with English abstract)
[10] 贺彦. 水稻ATP结合盒式转运基因OsABCI7的克隆与功能分析. 中国农业科学院博士学位论文, 北京, 2020.
He Y. Map-based Cloning and Functional Analysis of the ATP-binding Cassette Transporter OsABCI7 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract)
[11] Zhang X D, Zhao K X, Yang Z M. Identification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus. Gene, 2018, 664: 139-151.
doi: S0378-1119(18)30434-7 pmid: 29709635
[12] Zuo J, Wu Z, Li Y, Shen Z, Feng X, Zhang M, Ye H. Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol, 2017, 173: 2096-2109.
doi: 10.1104/pp.16.01760 pmid: 28250070
[13] Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang D A. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J, 2014, 79: 106-117.
doi: 10.1111/tpj.12544
[14] Rea P A. Plant ATP-binding cassette transporters. Annu Rev Plant Biol, 2007, 58: 347-375.
pmid: 17263663
[15] Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet, 2005, 6: 123-142.
pmid: 16124856
[16] Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC transporters. Arabidopsis Book, 2011, 9: e0153.
doi: 10.1199/tab.0153
[17] Møller S G, Kunkel T, Chua N H. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev, 2001, 15: 90-103.
doi: 10.1101/gad.850101
[18] Xu X M, Adams S, Chua N H, Møller S G. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem, 2005, 280: 6648-6654.
doi: 10.1074/jbc.M413082200
[19] von Voithenberg L V, Park J, Stübe R, Lux C, Lee Y, Philippar K. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front Plant Sci, 2019, 10: 1264.
doi: 10.3389/fpls.2019.01264 pmid: 31736987
[20] Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS One, 2012, 7: e47037.
doi: 10.1371/journal.pone.0047037
[21] Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
doi: 10.1007/s11032-020-01174-0
[22] Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014, 14: 327.
doi: 10.1186/s12870-014-0327-y
[23] Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y, Gao C, Wang K. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870
[24] Yang Z, Liu M, Ding S, Zhang Y, Yang H, Wen X, Chi W, Lu C, Lu Q. Plastid deficient 1 is essential for the accumulation of plastid-encoded RNA polymerase core subunit β and chloroplast development in Arabidopsis. Int J Mol Sci, 2021, 22: 13648.
doi: 10.3390/ijms222413648
[25] Liu T T, Tao B L, Wu H F, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Zhu L X, Shen J X. Bn.YCO affects chloroplast development in Brassica napus L. Crop J, 2021, 9: 992-1002.
doi: 10.1016/j.cj.2020.10.015
[26] Zhang H Y, Li X T, Yang Y B T, Hu K N, Zhou X M, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. BnaA02.YTG1, encoding a tetratricopeptide repeat protein, is required for early chloroplast biogenesis in Brassica napus. Crop J, 2022, 10: 597-610.
doi: 10.1016/j.cj.2021.06.010
[27] 孙璇. 一种叶色黄绿白菜型油菜突变体性状研究. 山西农业大学硕士学位论文, 山西太谷, 2018.
Sun X. Study on the Character of a Yellow-green Leaf Mutant in Brassica napus. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2018 (in Chinese with English abstract).
[28] 李玉荣. BSR-Seq方法定位玉米黄化突变基因. 华中农业大学硕士学位论文, 湖北武汉, 2014.
Li Y R. Etiolation Mutant Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq) Method in Maize. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[29] Duy D, Wanner G, Meda A R, von Wirén N, Soll J, Philippar K. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell, 2007, 19: 986-1006.
doi: 10.1105/tpc.106.047407
[30] Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly E L, Guerinot M L. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA, 2008, 105: 10619-10624.
doi: 10.1073/pnas.0708367105
[31] Shimoni-Shor E, Hassidim M, Yuval-Naeh N, Keren N. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell Environ, 2010, 33: 1029-1038.
doi: 10.1111/j.1365-3040.2010.02124.x
[32] Zeng X, Tang R, Guo H, Ke S, Teng B, Hung Y H, Xu Z, Xie X M, Hsieh T F, Zhang X Q. A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Plant Mol Biol, 2017, 94: 137-148.
doi: 10.1007/s11103-017-0598-4 pmid: 28285416
[1] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[2] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[3] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[4] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[5] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[6] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[7] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[8] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[9] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[10] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[11] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[12] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[13] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[14] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[15] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!