欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 744-754.doi: 10.3724/SP.J.1006.2023.21018

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦旗叶叶绿素含量的QTL定位及验证

杨斌(), 乔玲(), 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军()   

  1. 山西农业大学小麦研究所 / 省部共建有机旱作农业国家重点实验室(筹), 山西临汾 041000
  • 收稿日期:2022-02-25 接受日期:2022-06-07 出版日期:2023-03-12 网络出版日期:2022-07-07
  • 通讯作者: 郑军
  • 作者简介:杨斌, E-mail: sxxmsyb83@126.com
    乔玲, E-mail: qiaolingsmile@163.com第一联系人:**同等贡献
  • 基金资助:
    中央引导地方科技发展资金项目(YDZJSX2022A033);山西农业大学育种工程(YZGC013);山西省基础研究计划项目(202103021223156)

QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.)

YANG Bin(), QIAO Ling(), ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun()   

  1. Institute of Wheat Research, Shanxi Agricultural University / State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Linfen 041000, Shanxi, China
  • Received:2022-02-25 Accepted:2022-06-07 Published:2023-03-12 Published online:2022-07-07
  • Contact: ZHENG Jun
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Central Guidance on Science & Technology Development of Shanxi(YDZJSX2022A033);Shanxi Agricultural University Breeding Project(YZGC013);Basic Research Program of Shanxi Province(202103021223156)

摘要:

旗叶是小麦主要的光合器官, 叶绿素既是旗叶最主要的光合色素, 也是品种选育中重要的表型指标, 因此挖掘和利用旗叶叶绿素含量有关的主效基因/位点, 对于培育高产稳产小麦新品种意义重大。以旗叶叶绿素含量差异较大双亲构建的双单倍体群体(DH群体)为材料, 利用小麦90K SNP芯片对5个环境旗叶叶绿素含量进行QTL分析, 共定位到20个旗叶叶绿素含量有关的遗传位点, 表型贡献率为4.10%~27.16%; 其中3个QTL (Qchl.saw-2D.1Qchl.saw-4D.2Qchl.saw-6A)能在多个环境条件下检测到; Qchl.saw-2D.1的遗传效应最高, 该位点与2D染色体上已报道的其他叶绿素位点不同, 初步确定是1个新的主效QTL。并进一步将Qchl.saw-2D.1紧密连锁的SNP标记开发为KASP标记, 通过在含有共同亲本金麦919的RIL群体中验证其效应, 发现在多个环境条件下具有Qchl.saw-2D.1有利等位基因的家系叶绿素含量显著或极显著高于其他家系。对Qchl.saw-2D.1Qchl.saw-4D.2Qchl.saw-6A所在功能区段进行基因注释, 筛选到12个与叶绿素相关的候选基因, 其中3个基因参与镁等金属离子的结合过程, 5个基因参与调控叶绿体结构组成, 4个基因参与调控光合作用过程中相关电子链的传递活性。本文研究结果为叶绿素调控的遗传机制提供了有价值的信息, 并为高光效分子标记辅助育种提供依据与参考。

关键词: 小麦, 叶绿素含量, SNP标记, QTL定位

Abstract:

Flag leaf is the main photosynthetic organ in wheat. The chlorophyll content is not only the major photosynthetic pigment in flag leaf but also an important phenotypic indicator in crop breeding. Therefore, the identification of major loci/genes related to chlorophyll content in the flag leaf play an important role in breeding wheat varieties with higher grain yields and stability. In this study, we constructed a double haploid (DH) population from a cross of two cultivars with significant difference in chlorophyll content, and the chlorophyll contents of DH lines were detected under five environments. A total of 20 QTLs associated with chlorophyll content were detected using Wheat 90K single-nucleotide polymorphism (SNP) array, with contributions to phenotypic variation explained (PVE) from 4.10% to 27.16%. Three QTLs (Qchl.saw-2D.1, Qchl.saw-4D.2, and Qchl.saw-6A) were identified under multiple environmental conditions, in which Qchl.saw-2D.1 with the strongest genetic effect was different from previous studies and identified as a novel major QTL. Furthermore, Qchl.saw-2D.1 was validated by a tightly linked kompetitive allele specific PCR (KASP) marker in a recombinant inbred line (RIL) population containing the co-parent Jinmai 919. Those lines with the favorable allele of Qchl.saw-2D.1 revealed significantly higher chlorophyll content than other lines under multiple environments. Moreover, a total of 12 candidate genes controlling chlorophyll content were identified in the three QTL regions. Based on gene annotation, three genes were involved in the binding process of metal iron, such as magnesium. Five genes were regulated the structural composition of chloroplasts, and four genes were engaged in the regulation of electron transfer activities during the photosynthetic process. In conclusion, this study will broaden the understanding of the genetic mechanism and provide a molecular basis for the marker-assisted breeding (MAS) of chlorophyll content in the flag leaf of wheat.

Key words: wheat, chlorophyll content, SNP marker, QTL mapping

表1

晋春7号×金麦919亲本与DH群体的旗叶叶绿素含量变异特征"

环境
Environment
亲本 Parents DH群体 DH Population
晋春7号
Jinchun 7
金麦919
Jinmai 919
平均值
Mean
标准差
SD
最大值
Max.
最小值
Min.
峰度
Kurtosis
偏度
Skewness
遗传力H2
Heritability
E1 57.07* 54.96 54.78 3.19 62.77 41.33 1.572 -0.336 0.58
E2 46.17 44.43 48.42 2.55 53.60 39.80 1.397 -0.856
E3 58.59 57.79 56.90 2.23 62.38 50.86 -0.185 -0.091
E4 55.92* 52.76 53.76 2.85 61.58 48.10 -0.392 -0.271
E5 53.59* 50.87 50.56 2.31 56.14 44.92 -0.056 -0.027
BLUP 54.57 52.38 52.88 1.62 57.23 47.64 0.258 -0.376

图1

DH群体的遗传连锁图谱"

表2

DH群体中检测到的叶绿素含量QTL"

QTL 环境
Environment
染色体
Chr.
LOD值
LOD value
表型贡献率
PVE (%)
加性效应
Additive
左标记
Left marker
右标记
Right marker
遗传位置
Genetic interval (cM)
物理位置
Physical interval (Mb)
Qchl.saw-2A.1 E4 2A 2.55 4.71 ‒0.64 Excalibur_c18630_283 Kukri_c13187_556 0.00-2.50 18.30-32.53
Qchl.saw-2A.2 E2 2A 3.33 7.10 ‒0.69 Kukri_rep_c106992_239 BS00041816_51 46.70-48.30 611.30-611.32
Qchl.saw-2A.3 E2 2A 4.98 10.33 ‒0.84 TA005399-1698 Ra_c7093_381 52.60-54.60 685.96-695.51
Qchl.saw-2A.4 E2 2A 3.04 7.75 ‒0.73 Kukri_c47259_416 RAC875_c37510_329 62.30-65.30 717.19-727.17
Qchl.saw-2B.1 E3 2B 2.95 6.97 0.59 BS00076596_51 BS00077463_51 13.30-18.20 8.34-13.76
Qchl.saw-2B.2 E2 2B 4.01 8.27 0.74 BS00105036_51 GENE-1343_556 23.60-30.20 18.18-24.10
Qchl.saw-2B.3 E4 2B 2.74 4.60 ‒0.65 Kukri_c43403_346 BS00068550_51 59.90-65.50 76.82-159.60
E5 2B 4.34 7.85 ‒0.66 Kukri_c43403_346 BS00068550_51 58.50-64.30 76.82-159.60
Qchl.saw-2D.1 E3 2D 3.69 8.21 ‒0.66 BS00012148_51 Excalibur_c18324_390 0.00-1.60 3.77-7.97
E4 2D 6.84 14.03 ‒1.11 BS00012148_51 Excalibur_c18324_390 1.10-1.60 3.77-7.97
E5 2D 12.85 26.07 ‒1.19 BS00012148_51 Excalibur_c18324_390 1.50-1.80 3.77-7.97
BLUP 2D 9.84 23.15 ‒0.78 BS00012148_51 Excalibur_c18324_390 1.40-2.10 3.77-7.97
Qchl.saw-2D.2 E1 2D 2.66 7.00 ‒1.12 BobWhite_c35859_105 GENE-1086_99 2.10-3.30 9.93-12.33
E5 2D 8.81 19.64 ‒1.22 BobWhite_c35859_105 GENE-1086_99 2.20-3.20 9.93-12.33
Qchl.saw-2D.3 E5 2D 13.60 27.16 ‒1.23 BobWhite_rep_c64429_660 D_contig04712_355 5.30-6.70 20.63-22.14
BLUP 2D 9.09 22.18 ‒0.76 BobWhite_rep_c64429_660 D_contig04712_355 5.60-6.80 20.63-22.14
Qchl.saw-2D.4 E2 2D 3.62 9.14 ‒0.78 Ex_c66554_69 D_contig73920_552 18.50-25.10 41.92-61.81
Qchl.saw-3A E3 3A 3.50 7.50 ‒0.62 BS00023222_51 Excalibur_c91430_125 123.60-129.00 714.59-724.06
E5 3A 3.12 5.30 ‒0.54 BS00023222_51 Excalibur_c91430_125 123.50-129.30 714.59-724.06
Qchl.saw-3B E4 3B 4.15 9.30 0.91 Kukri_rep_c113136_131 IACX6214 21.40-35.00 12.03-18.56
Qchl.saw-4A E2 4A 2.79 6.51 ‒0.78 Excalibur_rep_c114266_234 GENE-2399_666 15.00-15.70 612.06-618.46
Qchl.saw-4B E5 4B 3.37 5.11 ‒0.53 Kukri_c12661_326 CAP11_c1143_339 43.10-49.50 28.73-50.40
Qchl.saw-4D.1 E4 4D 2.96 5.77 0.69 Excalibur_c32965_551 Excalibur_c55561_127 22.50-24.50 43.40-119.91
BLUP 4D 2.73 4.77 0.36 Excalibur_c32965_551 Excalibur_c55561_127 13.60-24.00 43.40-119.91
Qchl.saw-4D.2 E4 4D 4.25 7.98 0.82 D_contig16493_653 CAP7_c7991_177 25.80-31.60 386.44-451.30
E5 4D 3.65 6.33 0.58 D_contig16493_653 CAP7_c7991_177 25.30-31.20 386.44-451.30
BLUP 4D 3.37 5.92 0.40 D_contig16493_653 CAP7_c7991_177 25.00-31.80 386.44-451.30
Qchl.saw-6A E2 6A 3.93 8.14 0.74 Excalibur_c1708_1975 Tdurum_contig95236_98 59.90-62.70 29.56-32.88
E4 6A 5.12 9.74 0.90 Excalibur_c1708_1975 Tdurum_contig95236_98 60.70-63.30 29.56-32.88
BLUP 6A 2.60 4.10 0.34 Excalibur_c1708_1975 Tdurum_contig95236_98 60.70-64.20 29.56-32.88
Qchl.saw-6B.1 E3 6B 2.91 6.08 ‒0.56 RAC875_c50436_101 wsnp_RFL_Contig1075_104560 79.60-100.10 686.19-694.40
Qchl.saw-6B.2 E1 6B 2.86 5.27 ‒0.74 BS00062776_51 tplb0046e21_618 116.20-116.90 706.34-708.03

图2

Qchl.saw-2D.1、Qchl.saw-4D.2和Qchl.saw-6A的加性效应(A)、Qchl.saw-2D.1在DH群体中的效应(B)"

表3

前人研究在2D、4D和6A染色体上检测到的叶绿素QTL"

染色体
Chromosome
QTL 左标记
Left marker
右标记
Right marker
物理位置
Physical position (Mb)
表型贡献率
PVE (%)
参考文献
Reference
2D qHChlb2D Xcfd53 23.03 14.31 [16]
2D QXcfd0116-2D Xcfd0116 wPt-2644 205.62 [41]
2D Qchc.iiwbr-2D Xbarc228 570.40 16.55 [42]
2D Qlchc7a.iiwbr-2D Xwmc18 130.83 31.36 [42]
2D QChl-2D Xwmc0018 wPt-0298 130.83 6.46 [40]
2D qCHN-2Da Xbcd611 Xcdo1379 4.73 [43]
2D qCHN-2Db Xfba074 Xfba062 5.49 [43]
2D QXcfd53-2D Xcfd53 23.03 [38]
2D QXbarc168.1-2D Xbarc168.1 44.74 [38]
2D QXgwm539-2D Xgwm539 513.10 [38]
4D qChlH-4D Xgwm192 Xwmc331 412.72 19.90 [39]
6A QXgwm617 Xgwm617 11.00 [22]
6A QXgwm334 Xgwm334 9.25 23.00 [22]
6A QChl-6A.1 Xgwm570 Xpsp3071 447.12 12.80 [18]
6A Qspad.acs-6A.1 Xwmc201 Xwmc684 461.84 [24]
6A Qspad.acs-6A.2 Xbarc171 Xgwm427 354.592 [24]
6A Qspad.acs-6A.3 Xgwm169 Xwmc580 595.378 [24]
6A Qspad.acs-6A.4 Xbarc113 Xwmc621 495.11 [24]
6A QChl-6A aca/caa-5 wPt-7599 32.67 7.44 [40]
6A qCHO-6A Xmwg2053 Xmwg573 7.72 [43]
6A QChl.ksu-6A Xgwm427 Xgwm169 595.38 16.10 [2]
6A QChlL.igdb‐6A Xgwm570 579.13 12.40 [44]
6A QHtscc.ksu-6A Xbarc113 CTGTGC93 17.57 [5]

图3

Qchl.saw-2D.1遗传图谱(A)、物理图谱(B)及Qchl-2D.1在RIL群体中的效应分析(C)"

表4

筛选获得候选基因信息"

QTL名称 染色体 标记区间 基因 水稻同源基因 物理位置 基因注释
QTL name Chr. Marker interval Gene Rice homologous gene Position (bp) Gene annotation
Qchl.saw-2D.1 2D BS00012148_51-Excalibur_c18324_390 TraesCS2D02G007500 4038523 镁离子结合 Magnesium ion binding
Qchl.saw-2D.1 2D BS00012148_51-Excalibur_c18324_390 TraesCS2D02G008700 4685051 镁离子结合 Magnesium ion binding
Qchl.saw-2D.1 2D BS00012148_51-Excalibur_c18324_390 TraesCS2D02G010200 Os04g0118700 5230187 叶绿体RNA加工
Chloroplast RNA processing
Qchl.saw-2D.1 2D BS00012148_51-Excalibur_c18324_390 TraesCS2D02G014800 7148652 叶绿体组织 Chloroplast organization
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G273000 442898720 光系统I中的光合电子传递
Photosynthetic electron transport in photosystem I
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G248100 Os03g0212700 416933144 金属离子结合 Metal ion binding
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G270900 441653004 电子传递活性 Electron transfer activity
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G263300 Os03g0196800 434273089 叶绿体基质 Chloroplast stroma
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G277400 Os03g0163300 (OsGR1) 449725264 电子传递活性 Electron transfer activity
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G267100 Os03g0192400 437810691 电子传递链 Electron transport chain
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G230000 Os03g0240500 389572209 叶绿体外膜 Chloroplast outer membrane
Qchl.saw-4D.2 4D D_contig16493_653-CAP7_c7991_177 TraesCS4D02G275300 Os03g0161200 446137350 叶绿体 Chloroplast
[1] Kumar S, Sehgal S K, Kumar U, Prasad P V V, Joshi A K, Gill B S. Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 2012, 186: 265-276.
doi: 10.1007/s10681-012-0675-3
[2] Ilyas M, Ilyas N, Arshad M, Kazi A G, Kazi A M, Waheed A. QTL mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage. Pak J Bot, 2014, 46: 1889-1897.
[3] Vijayalakshmi K, Fritz A K, Paulsen G M, Bai G, Pandravada S, Gill B S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed, 2010, 26: 163-175.
doi: 10.1007/s11032-009-9366-8
[4] Talukder S K, Babar M A, Vijayalakshmi K, Poland J, Prasad P V V, Bowden R, Fritz A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet, 2014, 15: 97.
doi: 10.1186/s12863-014-0097-4 pmid: 25384418
[5] Awlachew Z T, Singh R, Kaur S, Bains N S, Chhuneja P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol Breed, 2016, 36: 78-92.
doi: 10.1007/s11032-016-0499-2
[6] Gupta P K, Balyan H S, Sharma S, Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1569-1602.
doi: 10.1007/s00122-020-03583-3
[7] Bhoite R, Si P, Siddique K H M, Yan G. Comparative transcriptome analyses for metribuzin tolerance provide insights into key genes and mechanisms restoring photosynthetic efficiency in bread wheat (Triticum aestivum L.). Genomics, 2021, 113: 910-918.
doi: 10.1016/j.ygeno.2021.02.004
[8] Borjigin C, Schilling R K, Jewell N, Brien C, Sanchez-Ferrero J C, Eckermann P J, Watson-Haigh N S, Berger B, Pearson A S, Roy S J. Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. Funct Plant Biol, 2021, 48: 1148-1160.
doi: 10.1071/FP21140 pmid: 34600599
[9] Avenson T J, Cruz J A, Kanazawa A, Kramer D M. Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 9709-9713.
doi: 10.1073/pnas.0503952102 pmid: 15972806
[10] Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[11] Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P D S, Snape J W. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004, 135: 255-263.
doi: 10.1023/B:EUPH.0000013255.31618.14
[12] Rasheed A, Takumi S, Hassan M A, Imtiaz M, Ali M, Morgunov A I, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. Theor Appl Genet, 2020, 133: 1503-1520.
doi: 10.1007/s00122-019-03523-w pmid: 31897516
[13] Quarrie S, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes J D, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot, 2006, 57: 2627-2637.
doi: 10.1093/jxb/erl026 pmid: 16831847
[14] Guo P, Baum M, Varshney R K, Graner A, Grando S, Ceccarelli S. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 2008, 163: 203-214.
doi: 10.1007/s10681-007-9629-6
[15] Czyczylo-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Resour, 2011, 9: 291-295.
doi: 10.1017/S1479262111000207
[16] Zhang K, Fang Z, Liang Y, Tian J. Genetic dissection of chlorophyll content at different growth stages in common wheat. J Genet, 2009, 88: 183-189.
doi: 10.1007/s12041-009-0026-x pmid: 19700856
[17] Yu M, Mao S L, Chen G Y, Liu Y X, Li W, Wei Y M, Liu C J, Zheng Y L. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. J Integr Agric, 2014, 13: 31-39.
doi: 10.1016/S2095-3119(13)60354-8
[18] Yang B, Yan X, Wang H Y, Li X X, Ma H X, Wang S G, Sun D Z, Jing R L. Dynamic QTL analysis of chlorophyll content during grain filling stage in winter wheat (Triticum aestivum L.). Rom Agric Res, 2016, 33: 77-85.
[19] Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009, 37: 499-511.
doi: 10.1556/CRC.37.2009.4.3
[20] Kumar U, Joshi A K, Kumari M, Paliwal R, Kumar S, Roeder M S. Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica, 2010, 174: 437-445.
doi: 10.1007/s10681-010-0155-6
[21] Saleh M S, Al-Doss A A, Elshafei A A, Moustafa K A, Al-Qurainy F H, Barakat M N. Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biol Plant, 2014, 58: 64-70.
doi: 10.1007/s10535-013-0351-z
[22] Barakat M N, Saleh M, Al-Doss A A, Moustafa K A, Elshafei A A, Al-Qurainy F H. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition. Acta Biol Hung, 2015, 66: 93-102.
doi: 10.1556/ABiol.66.2015.1.8 pmid: 25740441
[23] Li X M, He Z H, Xiao Y G, Xia X C, Trethowan R, Wang H J, Chen X M. QTL mapping for leaf senescence-related traits in common wheat under limited and full irrigation. Euphytica, 2015, 203: 569-582.
doi: 10.1007/s10681-014-1272-4
[24] Yang D, Li M, Liu Y, Chang L, Cheng H, Chen J, Chai S. Identification of quantitative trait loci and water environmental interactions for developmental behaviors of leaf greenness in wheat. Front Plant Sci, 2016, 7: 273-288.
doi: 10.3389/fpls.2016.00273 pmid: 27014298
[25] Shi S, Azam F I, Li H, Chang X, Li B, Jing R. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica, 2017, 213: 246-264.
doi: 10.1007/s10681-017-2002-5
[26] Yan X, Wang S, Yang B, Zhang W, Cao Y, Shi Y, Sun D, Jing R. QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS One, 2020, 15: e0229912.
[27] 郑军, 李晓华, 赵佳佳, 尚保华, 曹勇, 马小飞, 张晓军, 乔玲, 乔麟轶, 郑兴卫, 张建诚. 山西省小麦育成品种遗传多样性分析. 植物遗传资源学报, 2018, 19: 619-626.
Zheng J, Li X H, Zhao J J, Shang B H, Cao Y, Ma X F, Zhang X J, Qiao L, Qiao L Y, Zheng X W, Zhang J C. Genetic diversity analysis of wheat cultivars in Shanxi province. J Plant Genet Resour, 2018, 19: 619-626. (in Chinese with English abstract)
[28] Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J, 2018, 6: 236-243.
doi: 10.1016/j.cj.2018.01.004
[29] Wang N, Xie Y, Li Y, Wu S, Li S, Guo Y, Wang C. High-resolution mapping of the novel early leaf senescence gene els2 in common wheat. Plants (Basel), 2020, 9: 698.
doi: 10.3390/plants9060698
[30] Wang N, Xie Y Z, Li Y Z, Wu S N, Wei H S, Wang C S. Molecular mapping of a novel early leaf-senescence gene els2 in common wheat by SNP genotyping arrays. Crop Past Sci, 2020, 71: 356-367.
doi: 10.1071/CP19435
[31] Chang C, Lu J, Zhang H P, Ma C X, Sun G. Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat. PLoS One, 2015, 10: e0145970.
[32] Zhu X F, Zhang H P, Hu M J, Wu Z Y, Jiang H, Cao J J, Xia X C, Ma C X, Chang C. Cloning and characterization of Tabas1-B1 gene associated with flag leaf chlorophyll content and thousand-grain weight and development of a gene-specific marker in wheat. Mol Breed, 2016, 36: 142-153.
doi: 10.1007/s11032-016-0563-y
[33] Wang H, Wang S, Chang X, Hao C, Sun D, Jing R. Identification of TaPPH-7A haplotypes and development of a molecular marker associated with important agronomic traits in common wheat. BMC Plant Biol, 2019, 19: 296.
doi: 10.1186/s12870-019-1901-0
[34] 乔玲, 刘成, 郑兴卫, 赵佳佳, 尚保华, 马小飞, 乔麟轶, 盖红梅, 姬虎太, 刘建军, 张建诚, 郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析. 作物学报, 2018, 44: 931-937.
Qiao L, Liu C, Zheng X W, Zhao J J, Shang B H, Ma X F, Qiao L Y, Ge H M, Ji H T, Liu J J, Zhang J C, Zheng J. Genetic analysis of haplotype-blocks from wheat founder parent Linfen 5064. Acta Agron Sin, 2018, 44: 931-937. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00931
[35] Li F, Wen W, Liu J, Zhai S, Cao X, Liu C, Cheng D, Guo J, Zi Y, Han R, Wang X, Liu A, Song J, Liu J, Li H, Xia X. Genome-wide linkage mapping for canopy activity related traits using three RIL populations in bread wheat. Euphytica, 2021, 217: 67-82.
doi: 10.1007/s10681-021-02797-w
[36] McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99.
pmid: 9291963
[37] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48: 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48:1346-1356. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11055
[38] 李玮瑜, 张斌, 张嘉楠, 昌小平, 李润植, 景蕊莲. 利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异. 作物学报, 2012, 38: 962-970.
Li W Y, Zhang B, Zhang J N, Chang X P, Li R Z, Jing R L. Exploring elite alleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agron Sin, 2012, 38: 962-970. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00962
[39] Li H, Tong Y, Li B, Jing R, Lu C, Li Z. Genetic analysis of tolerance to photo-oxidative stress induced by high light in winter wheat (Triticum aestivum L.). J Genet Genomics, 2010, 37: 399-412.
doi: 10.1016/S1673-8527(09)60058-8
[40] Hassan F S C, Solouki M, Fakheri B A, Nezhad N M, Masoudi B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 2018, 24: 1231-1243.
doi: 10.1007/s12298-018-0590-8
[41] Tahmasebi S, Heidari B, Pakniyat H, McIntyre C L. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 2017, 60: 26-45.
doi: 10.1139/gen-2016-0017 pmid: 27996306
[42] Bhusal N, Sharma P, Sareen S, Sarial A K. Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biol Plant, 2018, 62: 721-731.
doi: 10.1007/s10535-018-0811-6
[43] 曹卫东, 贾继增, 金继运. 不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究. 植物营养与肥料学报, 2004, 10: 473-478.
Cao W D, Jia J Z, Jin J Y. Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr Fert Sci, 2004, 10: 473-478. (in Chinese with English abstract)
[44] Li H, Wang G, Zheng Q, Li B, Jing R, Li Z. Genetic analysis of biomass and photosynthetic parameters in wheat grown in different light intensities. J Integr Plant Biol, 2014, 56: 594-604.
doi: 10.1111/jipb.12174
[45] Gupta P K, Balyan H S, Gahlaut V. QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy (Basel), 2017, 7: 5.
doi: 10.3390/agronomy7010005
[46] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
doi: 10.1007/s00122-006-0346-7 pmid: 16838135
[47] Guan P F, Lu L H, Jia L J, Kabir M R, Zhang J B, Lan T Y, Zhao Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci, 2018, 9: 529-546.
doi: 10.3389/fpls.2018.00529
[48] Wu X Y, Cheng R R, Xue S L, Kong Z X, Wan H S, Li G Q, Huang Y L, Jia H Y, Jia J Z, Zhang L X, Ma Z Q. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed, 2014, 33: 129-138.
doi: 10.1007/s11032-013-9939-4
[49] 姜雪, 龙武华, 李祖军, 唐会会, 吴朝昕, 张习春, 吴娴, 朱速松. 水稻叶绿素合成途径关键基因自然变异分析. 分子植物育种, 2022, [2022-04-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20220118.1547.004.html.
Jiang X, Long W H, Li Z J, Tang H H, Wu C X, Zhang X C, Wu X, Zhu S S. Variation analysis of chlorophyll biosynthesis key genes in natural populations of rice (Oryza sativa L.). Mol Plant Breed, 2022, [2022-04-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20220118.1547.004.html. (in Chinese with English abstract)
[50] 杨小龙, 李漾漾, 刘玉凤, 齐明芳, 李天来. 植物叶绿体蛋白质周转的研究进展及潜在应用. 植物生理学报, 2019, 55: 577-586.
Yang X L, Li Y Y, Liu Y F, Qi M F, Li T L. Recent advances in chloroplast protein turnover and potential applications. Acta Phytophysiol Sin, 2019, 55: 577-586. (in Chinese with English abstract)
[51] Zhou J, Wang Z G, Huang Z W, Lu C, Han Z, Zhang J F, Jiang H M, Ge C L, Yang J C. Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots. J Environ Sci, 2014, 26: 650-661.
doi: 10.1016/S1001-0742(13)60446-5
[52] 罗莎, 罗韬, 彭鹏, 李艳萍, 黎小刚. 镁离子螯合酶活性调控及其功能. 植物生理学报, 2015, 51: 806-812.
Luo S, Luo T, Peng P, Li Y P, Li X G. Activity regulation and functions of Mg chelatase. Acta Phytophysiol Sin, 2015, 51: 806-812. (in Chinese with English abstract)
[53] 薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗. 植物光合作用循环电子传递的研究进展. 植物生理学报, 2017, 53: 145-158.
Xue X, Xu H M, Wu H Y, Shen Y B, Xiao J W, Wan Y L. Research progress of cyclic electron transport in plant photosynthesis. Acta Phytophysiol Sin, 2017, 53: 145-158. (in Chinese with English abstract)
[54] Hong C Y, Chao Y Y, Yang M Y, Cheng S Y, Cho S C, Kao C H. NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil, 2009, 320: 103-115.
doi: 10.1007/s11104-008-9874-z
[1] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[2] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916.
[3] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[4] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[5] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[6] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[7] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[8] 刘方方, 万映秀, 曹文昕, 李耀, 张琪琪, 李炎, 张平治. 小麦倒春寒抗性评价方法研究[J]. 作物学报, 2023, 49(2): 438-446.
[9] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[10] 王雪, 王文辉, 李栋, 姚霞, 朱艳, 曹卫星, 程涛. 二向反射和方向半球反射光谱差异及其对小麦叶片叶绿素含量反演的影响[J]. 作物学报, 2023, 49(2): 485-496.
[11] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[12] 刘晓颖, 张驰, 王雪晴, 杨晨晓, 王光钰, 卞云迪, 方芳, 王颖, 王振英. 栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析[J]. 作物学报, 2023, 49(2): 392-401.
[13] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[14] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J]. 作物学报, 2023, 49(1): 286-294.
[15] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .