欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 719-730.doi: 10.3724/SP.J.1006.2023.14195

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于高密度遗传图谱的蓖麻种子大小性状QTL定位

杨俊芳1,2(), 王宙1(), 乔麟轶2, 王亚1, 赵宜婷1, 张宏斌1, 申登高1, 王宏伟3,*(), 曹越1,*()   

  1. 1山西农业大学经济作物研究所, 山西太原 030031
    2山西农业大学农学院, 山西太原 030031
    3山西农业大学社会服务部, 山西太原 030031
  • 收稿日期:2021-10-21 接受日期:2022-06-07 出版日期:2023-03-12 网络出版日期:2022-07-08
  • 通讯作者: 王宏伟,曹越
  • 作者简介:杨俊芳, E-mail: sx1987yjf@126.com
    王宙, E-mail: 419309976@qq.com第一联系人:**同等贡献
  • 基金资助:
    山西省农业科学院国家自然基金培育项目(YGJPY1904);山西省科技厅青年科学研究项目(20210302124364);山西农业大学生物育种工程项目(YZGC050)

QTL mapping of seed size traits based on a high-density genetic map in castor

YANG Jun-Fang1,2(), WANG Zhou1(), QIAO Lin-Yi2, WANG Ya1, ZHAO Yi-Ting1, ZHANG Hong-Bin1, SHEN DengGao1, WANG HongWei3,*(), CAO Yue1,*()   

  1. 1Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    3Social Service Department of Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2021-10-21 Accepted:2022-06-07 Published:2023-03-12 Published online:2022-07-08
  • Contact: WANG HongWei,CAO Yue
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Shanxi Academy of Agricultural Sciences for Cultivating the National Natural Science Foundation(YGJPY1904);Youth Scientific Research Project of Science and Technology Department of Shanxi Province(20210302124364);Biological Breeding Engineering of Shanxi Agricultural University(YZGC050)

摘要:

蓖麻种子大小直接影响产量, 不同的蓖麻材料间种子大小差异较大, 深入研究蓖麻种子大小性状的遗传机制对蓖麻种子产业的发展具有重要意义。本研究以蓖麻两性自交系SL1为父本, 雌性系HCH1为母本1 (组合1)、雌性系HCH3为母本2 (组合2), 分别构建F2、BC1群体。首先, 分析2组遗传群体种子大小性状间的相关性。其次, 利用全基因组测序技术(whole genome sequencing,WGS)对组合1的F2群体中的150个单株进行测序分析, 构建高密度遗传图谱并结合种子大小性状表型数据进行数量性状座位(quantitative trait locus, QTL)定位分析。最后, 对QTL区间包含的基因进行BLAST同源比对和KEGG通路富集分析确定候选基因。结果表明, 不同组合群体的种子大小各性状间的相关性有差异, 种子的长度和宽度相关性最显著。共检测到种子大小性状相关QTL位点18个, 其中种子长度2个QTLs、种子宽度5个QTL、种子厚度4个QTL、百粒重7个QTL, 分别分布在连锁群1、4、7、8、9、10上, LOD值介于3.77~7.40, 变异贡献率介于0.71%~86.20%。基于这些分析, 筛选到6个调控蓖麻种子大小的候选基因28470.m00043529908.m00614329848.m00458927752.m00004529683.m00048029848.m004611。本研究为蓖麻种子大小相关基因的精细定位和克隆、分子标记辅助育种及基因功能的深入研究奠定了一定的理论基础。

关键词: 蓖麻, 高密度遗传图谱, 种子大小, QTL定位, KEGG, 候选基因

Abstract:

The seed size of castor (Ricinus communis L.) directly affects the yield, and there is a great difference in seed size among different castor varieties. It is of great significance to further study the genetic mechanism of castor seed size traits for the development of castor seed industry. In this study, we used monoecious inbred lines SL1 as male parent, pistillate line HCH1 as female parent 1 (Combination 1), and pistillate line HCH3 as female parent 2 (Combination 2) to construct F2 and BC1 populations, respectively. Firstly, the correlations between seed size traits were analyzed by phenotypic statistics of the two genetic populations. Secondly, based on the phenotypic data of 150 individual plants in F2 population from Combination 1, a high-density genetic map was constructed using genotyping by whole genome sequencing technology (WGS), and QTL analysis was performed for the seed size traits. Finally, the KEGG pathway enrichment and BLAST comparison were performed to determine the candidate genes in the definite QTL region. The results showed that the correlation between seed traits was different among different combinations and populations, and the correlation between seed length and width was the most significant by the phenotypic analysis. And a total of 18 QTLs were detected for four traits including 2 QTLs for seed length, 5 QTLs for seed width, 4 QTLs for seed thickness, and 7 QTLs for hundred-grain weight, which were distributed on linkage groups 1, 4, 7, 8, 9, and 10, respectively. The LOD values ranged from 3.77 to 7.40, and the contribution of variation rate ranged from 0.71% to 86.20%. Based on these results, six candidate genes (28470.m000435, 29908.m006143, 29848.m004589, 27752.m000045, 29683.m000480, and 29848.m004611) for regulating seed size were screened. This study lays a theoretical foundation for further research on fine mapping and gene cloning, molecular marker-assisted breeding and gene function analysis of castor seed size traits.

Key words: castor, high-density genetic map, seed size, QTL mapping, KEGG, candidate gene

表1

2组亲本及后代群体种子大小性状表型统计分析"

群体
Population
性状
Trait
统计量
Number
极小值
Min.
极大值
Max.
均值
Mean
标准差
SD
双侧
Sig.
峰度
Kurtosis
偏度
Skewness
SL1, HCH1 种子长Seed length 2 13.00 16.04 14.52 2.15 0.07
种子宽Seed width 2 9.04 9.52 9.28 0.34 0.02
种子厚Seed thickness 2 6.40 6.62 6.51 0.16 0.01
百粒重100-grain weight 2 29.62 47.20 38.41 12.43 0.14
B 种子长Seed length 217 13.09 17.22 15.13 0.82 0.00 -0.18 -0.01
种子宽Seed width 217 8.30 10.04 9.16 0.36 0.00 -0.26 -0.24
种子厚Seed thickness 217 5.40 7.31 6.39 0.30 0.00 0.28 0.21
百粒重100-grain weight 217 15.77 52.64 40.13 5.89 0.00 1.42 -0.78
D 种子长Seed length 66 12.73 16.42 14.39 0.69 0.00 0.87 -0.05
种子宽Seed width 66 8.02 9.84 9.03 0.35 0.00 0.54 -0.57
种子厚Seed thickness 66 5.70 6.71 6.35 0.21 0.00 0.04 -0.43
百粒重100-grain weight 66 24.98 43.92 37.09 4.30 0.00 0.42 -0.76
SL1, HCH3 种子长Seed length 2 13.10 16.04 14.57 2.08 0.06
种子宽Seed width 2 8.80 9.52 9.16 0.51 0.02
群体
Population
性状
Trait
统计量
Number
极小值
Min.
极大值
Max.
均值
Mean
标准差
SD
双侧
Sig.
峰度
Kurtosis
偏度
Skewness
种子厚Seed thickness 2 6.40 6.62 6.51 0.16 0.01
百粒重100-grain weight 2 35.02 47.20 41.11 8.61 0.09
A 种子长Seed length 52 13.16 16.48 14.75 0.63 0.00 0.35 0.03
种子宽Seed width 52 8.62 10.10 9.31 0.31 0.00 -0.34 -0.15
种子厚Seed thickness 52 6.00 7.04 6.37 0.24 0.00 -0.06 0.66
百粒重100-grain weight 52 34.20 48.12 41.16 3.07 0.00 -0.45 -0.10
C 种子长Seed length 41 13.28 15.54 14.41 0.55 0.00 -0.18 -0.14
种子宽Seed width 41 8.60 9.80 9.15 0.29 0.00 -0.28 0.07
种子厚Seed thickness 41 5.02 6.60 6.27 0.27 0.00 11.96 2.81
百粒重100-grain weight 41 30.90 45.64 38.88 3.16 0.00 -0.33 -0.09

图1

测序亲本和F2代的部分种子 a: 组合1亲本, SL1为父本, HCH1为母本。b: 组合1部分F2代种子, 字母B表示F2代种子, 后面的数字为材料编号。"

图2

测序F2群体蓖麻种子大小性状表型频率分布图"

表2

2组BC1和F2群体种子大小性状相关性分析"

性状
Trait
种子长
Seed length
种子宽
Seed width
种子厚
Seed thickness
百粒重
100-grain weight
种子长Seed length 0.621** B 0.610** B 0.583** B
0.650** D 0.521** D 0.297* D
种子宽Seed width 0.386* C 0.505** B 0.558** B
0.551** A 0.381** D 0.323** D
种子厚Seed thickness 0.127 C -0.028 C 0.445** B
0.359** A 0.465** A 0.117 D
百粒重100-grain weight 0.560** C 0.453** C 0.411* C
0.086 A 0.108 A 0.006 A

表3

遗传连锁群信息统计"

连锁群
Linkage
标记数目
Marker number
遗传距离
Length (cM)
平均距离
Average length (cM)
最大间隙
Maximum gap
LG1 1949 1171.78 0.60 61.01
LG2 970 458.32 0.47 9.05
LG3 659 397.43 0.60 20.54
LG4 626 349.77 0.56 9.40
LG5 497 281.76 0.57 6.46
LG6 246 134.67 0.55 23.25
LG7 243 196.25 0.81 24.37
LG8 182 120.87 0.66 25.15
LG9 242 170.22 0.70 12.33
LG10 99 73.96 0.75 4.53
平均Average 571 335.50 0.59
总计Total 5713 3355.03

图3

QTL定位结果 a: 种子长度定位图; b: 种子宽度定位图; c: 种子厚度定位图; d: 百粒重定位图。SL: 种子长度; SW: 种子宽度; ST: 种子厚度; HGW: 百粒重。"

表4

QTL分析结果"

性状
Trait
染色体
Chr.
QTL 位置
Position (cM)
LOD值
LOD value
加性效应Additive effect 显性效应Dominant effect 贡献率
R2 (%)
99%置信区间
99% confidence interval
SL 1 qSL1 11.21 4.06 0.06 0.00 3.67 7.8-12.9
SL 7 qSL7 97.81 7.40 -0.02 0.00 22.16 91.2-98.9
SW 4 qSW4 169.31 3.87 0.10 -0.03 77.60 163.2-170.1
SW 7 qSW7-1 10.91 4.82 -0.05 -0.02 8.74 3.6-13.9
SW 7 qSW7-2 115.51 3.77 -0.04 0.01 11.59 107.0-119.6
SW 8 qSW8-1 96.01 4.60 -0.13 0.04 80.40 92.2-96.7
SW 8 qSW8-2 107.01 3.90 0.13 0.04 70.21 106.1-107.7
ST 4 qST4 85.51 3.87 -0.04 -0.01 23.75 83.9-88.3
ST 8 qST8-1 93.21 4.67 -0.05 0.01 86.20 90.9-96.0
ST 8 qST8-2 107.51 3.94 0.09 0.01 80.55 106.7-108.7
ST 10 qST10 71.11 5.26 -0.01 -0.01 0.71 67.5-73.0
HGW 1 qHGW1-1 3.31 4.11 -1.57 0.20 75.55 3.0-5.2
HGW 1 qHGW1-2 223.21 5.34 -1.70 0.08 30.79 223.1-236.5
HGW 1 qHGW1-3 397.91 4.30 -1.88 0.15 75.55 396.9-398.7
HGW 7 qHGW7-1 29.41 4.21 -0.27 -0.04 9.44 26.7-36.0
HGW 7 qHGW7-2 84.51 4.35 -0.26 0.13 16.60 84.1-86.2
HGW 7 qHGW7-3 97.81 4.88 -0.27 0.16 19.68 92.1-98.9
HGW 9 qHGW9 149.41 4.76 -0.23 0.26 20.05 138.2-157.3

图4

种子宽度QTL区间基因KEGG富集分析"

表5

种子大小性状候选基因"

性状位点
Trait locus
染色体
位置Scaffords
物理位置
Physical position (bp)
所在基因ID
Gene ID
拟南芥基因
Arabidopsis gene
描述
Description
qSL7, qHGW7-3,
qHGW7-2
29,848 962,738, 961,557,
961,387
29848.t000167: 29848.m004611 AT4G32190.1 参与淀粉起始的蛋白质
Protein involved in starch initiation
qST4 29,908 169,970 29908.t000194: 29908.m006143 AT1G01720.1 具有NAC结构域的转录激活家族
Belongs to a large family of putative transcriptional activators with NAC domain.
qST8-1 29,683 197,190 29683.t000018: 29683.m000480 AT2G17030.1 编码SKP1/ASK互作蛋白
Encodes a SKP1/ASK-interacting protein
qHGW1-2 27,752 2,960 27752.t000001:
27752.m000045
AT3G07870.1 F-BOX 92蛋白
F-BOX protein 92
qHGW7-3, qSL7 29,848 849,320 29848.t000145:
29848.m004589
AT1G80490.2 与在胚胎发生过程中介导生长素依赖的转录抑制密切相关
It is closely related to Topless (TPL), which mediates auxin-dependent transcriptional repression during embryogenesis
qHGW9 28,470 118,469 28470.t000014:
28470.m000435
AT5G04010 F-box家族蛋白
F-box family protein
[1] Alexandrov O S, Karlov G I. Molecular cytogenetic analysis and genomic organizations of major DNA repeats in castor bean (Ricinus communis L.). Mol Genet Genomics, 2016, 291: 775-778.
doi: 10.1007/s00438-015-1145-0 pmid: 26589420
[2] 包春光, 黄凤兰, 朱国立, 何智彪, 彭木, 陈晓凤, 罗蕊, 赵永. 蓖麻种子性状的研究进展. 内蒙古农业科技, 2014, (6): 102-104.
Bao C G, Huang F L, Zhu G L, He Z B, Peng M, Chen X F, Luo R, Zhao Y. The research progress of seed character in castor. Inner Mongolia Agric Sci Technol, 2014, (6): 102-104. (in Chinese with English abstract)
[3] Sun X, Ouyang M, Guo J, Ma J, Lu C, Adam Z, Zhang L. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana. Plant J Cell Mol Biol, 2010, 62: 240-249.
doi: 10.1111/j.1365-313X.2010.04140.x
[4] Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase 4, influences grain size in rice. Plant J Cell Mol Biol, 2014, 77: 547-557.
doi: 10.1111/tpj.12405
[5] Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signal, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
doi: 10.1242/dev.02194 pmid: 16339187
[6] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518
[7] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028.
doi: 10.1038/ng.169 pmid: 18604208
[8] Qiu L J, Yang C, Tian B, Yang J B, Liu A Z. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol, 2010, 10: 278.
doi: 10.1186/1471-2229-10-278
[9] Gerard A, Amber W, Pablo D R, Agenes P C, Jacques R, Paul K. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol, 2008, 55: 365-378.
doi: 10.1007/s10722-007-9244-3
[10] 包春光, 黄凤兰, 朱国立, 刘浩, 杜娟, 彭木, 陈晓凤, 赵永. 与蓖麻种子大小性状连锁的RAPD分析. 华北农学报, 2015, 30(5): 108-114.
doi: 10.7668/hbnxb.2015.05.018
Bao C G, Huang F L, Zhu G L, Liu H, Du J, Peng M, Chen X F, Zhao Y. RAPD analysis of castor seed size traits linkage. Acta Agric Boreali-Sin, 2015, 30(5): 108-114. (in Chinese with English abstract)
[11] Kim H C, Lei P, Wang A Z, Liu S, Zhao Y, Huang F L, Yu Z L, Zhu G L, He Z B, Tan D Y, Wang H W, Meng F J. Genetic diversity of castor bean (Ricinus communis L.) revealed by ISSR and RAPD markers. Agronomy, 2021, 11: 457.
doi: 10.3390/agronomy11030457
[12] Yu A M, Li F, Xu W, Wang Z, Sun C, Han B, Wang Y, Wang B, Cheng X, Liu A. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean. Sci Rep, 2019, 9: 11950.
doi: 10.1038/s41598-019-48492-8 pmid: 31420567
[13] Fan W, Lu J, Pan C, Tan M, Lin Q, Liu W, Li D, Wang L, Hu L, Wang L, Chen C, Wu A, Yu X, Ruan J, Yu J, Hu S, Yan X, Lyu S, Cui P. Sequencing of Chinese castor lines reveals genetic signatures of selection and yield-associated loci. Nat Commun, 2019, 10: 3418.
doi: 10.1038/s41467-019-11228-3 pmid: 31366935
[14] 陆建军. 蓖麻重要农艺性状关联分析及野生种基因组组装. 中国科学院大学(中国科学院武汉植物园)博士学位论文, 湖北武汉, 2021.
Lu J J. Genome-wide Association Analysis of Important Agronomic Traits in Castor and Wild Castor Genome Assembly. PhD Dissertation of Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China, 2021. (in Chinese with English abstract)
[15] 杨俊芳, 曹越, 王宙, 王亚, 张宏斌, 赵宜婷, 王宏伟. 蓖麻高密度遗传图谱构建亲本SNP多态性分析. 江苏农业科学, 2021, 49(9): 53-57.
Yang J F, Cao Y, Wang Z, Wang Y, Zhang H B, Zhao Y T, Wang H W. Polymorphism analysis of SNP molecular markers between parents for a high-density genetic map in castor bean. Jiangsu Agric Sci, 2021, 49(9): 53-57. (in Chinese with English abstract)
[16] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918
[17] Chen J, Wang N, Fang L C, Liang Z C, Li S H, Wu B H. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol, 2015, 15: 28.
doi: 10.1186/s12870-015-0428-2 pmid: 25644551
[18] Jiang N, Shi S, Shi H, Khanzada H, Wassan G M, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ou-Yang L, Sun X, Zhou D, He H, Bian J. Mapping QTL for seed germinability under low temperature using a new high density genetic map of rice. Front Plant Sci, 2017, 8: 1223.
doi: 10.3389/fpls.2017.01223
[19] Zhao Y, Su K, Wang G, Zhang L, Zhang J, Li J, Guo Y. High-density genetic linkage map construction and quantitative trait locus mapping for hawthorn (Crataegus pinnatififida Bunge). Sci Rep, 2017, 7: 5492.
doi: 10.1038/s41598-017-05756-5
[20] Liu S, Yin X G, Lu J N, Liu C, Bi C, Zhu H B, Shi Y Z, Zhang D, Wen D Y, Zheng J, Cui Y, Li W J. The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Ind Crops Prod, 2016, 89: 103-108.
doi: 10.1016/j.indcrop.2016.04.063
[21] Lu J N, Shi Y Z, Yin X G, Liu S, Liu C, Wen D Y, Li W J, He X L, Yang T. The genetic mechanism of sex type, a complex quantitative trait, in Ricinus communis L. Ind Crops Prod, 2019, 128: 590-598.
doi: 10.1016/j.indcrop.2018.11.023
[22] Tomar R S, Parakhia M V, Rathod V M, Thakkar J R, Padhiyar S M, Thummar V D, Dalal H, Kothari V V, Jasminkumar K, Dhingani R M, Golakiya B A. Development of linkage map and identification of QTLs responsible for fusarium wilt resistance in castor (Ricinus communis L.). Res J Biotechnol, 2016, 11: 67-73.
[23] Tomar R S, Parakhia M V, Rathod V M, Thakkar J R, Padhiyar S M, Thummar V D, Dalal H, Kothari V V, Jasminkumar K, Dhingani R M, Pritesh S, Golakiya B A. Molecular mapping and identification of QTLs responsible for charcoal rot resistance in castor (Ricinus communis L.). Ind Crops Prod, 2017, 95: 184-190.
doi: 10.1016/j.indcrop.2016.10.026
[24] Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003, 131: 1661-1670.
doi: 10.1104/pp.102.018762
[25] Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock W J, Dennis E S, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J Cell Mol Biol, 2010, 63: 670-679.
doi: 10.1111/j.1365-313X.2010.04271.x
[26] Xu R, Yu H, Wang J, Duan P, Zhang B, Li J, Li Y, Xu J, Lu J, Li N, Chai T, Li Y. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J Cell Mol Biol, 2018, 95: 937-946.
doi: 10.1111/tpj.13971
[27] Matsuta S, Nishiyama A, Chaya G, Itoh T, Miura K, Iwasaki Y. Characterization of heterotrimeric G protein γ4 subunit in rice. Int J Mol Sci, 2018, 19: 3596.
doi: 10.3390/ijms19113596
[28] Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA, 2016, 113: 12414-12419.
pmid: 27791139
[29] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genetics, 2012, 44: 950-954.
doi: 10.1038/ng.2327
[30] Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster G T, Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol, 2009, 19: 1188-1193.
doi: 10.1016/j.cub.2009.05.059
[31] Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y, Sun T P. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell, 2001, 13: 1555-1565.
doi: 10.1105/tpc.010047 pmid: 11449051
[32] Jensen M K, Hagedorn P H, Torres-Zabala M D, Grant M R, Rung J H, Collinge D B, Lyngkjaer M F. Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J Cell Mol Biol, 2008, 56: 867-880.
doi: 10.1111/j.1365-313X.2008.03646.x
[33] 李志永. 水稻种子特异表达基因SCP46 的克隆及功能鉴定. 中国农业科学院博士学位论文, 北京, 2017.
Li Z Y. Cloning and Functional Identification of a Seed-specific Gene SCP46 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2017. (in Chinese with English abstract)
[34] Ulmasov T, Hagen G, Guilfoyle T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276: 1865-1868.
doi: 10.1126/science.276.5320.1865 pmid: 9188533
[35] Okushima Y, Mitina I, Quach H I, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J Cell Mol Biol, 2005, 43: 29-46.
doi: 10.1111/j.1365-313X.2005.02426.x
[36] Sun Y, Wang C, Wang N, Jiang X, Mao H, Zhu C, Wen F, Wang X, Lu Z, Yue G, Xu Z, Ye J. Manipulation of auxin response factor 19 affects seed size in the woody perennial Jatropha curcas. Sci Rep, 2017, 19: 40844.
[37] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[38] Li Y, Zheng L, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008, 15: 1331-1336.
[39] Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, Li Y. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/ SOD2 in Arabidopsis. Plant Cell, 2014, 26: 665-677.
doi: 10.1105/tpc.114.122663
[40] Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y H. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013, 25: 3347-3359.
doi: 10.1105/tpc.113.115063
[41] Wang Z B, Li N, Shan J, Gonzalez N, Huang X H, Wang Y C, Li Y H. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun, 2016, 7: 11192.
doi: 10.1038/ncomms11192 pmid: 27048938
[42] Li N, Liu Z, Wang Z, Ru L, Gonzalez N, Baekelandt A, Pauwels L, Goossens A, Xu R, Zhu Z, Inzé D, Li Y. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genet, 2018, 14: e1007218.
[43] Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inzé D. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173
[44] Hong J P, Adams E, Yanagawa Y, Matsui M, Shin R. AtSKIP18 and AtSKIP31, F-box subunits of the SCF E3 ubiquitin ligase complex, mediate the degradation of 14-3-3 proteins in Arabidopsis. Biochem Biophys Res Commun, 2017, 485: 174-180.
doi: 10.1016/j.bbrc.2017.02.046
[45] Vandromme C, Spriet C, Dauvillée D, Courseaux A, Putaux J, Wychowski A, Krzewinski F, Facon M, D’hulst C, Wattebled F. PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. New Phytol, 2019, 221: 356-370.
doi: 10.1111/nph.15356 pmid: 30055112
[1] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[2] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[3] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[4] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[5] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[6] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[7] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[8] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[9] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[12] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[13] 葛天丽, 田宇, 张皓, 刘章雄, 李英慧, 邱丽娟. 基于高密度Bin图谱的大豆百粒重QTL定位和候选基因分析[J]. 作物学报, 2022, 48(12): 2978-2986.
[14] 秦文萱, 鲍建喜, 王彦博, 马雅杰, 龙艳, 李金萍, 董振营, 万向元. 玉米叶夹角性状的全基因组关联分析与关键位点优异等位变异挖掘[J]. 作物学报, 2022, 48(11): 2691-2705.
[15] 吴家怡, 袁芳, 孟丽姣, 李晨阳, 史红松, 白岩松, 武晓如, 李加纳, 周清元, 崔翠. 铝胁迫下甘蓝型油菜苗期光合相关性状的QTL定位及候选基因筛选[J]. 作物学报, 2022, 48(11): 2749-2764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .