欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 703-718.doi: 10.3724/SP.J.1006.2023.24028

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

糜子GBSSI基因功能标记的开发与验证

丁敏1(), 段政勇1, 王宇卓1, 薛亚鹏1, 王海岗2, 陈凌2, 王瑞云1,2,*(), 乔治军2,*()   

  1. 1山西农业大学农学院, 山西太谷 030801
    2山西农业大学农业基因资源研究中心 / 农业农村部黄土高原作物基因资源与种质创制重点实验室 / 杂粮种质资源发掘与遗传改良山西省重点实验室, 山西太原 030031
  • 收稿日期:2022-01-22 接受日期:2022-06-07 出版日期:2023-03-12 网络出版日期:2022-07-07
  • 通讯作者: 王瑞云,乔治军
  • 作者简介:E-mail: yksin646@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A16);山西省现代农业产业技术体系建设(杂粮)项目(2022-03);国家自然科学基金项目(31271791);山西省自然科学基金项目(201901D11126)

Development and validation of functional markers of GBSSI gene in proso millet

DING Min1(), DUAN Zheng-Yong1, WANG Yu-Zhuo1, XUE Ya-Peng1, WANG Hai-Gang2, CHEN Ling2, WANG Rui-Yun1,2,*(), QIAO Zhi-Jun2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs / Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, Shanxi, China
  • Received:2022-01-22 Accepted:2022-06-07 Published:2023-03-12 Published online:2022-07-07
  • Contact: WANG Rui-Yun,QIAO Zhi-Jun
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-A16);Shanxi Agriculture Research System (Minor Grain Crop)(2022-03);National Natural Science Foundation of China(31271791);Natural Science Foundation of Shanxi Province(201901D11126)

摘要:

根据糜子胚乳直链淀粉合成调控基因Waxy (GBSSI)上已知功能位点的核苷酸差异设计功能分子标记, 并对山西省270份糜子资源进行基因型检测和基因分型。通过对粳糯性状的鉴定, 将表型与基因型结合对分子标记进行验证。对46份不同基因型糜子资源进行直链淀粉含量测定, 分析该基因的遗传效应, 评估其育种利用价值。GBSSI基因在糜子中以2种形式(L和S)存在, 针对S型基因15 bp的InDel位点设计了一个功能标记(RYW214), 该标记能有效区分126 bp、141 bp和杂合(126/141 bp) 3种带型, 粳糯性鉴定显示该标记结果与表型鉴定结果吻合度高, 达93.30%, Pearson相关性指数r为0.745。针对L型基因上的一个单核苷酸插入位点和一个SNP位点, 设计了2个CAPS标记(RYW215、RYW216), 该标记可对L基因准确分型。270份资源中, 共有11种基因型。其中, 基因型S-15/LF最多, 有84份(31.10%), 其次是S0/S-15/LF (22.96%), S-15/LY/LF最少(0.74%), 未发现S-15/LC。46份材料中, 直链淀粉含量较高的基因型为S0/LY/LF(15.50%), 最低为S-15/LF (0.58%)。突变基因型S-15会导致直链淀粉含量出现质的下降, 杂合基因型S0S-15直链淀粉含量稍高于纯合基因型S-15

关键词: 糜子, GBSSI基因, 功能分子标记, 直链淀粉含量

Abstract:

Functional molecular markers were designed based on nucleotide differences of known functional loci on Waxy (GBSSI), a regulation gene for amylose synthesis in proso millet. Genotypes and phenotypes of 270 proso millet accessions from Shanxi province were tested and verified by combining phenotypes and genotypes. The amylose content of 46 proso millet accessions with different genotypes was determined to explore the genetic effect of this gene and evaluate its breeding value. Waxy gene of proso millet existed in two forms (L and S), targeting 15 bp on S type gene. A functional marker was designed for InDel (RYW214), which could effectively distinguish 126 bp, 141 bp, and heterozygous (126/141 bp) types. The consistency between the marker and phenotypic identification was 93.30%, and the Pearson correlation index (r) was 0.745. Two CAPS markers (RYW215, RYW216) were designed for a single nucleotide insertion site and a SNP site in the L-type gene. Among 270 accessions, genotype S-15/LF accounted for the most (31.10%), S0/S-15/LF was the second (22.96%), and S-15/LY/LF was the least (0.74%). Genotype S-15/LC was absent. Among 46 proso millet accessions, the genotypes with the highest mean amylose content were S0/LY/LF (15.50%) and S-15/LF (0.58%). The mutant alleles of L type gene had little effect on amylose content, and the existence of wild type S0 was enough to guarantee amylose content in endosperm. The existence of mutant S-15 would lead to a qualitative decline in amylose content, and the amylose content of heterozygous genotype S0S-15 was slightly higher than that of homozygous genotype S-15.

Key words: proso millet, GBSSI gene, functional molecular marker, amylose content

附表1

糜子材料来源"

编号
Serial number
统一编号
Unicode
名称
Name
来源
Accession donor
品种类型
Variety type
1 00006548 太原1047 Taiyuan 1047 太原市 Taiyuan, Shanxi 地方品种 Local variety
2 00007523 A75-7 山西 Shanxi 地方品种 Local variety
3 00007526 A75-10 山西 Shanxi 地方品种 Local variety
4 00000832 鸭爪白 Yazhuabai 大同市 Datong, Shanxi 地方品种 Local variety
5 00000838 小红黍 Xiaohongshu 大同市 Datong, Shanxi 地方品种 Local variety
6 00000843 大白黍 Dabaishu 大同市 Datong, Shanxi 地方品种 Local variety
7 00000956 大青黍 Daqingshu 大同市 Datong, Shanxi 地方品种 Local variety
8* 00001263 大白黍 Dabaishu 阳泉市 Yangquan, Shanxi 地方品种 Local variety
9 00001275 小黑黍 Xiaoheishu 晋中市 Jinzhong, Shanxi 地方品种 Local variety
10 00001374 白鹅蛋糜子 Baiedanmizi 吕梁市 Lyuliang, Shanxi 地方品种 Local variety
11 00001514 黄硬黍 Huangyingmi 临汾市 Linfen, Shanxi 地方品种 Local variety
12* 晋黍1号 Jinshu 1 大同市 Datong, Shanxi 育成品种 Breed variety
13 晋黍2号 Jinshu 2 大同市 Datong, Shanxi 育成品种 Breed variety
14 晋黍3号 Jinshu 3 大同市 Datong, Shanxi 育成品种 Breed variety
15 晋黍4号 Jinshu 4 大同市 Datong, Shanxi 育成品种 Breed variety
16 晋黍5号 Jinshu 5 大同市 Datong, Shanxi 育成品种 Breed variety
17* 晋黍6号 Jinshu 6 大同市 Datong, Shanxi 育成品种 Breed variety
18 晋黍7号 Jinshu 7 大同市 Datong, Shanxi 育成品种 Breed variety
19 晋黍8号 Jinshu 8 大同市 Datong, Shanxi 育成品种 Breed variety
20 00009143 晋黍9号 Jinshu 9 大同市 Datong, Shanxi 育成品种 Breed variety
21 雁黍7号 Yanshu 7 大同市 Datong, Shanxi 育成品种 Breed variety
22 红黍子 Hongshuzi 阳泉市 Yangquan, Shanxi 农家种 Farm variety

表1

试验所用引物明细"

标记名称
Marker name
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
内切酶名称
Endonuclease name
备注
Remark
RYW214 M5 GGACGTCAGCGAGTGGGACC Hunt et al. [31]
R11 CAGGCACACTGCTCCCAATG
M5QT1 CAAGTACGACGTGTCGACGG
R11QT1 AAGGACGATCTGGACGTCCT
M5QT2 AGTGCGTCGTCGGACTCTG
R11QT2 TCCTCCAGCCTGCCGACAAA
RYW215 int5Lf ATGTTTGAATGAATGCTCC ACC I Hunt et al. [31]
R3 TGGTAGTTGCTCTTGAGGTA
RYW216 M12 CGTGACCATCTCTTCCTGTA EcoN I Hunt et al. [31]
R12 CGACGACGAACTCTCAACAC

图1

部分材料在InDel位点的扩增产物电泳图 M为marker 500; 168: 二红黍; 169: 大红黍; 170: 小黑黍; 175: 硬地黄; 176: 黄黍子; 177: 老来红; 178: 边梅黍; 183: 成熟红; 180: 狗尾蛋; 181: 白骷髅; 182: 小红软糜; 184: 软白糜。"

图2

部分材料在SNP (A/G替换)位点扩增产物电泳图 M为marker 2000; 197: 峪杂1号; 198: 大黄糜子; 199: 小青糜子; 200: 大白硬糜; 203: 大黄芽。"

图3

部分材料在移码突变位点的扩增产物电泳图 M为marker 2000; 179: 鸡爪红; 180: 狗尾蛋; 181: 白骷髅; 182: 小红软糜; 183: 成熟红; 184: 软白糜; 185: 千斤黍; 186: 珍珠连软糜; 187: 白软黍; 188: 红黍子; 189: 金红黍; 191: 糜子。"

图4

3对引物扩增7份材料的DNAMAN序列比对结果图 A、B和C分别代表引物M5/R11、M12/R12和int5Lf/R3。41: 白黍子; 49: 黍子; 60: 黑糜子; 73: 白糜子; 80: 六十天小红黍; 87: 大白黍; 89: 大白黍。"

图5

糜子粳糯性表型鉴定 A: 粳性; B: 糯性。"

表2

270份糜子基因型分型"

基因型
Genotype
LC LY LF LY/LF
S0 24 14 43 5
S-15 0 10 84 2
S0/S-15 3 15 62 8

表3

各基因型糜子直链淀粉含量"

基因型
Genotype
种质份数
No. of accessions
直链淀粉含量
Amylose content (%)
变异区间
Range of variation (%)
变异系数
Coefficient of variation (%)
S0/LC 4 13.13±2.28 10.14-15.63 17.40
S0/LF 3 16.28±5.66 11.60-22.57 34.76
S0/LY 3 12.47±2.66 9.42-14.33 21.36
S0/LY/LF 3 15.50±2.61 12.50-17.31 16.88
S-15/LF 6 0.48±0.32 0.10-0.84 66.05
S-15/LY 4 1.67±1.09 0.69-2.92 65.17
S-15/LY/LF 2 2.81±1.30 1.89-3.73 46.30
S0S-15/LC 3 1.85±0.60 1.38-2.53 32.75
S0S-15/LF 7 4.75±2.38 1.97-7.36 50.20
S0S-15/LY 6 4.43±2.53 1.59-8.21 57.08
S0S-15/LY/LF 5 4.84±3.43 1.31-9.03 70.87

图6

不同基因型糜子直链淀粉含量多重比较 不同小写字母表示差异显著性(P < 0.05)。"

[1] 何杰丽, 石甜甜, 陈凌, 王海岗, 高志军, 杨美红, 王瑞云, 乔治军. 糜子EST-SSR分子标记的开发及种质资源遗传多样性分析. 植物学报, 2019, 54: 723-732.
doi: 10.11983/CBB19037
He J L, Shi T T, Chen L, Wang H G, Gao Z J, Yang M H, Wang R Y, Qiao Z J. The genetic diversity of common millet (Panicum miliaceum) germplasm resources based on the EST-SSR markers. Bull Bot, 2019, 54: 723-732. (in Chinese with English abstract)
[2] 邵欢欢, 陆平, 史梦莎, 王璐琳, 乔治军, 刘敏轩, 王瑞云. 黍稷芽、苗期抗旱性评价及抗旱资源鉴定. 分子植物育种, 2021, 19: 1284-1296.
Shao H H, Lu P, Shi M S, Wang L L, Qiao Z J, Liu M X, Wang R Y. Evaluation and identification of broomcorn millet resources for drought resistance at germination and seedling stages. Mol Plant Breed, 2021, 19: 1284-1296 (in Chinese with English abstract).
[3] Yuan Y H, Liu C J, Gao Y B, Ma Q, Yang Q H, Feng B L. Proso millet (Panicum miliaceum L.): a potential crop to meet demand scenario for sustainable saline agriculture. J Environ Manage, 2021, 296: 113216-113228.
doi: 10.1016/j.jenvman.2021.113216
[4] Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell’Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC Plant Biol, 2021, 21: 330.
doi: 10.1186/s12870-021-03111-5 pmid: 34243721
[5] Grawford G W. Agricultural origins in North China pushed back to the Pleistocene-Holocene Boundary. Proc Natl Acad Sci USA, 2009, 106: 7271-7272.
doi: 10.1073/pnas.0903375106 pmid: 19416918
[6] Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X Y, Shen L C, Xu D K, Li Q. Earliest domestication of common millet (Panicum miliaceum L.) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372.
doi: 10.1073/pnas.0900158106
[7] 王星玉, 王纶, 温琪汾, 师颖. 山西是黍稷的起源和遗传多样性中心. 植物遗传资源学报, 2009, 10: 465-470.
Wang Y X, Wang L, Wen Q F, Shi Y. Shanxi province is the center of the origin and genetic diversity of proso millet. J Plant Genet Resour, 2009, 10: 465-470 (in Chinese with English abstract).
[8] 袁雨豪, 杨清华, 党科, 杨璞, 高金锋, 高小丽, 王鹏科, 陆平, 刘敏轩, 冯佰利. 糜子资源耐盐性评价与盐胁迫生理响应. 中国农业科学, 2019, 52: 4066-4078.
Yuan Y H, Yang Q H, Dang K, Yang P, Gao J F, Gao X L, Wang P K, Lu P, Liu M X, Feng B L. Salt-tolerance evaluation and physiological response of salt stress of broomcorn millet (Panicum miliaceum L.). Sci Agric Sin, 2019, 52: 4066-4078. (in Chinese with English abstract)
[9] Ivits E, Cherlet M, Tóth T, Lewińska K E, Tóth G. Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators. Land Degrad Dev, 2013, 24: 438-452.
[10] Yuan Y H, Liu J J, Ma Q, Gao Y B, Yang Q H, Gao X L, Feng B L. Cleaner production of proso millet (Panicum miliaceum L.) in salt-stressed environment using re-watering: from leaf structural alleviations to multi-omics responses. J Clean Prod, 2022, 334: 130205.
doi: 10.1016/j.jclepro.2021.130205
[11] Yuan Y H, Liu L, Gao Y B, Yang Q H, Dong K J, Liu T P, Feng B L. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Ind Crops Prod, 2022, 177: 114498.
doi: 10.1016/j.indcrop.2021.114498
[12] 杜春微, 高梦晗, 刘庆, 吕璇, 杜双奎. 黄米品质特性研究. 食品工业, 2018, 39(2): 83-87.
Du C W, Gao M H, Liu Q, Lyu X, Du S K. Study on quality characteristics of yellow rice. Food Industry, 2018, 39(2): 83-87. (in Chinese with English abstract)
[13] 王瑞云. 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017. pp 8-9.
Wang R Y. Genetic Diversity and Evolution Advancement in Common Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017. pp 8-9. (in Chinese)
[14] 柴岩. 糜子. 北京: 中国农业出版社, 1999. pp 56-59.
Chai Y. Common Millet. Beijing: China Agriculture Press, 1999. pp 56-59. (in Chinese)
[15] Araki M, Numaoka A, Kawase M, Fukunaga K. Origin of Waxy common millet, Panicum miliaceumL. in Japan. Genet Resour Crop Evol, 2011, 59: 1303-1308.
doi: 10.1007/s10722-011-9755-9
[16] Okagaki R J. Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol, 1992, 19: 513-516.
pmid: 1377969
[17] Hirano H Y, Sano Y. Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol, 1991, 32: 989-997.
doi: 10.1093/oxfordjournals.pcp.a078186
[18] Clark J R, Robertson M, Ainsworth C C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol, 1991, 16: 1099-1101.
pmid: 1863765
[19] 曾礼华, 汪瀚宇, 谢程程, 曹墨菊. 玉米淀粉合成酶基因GBSS启动子的克隆与鉴定. 植物生理学报, 2015, 51: 1433-1439.
Zeng L H, Wang H Y, Xie C C, Cao M J. Clone and identification of granule-bound starch synthase gene promoter in maize. Plant Physiol J, 2015, 51: 1433-1439. (in Chinese with English abstract)
[20] 袁文娅, 赵晓雷, 周旭梅, 王磊, 彭勃, 王奕. Waxy基因功能标记开发及在糯玉米育种中的应用. 作物杂志, 2020, (4): 99-106.
Yuan W Y, Zhao X L, Zhou X M, Wang L, Peng B, Wang Y. The development of waxy gene function marker and its application in waxy maize breeding. Crops, 2020, (4): 99-106. (in Chinese with English abstract)
[21] 沈宝云, 刘玉汇, 张俊莲, 王蒂. 马铃薯块茎GBSSI基因的cDNA克隆及其序列特征分析. 草业学报, 2010, 19(5): 1-8.
Shen B Y, Liu Y H, Zhang J L, Wang D. Analysis of cloning and sequence characteristics of cDNA encoding the GBSS I gene from tubers of Solanum tuberosum. Acta Pratac Sin, 2010, 19(5): 1-8. (in Chinese with English abstract)
[22] 侯夫云, 李丰, 秦桢, 李爱贤, 董顺旭, 王庆美, 张立明. 甘薯淀粉合成相关酶基因的克隆与表达分析. 分子植物育种, 2019, 17: 7663-7668.
Hou F Y, Li F, Qin Z, Li A X, Dong S X, Wang Q M, Zhang L M. Cloning and expression analysis of starch synthesis related enzyme gene in sweet potato. Mol Plant Breed, 2019, 17: 7663-7668. (in Chinese with English abstract)
[23] Klösgen R B, Gierl A, Schwarz-Sommer Z, Saedler H. Molecular analysis of the waxy locus of Zea mays. Mol Gen Genet, 1986, 203: 237-244.
doi: 10.1007/BF00333960
[24] 徐春艳, 陈亭亭, 李松, 崔德周, 李鹏, 宁丽华, 李德涛, 王莉雯, 刘旭, 姜川, 马侠, 张华, 陈化榜. 糯玉米waxy基因序列特征分析及分子标记开发. 分子植物育种, 2015, 13: 531-540.
Xu C Y, Chen T T, Li S, Cui D Z, Li P, Ning L H, Li D T, Wang L W, Liu X, Jiang C, Ma X, Zhang H, Chen H B. Molecular characterization of the waxy maize key starch synthesis gene and development of molecular markers. Mol Plant Breed, 2015, 13: 531-540. (in Chinese with English abstract)
[25] Patron N J, Smith A M, Fathy B F, Hylton C M, Naldrett M J, Rossnagel B G, Denyer K. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5′-non-coding region. Plant Physiol, 2002, 130: 190-198.
doi: 10.1104/pp.005454
[26] 谈移芳, 张启发. 水稻蜡质基因引导区的两个SSR序列与直链淀粉含量的相关性. 植物学报, 2001, 43: 146-150.
Tan Y F, Zhang Q F. Correlation of simple sequence repeat (SSR) variants in the leader sequence of the waxy gene with amylose content of grain in rice. Acta Bot Sin, 2001, 43: 146-150. (in Chinese with English abstract)
[27] Ayres N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, Park W D. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theor Appl Genet, 1997, 94: 773-781.
[28] Kawase M, Fukunaga K, Kato K. Diverse origins of Waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol Gen Genomics, 2005, 274: 131-140.
doi: 10.1007/s00438-005-0013-8
[29] Fukunaga K, Kawase M, Kato K. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Gen Genomics, 2002, 268: 214-222.
doi: 10.1007/s00438-002-0728-8
[30] Graybosch R A, Baltensperger D D. Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum L.). Plant Breed, 2009, 128: 70-73.
doi: 10.1111/j.1439-0523.2008.01511.x
[31] Hunt H V, Denyer K, Packman L C, Jones M K, Howe C J. Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L). Mol Biol Evol, 2010, 27: 1478-1494.
doi: 10.1093/molbev/msq040
[32] Hunt H V, Moots H M, Graybosch R A, Jones H, Parker M, Romanova O, Jones M K, Howe C J, Trafford K. Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: mutations at the GBSSI locus in their functional and phylogenetic context. Mol Biol Evol, 2013, 30: 109-122.
doi: 10.1093/molbev/mss209
[33] Wang R Y, Wang H G, Liu X H, Ji X, Chen L, Lu P, Liu M X, Teng B, Qiao Z J. Waxy allelic diversity in common millet (Panicum miliaceum L.) in China. Crop J, 2018, 6: 377-385.
doi: 10.1016/j.cj.2018.02.004
[34] Bonnecarrere V, Rosas J, Ferraro B. Economic impact of marker- assisted selection and rapid generation advance on breeding programs. Euphytica, 2019, 10: 859.
[35] 刘纪麟. 玉米育种的策略. 玉米科学, 2003, 11(增刊2): 54-57.
Liu J L. Strategies for maize breeding. J Maize Sci, 2003, 11(S2): 54-57. (in Chinese with English abstract)
[36] 宋同明. 糯玉米与WX基因. 玉米科学, 1993, 1(2): 1-2.
Song T M. Waxy corn and WX gene. J Maize Sci, 1993, 1(2): 1-2. (in Chinese with English abstract)
[37] 石甜甜, 何杰丽, 高志军, 陈凌, 王海岗, 乔治军, 王瑞云. 利用EST-SSR评估糜子资源遗传差异. 中国农业科学, 2019, 52: 4100-4109.
Shi T T, He J L, Gao Z J, Chen L, Wang H G, Qiao Z J, Wang R Y. Genetic diversity of common millet resources assessed with EST-SSR markers. Sci Agric Sin, 2019, 52: 4100-4109. (in Chinese with English abstract)
[38] 刘晓欢. 中国糜子资源的农艺性状及Waxy基因的多态性研究. 山西农业大学硕士学位论文, 山西太谷, 2015.
Liu X H. Study on Agronomic Traits and Polymorphism of Waxy Gene in Broomcorn Millet in China. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2015. (in Chinese with English abstract)
[39] Chu H W, Tu R J, Niu F A, Zhou J H, Sun B, Luo Z Y, Cheng C, Cao L M. A new PCR/LDR-based multiplex functional molecular marker for marker-assisted breeding in rice. Rice Sci, 2021, 28: 6-10.
doi: 10.1016/j.rsci.2020.11.002
[40] 毛艇, 李旭, 李振宇, 徐正进. 水稻Wx复等位基因基于PCR的功能标记开发与利用. 作物学报, 2017, 43: 1715-1723.
doi: 10.3724/SP.J.1006.2017.01715
Mao T, Li X, Li Z Y, Xu Z J. Development of PCR functional markers for multiple alleles of Wx and their application in rice. Acta Agron Sin, 2017, 43: 1715-1723. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01715
[41] Sabar M, Akhter M, Bibi T, Riaz A, Haider Z, Khan A R, Bibi A. Basmati rice lines development carrying multiple bacterial blight resistance genes pyramided using the marker-assisted backcross breeding approach. Mol Breed, 2019, 39: 155.
doi: 10.1007/s11032-019-1047-7
[42] Gordeeva E, Shamanin V, Shoeva O, Kukoeva T, Morgounov A, Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy, 2020, 10: 1603.
doi: 10.3390/agronomy10101603
[43] Qutub M, Chandran S, Rathinavel K, Sampathrajan V, Rajasekaran R, Manickam S, Adhimoolam K, Muniyandi S J, Natesan S. Improvement of a Yairipok Chujak maize landrace from North Eastern Himalayan region for β-carotene content through molecular marker-assisted backcross breeding. Genes, 2021, 12: 762.
doi: 10.3390/genes12050762
[44] Hechanova S L, Bhattarai K, Simon E V, Clave G, Karunarathne P, Ahn E K, Li C P, Lee J S, Kohli A, Hamilton N R S, Hernandez J E, Gregorio G B, Kshirod K, Jena K K, An G, Kim S R. Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species. Sci Rep, 2021, 11: 8962.
doi: 10.1038/s41598-021-88533-9 pmid: 33903715
[45] 王娟, 刘宇, 李春娟, 闫彩霞, 赵小波, 单世华. 基于简化基因组的花生InDel标记开发和功能解析. 植物遗传资源学报, 2019, 20: 179-187.
Wang J, Liu Y, Li C J, Yan C X, Zhao X B, Shan S H. InDel marker development and functional analysis of peanut based on simplified genome. J Plant Genet Resour, 2019, 20: 179-187. (in Chinese with English abstract)
[46] 陶爱芬, 游梓翊, 徐建堂, 林荔辉, 张立武, 祁建民, 方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证. 作物学报, 2020, 46: 987-996.
doi: 10.3724/SP.J.1006.2020.94158
Tao A F, You Z Y, Xu J T, Lin L H, Zhang L W, Qi J M, Fang P P. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.). Acta Agron Sin, 2020, 46: 987-996. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94158
[47] Burow G, Chopra R, Sattler S, Burke J, Acosta-Martinez V, Xin Z. Deployment of SNP (CAPS and KASP) markers for allelic discrimination and easy access to functional variants for brown midrib genes bmr6 and bmr12 in Sorghum bicolor. Mol Breed, 2019, 39: 115.
doi: 10.1007/s11032-019-1010-7
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[3] 袁玉洁, 张丝琪, 王明玥, 罗霄, 曾钰涵, 宋璐炘, 卢慧, 陈虹, 陶有凤, 邓飞, 任万军. 蒸煮米水比对不同直链淀粉含量杂交籼稻米粒微观结构和食味特性的影响[J]. 作物学报, 2022, 48(12): 3225-3233.
[4] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[5] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[6] 党科,宫香伟,陈光华,赵冠,刘龙,王洪露,杨璞,冯佰利. 糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化[J]. 作物学报, 2019, 45(12): 1880-1890.
[7] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[8] 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631.
[9] 毛艇,李旭,李振宇,徐正进. 水稻Wx复等位基因基于PCR的功能标记开发与利用[J]. 作物学报, 2017, 43(11): 1715-1723.
[10] 王瑞云,季煦,陆平,刘敏轩,许月,王纶,王海岗,乔治军. 利用荧光SSR分析中国糜子遗传多样性[J]. 作物学报, 2017, 43(04): 530-548.
[11] 周瑜,苏旺,王舰,屈洋,高小丽,杨璞,冯佰利. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响[J]. 作物学报, 2016, 42(06): 873-885.
[12] 姚坚强,鲍坚东,朱金庆,桂毅杰,沈秋芳,胡伟民,樊龙江. 中国糯玉米wx基因种质资源遗传多样性[J]. 作物学报, 2013, 39(01): 43-49.
[13] 冯晓敏,张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(08): 1513-1521.
[14] 吴磊,王丹,苏文悦,郭长虹,束永俊. 利用比较基因组学开发山羊草属InDel分子标记[J]. 作物学报, 2012, 38(07): 1334-1338.
[15] 于春花, 别同德, 王成, 张晓, 吴荣林, 程晓明, 王灿国, 赵芸, 程顺和. 小麦Wx基因近等基因系的创制及其对直链淀粉含量、面条感官品质的影响[J]. 作物学报, 2012, 38(03): 454-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .