欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 731-743.doi: 10.3724/SP.J.1006.2023.12081

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析

向思茜(), 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明()   

  1. 西南大学水稻研究所 / 西南大学农业科学研究院 / 转基因植物与安全控制重庆市重点实验室, 重庆 400715
  • 收稿日期:2021-11-30 接受日期:2022-06-07 出版日期:2023-03-12 网络出版日期:2022-07-07
  • 通讯作者: 赵芳明
  • 作者简介:E-mail: 969937373@qq.com
  • 基金资助:
    国家自然科学基金项目(32072039);西南大学种质创制专项项目资助

Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66

XIANG Si-Qian(), LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Transgenic Plants and Safety Control, Chongqing Key Laboratory, Chongqing 400715, China
  • Received:2021-11-30 Accepted:2022-06-07 Published:2023-03-12 Published online:2022-07-07
  • Contact: ZHAO Fang-Ming
  • Supported by:
    National Natural Science Foundation of China(32072039);Germplasm Creation for Southwest University

摘要:

水稻籽粒大小是一个复杂的农艺性状, 受多基因控制。染色体片段代换系是创造自然变异的有效手段, 也是复杂性状研究的理想材料。本研究构建了一个新的水稻长大粒染色体片段代换系Z66, Z66以日本晴的基因组为遗传背景, 含有来自R225的12个代换片段, 平均代换长度为3.32 Mb。然后, 以日本晴/Z66创建的次级F2群体定位出12个控制水稻籽粒大小的QTL, 并培育出具有目标QTL的5个新单片段代换系(S1~S5)和4个新双片段代换系(D1~D4)。其中有9个QTL (qGL3、qGL7、qGL10、qGW6、qGW10、qRLW3、qRLW10、qGWT3、qGWT10)可被单片段代换系所验证, 表明这些QTL遗传稳定。此外, 还利用单片段代换系鉴定到6个新的QTL (qGL9-2qGW9-2qRLW6qRLW7qRLW9-2qGWT7)。在这18个QTL中, qGL9-2、qRLW9-1、qRLW9-2、qGW9-2、qGWT9-2可能是新鉴定的QTL。双基因聚合分析表明, 不同QTL间聚合产生不同的上位性效应。如qRLW3 (a=0.21)和qRLW9-2 (a=0.08)聚合产生了0.10的上位性效应, 使D2具有比受体日本晴、S1 (qRLW3)和S4 (qRLW9-2)更大的谷粒长宽比, 且差异显著。qGWT3 (a=3.99)和qGWT10 (a=3.98)聚合产生了-5.35的上位性效应, 其遗传效应(2.62)使D3的千粒重比日本晴显著增加, 而比S1 (qGWT3)和S5 (qGWT10)显著减少。了解QTL间的互作效应可对未来基因型的表型进行预测, 从而对实现智能型设计育种至关重要。

关键词: 水稻, 粒型, QTL, 染色体代换片段, 加性效应, 上位性效应

Abstract:

Rice grain size is a complex agronomic trait, controlled by multiple genes. Chromosome segment substitution lines are an effective method for creating natural occurring variations and are as the ideal materials for exploring the complex traits. In this study, a novel rice long-large grain chromosome segment substitution line Z66 was developed. Z66 contained 12 substitution segments from R225 (average substitution length was 3.32 Mb) based on the genetic backgrounds of Nipponbare. Then, 12 QTLs for rice grain size were identified by the secondary F2 population from Nipponbare/Z66, and 5 novel single-segment substitution lines (SSSLs, S1-S5), and 4 novel double-segment substitution lines (DSSLs, D1-D4) harboring target QTL were developed. Among them, 9 QTLs (qGL3, qGL7, qGL10, qGW6, qGW10, qRLW3, qRLW10, qGWT3, and qGWT10) could be verified by the SSSLs, indicating that these QTLs were genetically stable. In addition, 6 novel QTLs (qGL9-2, qGW9-2, qRLW6, qRLW7, qRLW9-2, and qGWT7) were detected by the SSSLs. Among 18 QTLs, 5 QTLs (qGL9-2, qRLW9-1, qRLW9-2, qGW9-2, and qGWT9-2) might be novel. Target QTLs pyramiding showed that the pyramid of different QTLs had various epistasis effects. For example, the pyramids of qRLW3 (a=0.21) and qRLW9-2 (a=0.08) produced an epistasis effect of 0.10, which made the ratio of grain length to width in D2 significantly larger than that in Nipponbare, S1 (qRLW3), and S4 (qRLW9-2). The pyramid of qGWT3 (a=3.99) and qGWT10 (a=3.98) yielded an epistasis effect of -5.35, and its genetic effects in D3 (2.62 g) significantly increased 1000-grain weight of D3 than in Nipponbare, but significantly decreased than that in S1 (qGWT3) and S5 (qGWT10). Understanding the interaction effects between target QTLs can predict the phenotype of futural QTL pyramid genotypes, which is important for intelligent design breeding in rice.

Key words: rice, grain shape, QTLs, chromosome segment substitution line, additive effect, epistasis effect

图1

包括Z66的CSSLs的选育过程 MAS: 分子标记辅助选择; CSSL: 染色体片段代换系。"

图2

双片段代换系DSSLij的Q1 (第i代换片段)和Q2 (第j代换片段)间的上位性互作示意图 Dij表示含有第i代换片段和第j代换片段的双片段代换系, 某一性状QTL (Q1和Q2)的加性效应由相应的的单片段代换系SSSLi (含“i”代换片段)和SSSLj (含“j”代换片段)鉴定。Q1和Q2间的加性×加性上位性效应, 由(日本晴+DSSLij)和(SSSLi+SSSLj)进行鉴定。Chr. 代表分别含Q1和Q2的2条水稻染色体, 黑色区表示来自受体日本晴的染色体遗传背景, 标记基因型用“(-1, -1)”表示, 红色区表示来自供体R225的代换区, 其标记基因型用“(1, 1)”表示, Q1和Q2分别表示某一性状的QTL, 位于红色的供体代换区内, Q1和Q2间的连线表示二者间存在上位性互作(P<0.05)。"

图3

Z66的染色体代换片段 每条染色体左侧为物理距离(Mb)和定位的QTL, 右侧为标记名称和代换长度(黑箭头指向)。GL: 粒长; GW: 粒宽; RLW: 谷粒长宽比; GWT: 千粒重。"

图4

日本晴和Z66的粒型及其统计分析 A: 株型; B: 粒长; C: 粒宽; D~G: 日本晴和Z66的粒长、粒宽、长宽比和千粒重统计分析;**表示日本晴和Z66性状间存在极显著(P < 0.01)差异。"

图5

粒型性状在日本晴/Z66构建的次级F2群体中的频率分布 A~D: 分别依次为粒长、粒宽、长宽比和千粒重的频率分布。"

表1

日本晴/Z66的次级F2群体检出的水稻粒型相关性状QTL"

性状
Trait
QTL 染色体
Chr.
连锁标记
Linked marker
加性效应
Additive effect
贡献率
R2 (%)
P
P-value
粒长
Grain length
qGL3 3 RM5928 0.21 8.95 0.0028
qGL7 7 RM5481 0.10 2.61 0.0360
qGL10 10 RM6673 0.13 4.62 0.0210
粒宽
Grain width
qGW6 6 RM3183 -0.11 30.78 0.0005
qGW9-1 9 RM5657 -0.10 14.87 0.0018
qGW10 10 RM6673 0.12 39.18 0.0003
长宽比
Ratio of length to width
qRLW3 3 RM5928 0.09 14.78 0.0440
qRLW9-1 9 RM5657 0.25 44.93 0.0220
qRLW10 10 RM6673 0.049 6.40 0.0200
千粒重
1000-grain weight
qGWT3 3 RM5928 1.14 9.48 0.0250
qGWT9-2 9 RM2144 -0.79 6.05 0.0360
qGWT10 10 RM6673 0.73 5.14 0.0430

图6

次级单片段代换系和双片段代换系培育及粒型QTL的加性和上位性效应分析 A: 培育的SSSLs (S1~S5), DSSLs (D1~D4)草图. N: 表示受体日本晴(Nipponbare); S: 单片段代换系(SSSL); D: 双片段代换系(DSSL); B: 粒长; C: 粒宽; D: 谷粒长宽比; E: 千粒重; 柱子上方最下面的小写字母表示Duncan’s多重比较结果(P < 0.05), 不同字母表示彼此差异显著。μ: 各系的平均值, ai : QTL的加性效应, I: QTL间加性×加性上位性效应, 单片段代换系的P表示SSSL与日本晴差异显著性, P < 0.05表示二者差异显著, 在代换片段上存在QTL。双片段代换系DSSL的P表示(日本晴+ DSSLij)和(SSSLi和SSSLj)的差异显著性, P < 0.05表示二者差异显著, 存在上位性效应。S1: Chr3, RM3766-RM2917; S2: Chr6, RM3330-RM3567; S3: Chr7, RM1186- RM3826; S4: Chr9, RM1553-长臂末端; S5: Chr10, RM4477-长臂末端; D1: Chr3, RM3766-RM2917; Chr6, RM3330-RM3567; D2: Chr3, RM3766-RM2917; Chr9, RM1553-RM205; D3: Chr3, RM3766-RM2917; Chr10, RM4477-RM6673; D4: Chr6, RM3330-RM3567; Chr9, RM1553-RM205; 用连字符连接的内部标记表示来自供体的替代段。"

[1] Li G M, Tang J Y, Zheng J K, Chu C C. Exploration of rice yield potential: decoding agronomic and physiological traits. Crop J, 2021, 9: 577-589.
doi: 10.1016/j.cj.2021.03.014
[2] Xu J L, Xing Y Z, Xu Y B, Wan J M. Breeding by design for future rice: genes and genome technologies. Crop J, 2021, 9: 491-496.
doi: 10.1016/j.cj.2021.05.001
[3] Zhang G Q. Target chromosome-segment substitution: a way to breeding by design in rice. Crop J, 2021, 9: 658-668.
doi: 10.1016/j.cj.2021.03.001
[4] Alonso-Blanco C, Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci, 2000, 5: 22-29.
pmid: 10637658
[5] Yano M. Genetic and molecular dissection of naturally occurring variations. Curr Opin Plant Biol, 2001, 4: 130-135.
pmid: 11228435
[6] Parry M A J, Madgwick P J, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips A L. Mutation discovery for crop improvement. J Exp Bot, 2009, 60: 2817-2825.
doi: 10.1093/jxb/erp189 pmid: 19516074
[7] Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2019, 132: 1-25.
doi: 10.1007/s00122-018-3219-y pmid: 30483819
[8] Yang T F, Zhang S H, Zhao J L, Liu Q, Huang Z H, Mao X X, Dong J F, Wang X F, Zhang G Q, Liu B. Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2016, 36: 96.
doi: 10.1007/s11032-016-0520-9
[9] Zhou Y L, Xie Y H, Cai J L, Liu C B, Zhu H T, Jiang R, Zhong Y Y, Zhang G L, Tan B, Liu G F, Fu X L, Liu Z Q, Wang S K, Zhang G Q, Zeng R Z. Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. Theor Appl Genet, 2017, 130: 1191-1205.
doi: 10.1007/s00122-017-2881-9 pmid: 28283703
[10] Okpala N E, Duan L X, Shen G Q, Zhang G Q, Qi X Q. Comparisons of cooking and eating qualities of two indica rice cultivars. J Rice Res, 2017, 5: 1-5.
[11] Li Z H, Riaz A, Zhang Y X, Anis G B, Zhu A K, Cao L Y, Cheng S H. Quantitative trait loci mapping for rice yield-related traits using chromosomal segment substitution lines. Rice Sci, 2019, 26: 261-264.
doi: 10.1016/j.rsci.2019.02.001
[12] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因. 作物学报, 2021, 47: 1472-1480.
doi: 10.3724/SP.J.1006.2021.02056
Zhang B, Pei R Q, Yang W F, Zhu H T, Liu G F, Zhang G Q, Wang S K. Identification of grain type genes in rice IAPAR9 by single segment substitution lines. Acta Agron Sin, 2021, 47: 1472-1480. (in Chinese with English abstract)
[13] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证. 作物学报, 2021, 47: 451-461.
doi: 10.3724/SP.J.1006.2021.92002
Shen W Q, Zhao B B, Yu G L, Li F F, Zhu X Y, Ma F Y, Li Y F, He G H, Zhao F M. Identification and QTL mapping of important agronomic traits of an excellent rice chromosome fragment substitution line Z746. Acta Agron Sin, 2021, 47: 451-461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.92002
[14] 王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加每穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020, 46: 140-146.
doi: 10.3724/SP.J.1006.2020.92022
Wang D C, Wang H, Ma F Y, Du J, Zhang J Y, Xu G Y, He G H, Li Y F, Ling Y H, Zhao F M. Identification and QTL mapping of related traits of rice chromosome replacement line Z747 with increased grain number per panicle. Acta Agron Sin, 2020, 46: 140-146. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92022
[15] Ma F Y, Zhu X Y, Wang H, Wang S M, Cui G Q, Zhang T, Yang Z L, He G H, Ling Y H, Wang N, Zhao F M. Identification of QTL for kernel number-related traits in a rice chromosome segment substitution line and fine mapping of qSP1. Crop J, 2019, 7: 494-503.
doi: 10.1016/j.cj.2018.12.009
[16] Ma F Y, Du J, Wang D C, Wang H, Zhao B B, He G H, Yang Z L, Zhang T, Wu R H, Zhao F M. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. J Integr Agric, 2020, 19: 1163-1169.
doi: 10.1016/S2095-3119(19)62751-6
[17] Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q. Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2012, 30: 583-595.
doi: 10.1007/s11032-011-9647-x
[18] Cai J, Liao Q, Dai Z, Zhu H, Zeng R, Zhang Z, Zhang G. Allelic differentiations and effects of the Rf3 and Rf4genes on fertility restoration in rice with wild abortive cytoplasmic male sterility. Biol Plant, 2013, 57: 274-280.
doi: 10.1007/s10535-012-0294-9
[19] Zhang T, Wang S M, Sun S F, Zhang Y, Li J, You J, Su T, Chen W B, Ling Y H, He G H, Zhao F M. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL6. Rice, 2020, 13: 13-40.
doi: 10.1186/s12284-020-0373-z
[20] Wang H, Zhang J Y, Naz F, Li J, Sun S F, He G H, Zhang T, Ling Y H, Zhao F M. Identification of rice QTLs for important agronomic traits with long-kernel CSSL-Z741 and three SSSLs. Rice Sci, 2020, 27: 414-422.
doi: 10.1016/j.rsci.2020.04.008
[21] Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G. Characterization of epistasis interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep, 2014, 4: 4263.
doi: 10.1038/srep04263
[22] Qin M, Zhao X, Ru J, Zhang G, Ye G Y. Bigenic epistasis between QTLs for heading date in rice analyzed using single segment substitution lines. Field Crops Res, 2015, 178: 16-25.
doi: 10.1016/j.fcr.2015.03.020
[23] Zhao F M, Zhu H T, Zeng R Z, Zhang G Q, Xu S Z. Detection of additive and additive × environment interaction effects of QTLs for yield-component traits of rice using single-segment substitution lines (SSSLs). Plant Breed, 2016, 135: 452-458.
doi: 10.1111/pbr.12385
[24] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954.
doi: 10.1038/ng.2327
[25] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352
[26] Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice, 2019, 12: 10.
doi: 10.1186/s12284-019-0271-4 pmid: 30820693
[27] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41: 754-760.
Zhang G Q. Rice design and breeding platform based on SSSL library. Genetics, 2019, 41: 754-760. (in Chinese with English abstract)
[28] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1-7.
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn), 2016, 38(11): 1-7. (in Chinese with English abstract)
[29] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018, 44: 1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification and QTL mapping of important agronomic traits in rice Z1377. Acta Agron Sin, 2018, 44: 1477-1484 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01477
[30] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.
doi: 10.1093/genetics/127.1.181 pmid: 1673106
[31] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389
[32] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016, 44: 370-380.
doi: 10.1556/0806.44.2016.022
[33] Liang P X, Wang H, Zhang Q L, Zhou K, Li M M, Li R X, Xiang S Q, Zhang Z, Ling Y H, Yang Z L, He G H, Zhao F M. Identification and pyramiding of QTLs for rice grain size based on short-wide grain CSSL-Z563 and fine-mapping of qGL3-2. Rice, 2021, 14: 35.
doi: 10.1186/s12284-021-00477-w
[34] Ma M Y, Gong W J, Duan H Y. Rice grain shape genes: research progress and application. J Agric, 2020, 10: 21-25.
[35] Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16.
doi: 10.1186/1471-2156-11-16
[36] Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[37] 张静, 李晨, 潘大建, 陈文丰, 孙炳蕊, 刘清, 吕树伟, 江立群, 毛兴学, 范芝兰. 水稻粒长遗传及其功能基因研究进展. 广东农业科学, 2021, 48(3): 1-10.
Zhang J, Li C, Pan D J, Chen W F, Sun B R, Liu Q, Lyu S W, Jiang L Q, Mao X X, Fan Z L. Research progress on genetic and functional genes of rice grain length. Guangdong Agric Sci, 2021, 48(3): 1-10. (in Chinese with English abstract)
[38] Wang D C, Zhou K, Xiang S Q, Zhang Q L, Li R X, Li M M, Liang P X, Farkhanda N, He G H, Ling Y H, Zhao F M. Identification, pyramid and candidate genes of QTLs for associated traits based on a dense erect panicle rice CSSL-Z749 and five SSSLs, three DSSLs and one TSSL. Rice, 2021, 14: 55.
doi: 10.1186/s12284-021-00496-7 pmid: 34132908
[39] Du Y W, He W, Deng C W, Chen X, Gou L M, Zhu F G, Guo W, Zhang J F, Wang T. Flowering-related RING protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza sativa). PLoS One, 2016, 11: e0150458.
[40] Yang C, Ma B, He S J, Xiong Q, Duan X K, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.
doi: 10.1104/pp.15.00353
[41] Zhou S X, Zhu Y, Wang L F, Zheng Y P, Chen J F, Li T T, Yang X M, Wang H, Li X P, Ma X C, Zhao J Q, Pu M, Feng F, Li Y, Fan J, Zhang J W, Huang Y Y, Wang W M. Osa-miR1873 fine-tunes rice immunity against magnaporthe oryzae and yield traits. J Integr Plant Biol, 2020, 62: 1213-1226.
doi: 10.1111/jipb.12900
[42] Wang Z, Wei K, Xiong M, Wang J D, Zhang C Q, Fan X L, Huang L C, Zhao D S, Liu Q Q, Li Q F. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnol J, 2021, 19: 2606-2618.
doi: 10.1111/pbi.13686 pmid: 34416068
[43] Zhang L, Wang R C, Xing Y D, Xu Y F, Xiong D P, Wang Y M, Yao S G. Separable regulation of POW1 in grain size and leaf angle development in rice. Plant Biotechnol J, 2021, 19: 2517-2531.
doi: 10.1111/pbi.13677 pmid: 34343399
[44] Wang X L, Jin L L, Zhu H T, Wang S K, Zhang G Q, Liu G F. QTL epistasis analysis for yield components with single-segment substitution lines in rice. Plant Breed, 2018, 137: 346-354.
doi: 10.1111/pbr.12578
[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[2] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[3] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[4] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[5] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[6] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[7] 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633.
[8] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[9] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[10] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[11] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[12] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[13] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[14] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[15] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .