作物学报 ›› 2023, Vol. 49 ›› Issue (3): 731-743.doi: 10.3724/SP.J.1006.2023.12081
向思茜(), 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明()
XIANG Si-Qian(), LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming()
摘要:
水稻籽粒大小是一个复杂的农艺性状, 受多基因控制。染色体片段代换系是创造自然变异的有效手段, 也是复杂性状研究的理想材料。本研究构建了一个新的水稻长大粒染色体片段代换系Z66, Z66以日本晴的基因组为遗传背景, 含有来自R225的12个代换片段, 平均代换长度为3.32 Mb。然后, 以日本晴/Z66创建的次级F2群体定位出12个控制水稻籽粒大小的QTL, 并培育出具有目标QTL的5个新单片段代换系(S1~S5)和4个新双片段代换系(D1~D4)。其中有9个QTL (qGL3、qGL7、qGL10、qGW6、qGW10、qRLW3、qRLW10、qGWT3、qGWT10)可被单片段代换系所验证, 表明这些QTL遗传稳定。此外, 还利用单片段代换系鉴定到6个新的QTL (qGL9-2、qGW9-2、qRLW6、qRLW7、qRLW9-2、qGWT7)。在这18个QTL中, qGL9-2、qRLW9-1、qRLW9-2、qGW9-2、qGWT9-2可能是新鉴定的QTL。双基因聚合分析表明, 不同QTL间聚合产生不同的上位性效应。如qRLW3 (a=0.21)和qRLW9-2 (a=0.08)聚合产生了0.10的上位性效应, 使D2具有比受体日本晴、S1 (qRLW3)和S4 (qRLW9-2)更大的谷粒长宽比, 且差异显著。qGWT3 (a=3.99)和qGWT10 (a=3.98)聚合产生了-5.35的上位性效应, 其遗传效应(2.62)使D3的千粒重比日本晴显著增加, 而比S1 (qGWT3)和S5 (qGWT10)显著减少。了解QTL间的互作效应可对未来基因型的表型进行预测, 从而对实现智能型设计育种至关重要。
[1] |
Li G M, Tang J Y, Zheng J K, Chu C C. Exploration of rice yield potential: decoding agronomic and physiological traits. Crop J, 2021, 9: 577-589.
doi: 10.1016/j.cj.2021.03.014 |
[2] |
Xu J L, Xing Y Z, Xu Y B, Wan J M. Breeding by design for future rice: genes and genome technologies. Crop J, 2021, 9: 491-496.
doi: 10.1016/j.cj.2021.05.001 |
[3] |
Zhang G Q. Target chromosome-segment substitution: a way to breeding by design in rice. Crop J, 2021, 9: 658-668.
doi: 10.1016/j.cj.2021.03.001 |
[4] |
Alonso-Blanco C, Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci, 2000, 5: 22-29.
pmid: 10637658 |
[5] |
Yano M. Genetic and molecular dissection of naturally occurring variations. Curr Opin Plant Biol, 2001, 4: 130-135.
pmid: 11228435 |
[6] |
Parry M A J, Madgwick P J, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips A L. Mutation discovery for crop improvement. J Exp Bot, 2009, 60: 2817-2825.
doi: 10.1093/jxb/erp189 pmid: 19516074 |
[7] |
Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2019, 132: 1-25.
doi: 10.1007/s00122-018-3219-y pmid: 30483819 |
[8] |
Yang T F, Zhang S H, Zhao J L, Liu Q, Huang Z H, Mao X X, Dong J F, Wang X F, Zhang G Q, Liu B. Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2016, 36: 96.
doi: 10.1007/s11032-016-0520-9 |
[9] |
Zhou Y L, Xie Y H, Cai J L, Liu C B, Zhu H T, Jiang R, Zhong Y Y, Zhang G L, Tan B, Liu G F, Fu X L, Liu Z Q, Wang S K, Zhang G Q, Zeng R Z. Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. Theor Appl Genet, 2017, 130: 1191-1205.
doi: 10.1007/s00122-017-2881-9 pmid: 28283703 |
[10] | Okpala N E, Duan L X, Shen G Q, Zhang G Q, Qi X Q. Comparisons of cooking and eating qualities of two indica rice cultivars. J Rice Res, 2017, 5: 1-5. |
[11] |
Li Z H, Riaz A, Zhang Y X, Anis G B, Zhu A K, Cao L Y, Cheng S H. Quantitative trait loci mapping for rice yield-related traits using chromosomal segment substitution lines. Rice Sci, 2019, 26: 261-264.
doi: 10.1016/j.rsci.2019.02.001 |
[12] |
张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因. 作物学报, 2021, 47: 1472-1480.
doi: 10.3724/SP.J.1006.2021.02056 |
Zhang B, Pei R Q, Yang W F, Zhu H T, Liu G F, Zhang G Q, Wang S K. Identification of grain type genes in rice IAPAR9 by single segment substitution lines. Acta Agron Sin, 2021, 47: 1472-1480. (in Chinese with English abstract) | |
[13] |
沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证. 作物学报, 2021, 47: 451-461.
doi: 10.3724/SP.J.1006.2021.92002 |
Shen W Q, Zhao B B, Yu G L, Li F F, Zhu X Y, Ma F Y, Li Y F, He G H, Zhao F M. Identification and QTL mapping of important agronomic traits of an excellent rice chromosome fragment substitution line Z746. Acta Agron Sin, 2021, 47: 451-461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.92002 |
|
[14] |
王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加每穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020, 46: 140-146.
doi: 10.3724/SP.J.1006.2020.92022 |
Wang D C, Wang H, Ma F Y, Du J, Zhang J Y, Xu G Y, He G H, Li Y F, Ling Y H, Zhao F M. Identification and QTL mapping of related traits of rice chromosome replacement line Z747 with increased grain number per panicle. Acta Agron Sin, 2020, 46: 140-146. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92022 |
|
[15] |
Ma F Y, Zhu X Y, Wang H, Wang S M, Cui G Q, Zhang T, Yang Z L, He G H, Ling Y H, Wang N, Zhao F M. Identification of QTL for kernel number-related traits in a rice chromosome segment substitution line and fine mapping of qSP1. Crop J, 2019, 7: 494-503.
doi: 10.1016/j.cj.2018.12.009 |
[16] |
Ma F Y, Du J, Wang D C, Wang H, Zhao B B, He G H, Yang Z L, Zhang T, Wu R H, Zhao F M. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. J Integr Agric, 2020, 19: 1163-1169.
doi: 10.1016/S2095-3119(19)62751-6 |
[17] |
Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q. Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2012, 30: 583-595.
doi: 10.1007/s11032-011-9647-x |
[18] |
Cai J, Liao Q, Dai Z, Zhu H, Zeng R, Zhang Z, Zhang G. Allelic differentiations and effects of the Rf3 and Rf4genes on fertility restoration in rice with wild abortive cytoplasmic male sterility. Biol Plant, 2013, 57: 274-280.
doi: 10.1007/s10535-012-0294-9 |
[19] |
Zhang T, Wang S M, Sun S F, Zhang Y, Li J, You J, Su T, Chen W B, Ling Y H, He G H, Zhao F M. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL6. Rice, 2020, 13: 13-40.
doi: 10.1186/s12284-020-0373-z |
[20] |
Wang H, Zhang J Y, Naz F, Li J, Sun S F, He G H, Zhang T, Ling Y H, Zhao F M. Identification of rice QTLs for important agronomic traits with long-kernel CSSL-Z741 and three SSSLs. Rice Sci, 2020, 27: 414-422.
doi: 10.1016/j.rsci.2020.04.008 |
[21] |
Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G. Characterization of epistasis interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep, 2014, 4: 4263.
doi: 10.1038/srep04263 |
[22] |
Qin M, Zhao X, Ru J, Zhang G, Ye G Y. Bigenic epistasis between QTLs for heading date in rice analyzed using single segment substitution lines. Field Crops Res, 2015, 178: 16-25.
doi: 10.1016/j.fcr.2015.03.020 |
[23] |
Zhao F M, Zhu H T, Zeng R Z, Zhang G Q, Xu S Z. Detection of additive and additive × environment interaction effects of QTLs for yield-component traits of rice using single-segment substitution lines (SSSLs). Plant Breed, 2016, 135: 452-458.
doi: 10.1111/pbr.12385 |
[24] |
Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954.
doi: 10.1038/ng.2327 |
[25] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352 |
[26] |
Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice, 2019, 12: 10.
doi: 10.1186/s12284-019-0271-4 pmid: 30820693 |
[27] | 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41: 754-760. |
Zhang G Q. Rice design and breeding platform based on SSSL library. Genetics, 2019, 41: 754-760. (in Chinese with English abstract) | |
[28] | 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1-7. |
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn), 2016, 38(11): 1-7. (in Chinese with English abstract) | |
[29] | 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018, 44: 1477-1484. |
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification and QTL mapping of important agronomic traits in rice Z1377. Acta Agron Sin, 2018, 44: 1477-1484 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01477 |
|
[30] |
Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.
doi: 10.1093/genetics/127.1.181 pmid: 1673106 |
[31] |
McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389 |
[32] |
Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016, 44: 370-380.
doi: 10.1556/0806.44.2016.022 |
[33] |
Liang P X, Wang H, Zhang Q L, Zhou K, Li M M, Li R X, Xiang S Q, Zhang Z, Ling Y H, Yang Z L, He G H, Zhao F M. Identification and pyramiding of QTLs for rice grain size based on short-wide grain CSSL-Z563 and fine-mapping of qGL3-2. Rice, 2021, 14: 35.
doi: 10.1186/s12284-021-00477-w |
[34] | Ma M Y, Gong W J, Duan H Y. Rice grain shape genes: research progress and application. J Agric, 2020, 10: 21-25. |
[35] |
Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16.
doi: 10.1186/1471-2156-11-16 |
[36] |
Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739 |
[37] | 张静, 李晨, 潘大建, 陈文丰, 孙炳蕊, 刘清, 吕树伟, 江立群, 毛兴学, 范芝兰. 水稻粒长遗传及其功能基因研究进展. 广东农业科学, 2021, 48(3): 1-10. |
Zhang J, Li C, Pan D J, Chen W F, Sun B R, Liu Q, Lyu S W, Jiang L Q, Mao X X, Fan Z L. Research progress on genetic and functional genes of rice grain length. Guangdong Agric Sci, 2021, 48(3): 1-10. (in Chinese with English abstract) | |
[38] |
Wang D C, Zhou K, Xiang S Q, Zhang Q L, Li R X, Li M M, Liang P X, Farkhanda N, He G H, Ling Y H, Zhao F M. Identification, pyramid and candidate genes of QTLs for associated traits based on a dense erect panicle rice CSSL-Z749 and five SSSLs, three DSSLs and one TSSL. Rice, 2021, 14: 55.
doi: 10.1186/s12284-021-00496-7 pmid: 34132908 |
[39] | Du Y W, He W, Deng C W, Chen X, Gou L M, Zhu F G, Guo W, Zhang J F, Wang T. Flowering-related RING protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza sativa). PLoS One, 2016, 11: e0150458. |
[40] |
Yang C, Ma B, He S J, Xiong Q, Duan X K, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.
doi: 10.1104/pp.15.00353 |
[41] |
Zhou S X, Zhu Y, Wang L F, Zheng Y P, Chen J F, Li T T, Yang X M, Wang H, Li X P, Ma X C, Zhao J Q, Pu M, Feng F, Li Y, Fan J, Zhang J W, Huang Y Y, Wang W M. Osa-miR1873 fine-tunes rice immunity against magnaporthe oryzae and yield traits. J Integr Plant Biol, 2020, 62: 1213-1226.
doi: 10.1111/jipb.12900 |
[42] |
Wang Z, Wei K, Xiong M, Wang J D, Zhang C Q, Fan X L, Huang L C, Zhao D S, Liu Q Q, Li Q F. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnol J, 2021, 19: 2606-2618.
doi: 10.1111/pbi.13686 pmid: 34416068 |
[43] |
Zhang L, Wang R C, Xing Y D, Xu Y F, Xiong D P, Wang Y M, Yao S G. Separable regulation of POW1 in grain size and leaf angle development in rice. Plant Biotechnol J, 2021, 19: 2517-2531.
doi: 10.1111/pbi.13677 pmid: 34343399 |
[44] |
Wang X L, Jin L L, Zhu H T, Wang S K, Zhang G Q, Liu G F. QTL epistasis analysis for yield components with single-segment substitution lines in rice. Plant Breed, 2018, 137: 346-354.
doi: 10.1111/pbr.12578 |
[1] | 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051. |
[2] | 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121. |
[3] | 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646. |
[4] | 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596. |
[5] | 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671. |
[6] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[7] | 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633. |
[8] | 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820. |
[9] | 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783. |
[10] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[11] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[12] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[13] | 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342. |
[14] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[15] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
|