作物学报 ›› 2023, Vol. 49 ›› Issue (3): 744-754.doi: 10.3724/SP.J.1006.2023.21018
杨斌(), 乔玲(), 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军()
YANG Bin(), QIAO Ling(), ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun()
摘要:
旗叶是小麦主要的光合器官, 叶绿素既是旗叶最主要的光合色素, 也是品种选育中重要的表型指标, 因此挖掘和利用旗叶叶绿素含量有关的主效基因/位点, 对于培育高产稳产小麦新品种意义重大。以旗叶叶绿素含量差异较大双亲构建的双单倍体群体(DH群体)为材料, 利用小麦90K SNP芯片对5个环境旗叶叶绿素含量进行QTL分析, 共定位到20个旗叶叶绿素含量有关的遗传位点, 表型贡献率为4.10%~27.16%; 其中3个QTL (Qchl.saw-2D.1、Qchl.saw-4D.2和Qchl.saw-6A)能在多个环境条件下检测到; Qchl.saw-2D.1的遗传效应最高, 该位点与2D染色体上已报道的其他叶绿素位点不同, 初步确定是1个新的主效QTL。并进一步将Qchl.saw-2D.1紧密连锁的SNP标记开发为KASP标记, 通过在含有共同亲本金麦919的RIL群体中验证其效应, 发现在多个环境条件下具有Qchl.saw-2D.1有利等位基因的家系叶绿素含量显著或极显著高于其他家系。对Qchl.saw-2D.1、Qchl.saw-4D.2和Qchl.saw-6A所在功能区段进行基因注释, 筛选到12个与叶绿素相关的候选基因, 其中3个基因参与镁等金属离子的结合过程, 5个基因参与调控叶绿体结构组成, 4个基因参与调控光合作用过程中相关电子链的传递活性。本文研究结果为叶绿素调控的遗传机制提供了有价值的信息, 并为高光效分子标记辅助育种提供依据与参考。
[1] |
Kumar S, Sehgal S K, Kumar U, Prasad P V V, Joshi A K, Gill B S. Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 2012, 186: 265-276.
doi: 10.1007/s10681-012-0675-3 |
[2] | Ilyas M, Ilyas N, Arshad M, Kazi A G, Kazi A M, Waheed A. QTL mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage. Pak J Bot, 2014, 46: 1889-1897. |
[3] |
Vijayalakshmi K, Fritz A K, Paulsen G M, Bai G, Pandravada S, Gill B S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed, 2010, 26: 163-175.
doi: 10.1007/s11032-009-9366-8 |
[4] |
Talukder S K, Babar M A, Vijayalakshmi K, Poland J, Prasad P V V, Bowden R, Fritz A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet, 2014, 15: 97.
doi: 10.1186/s12863-014-0097-4 pmid: 25384418 |
[5] |
Awlachew Z T, Singh R, Kaur S, Bains N S, Chhuneja P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol Breed, 2016, 36: 78-92.
doi: 10.1007/s11032-016-0499-2 |
[6] |
Gupta P K, Balyan H S, Sharma S, Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1569-1602.
doi: 10.1007/s00122-020-03583-3 |
[7] |
Bhoite R, Si P, Siddique K H M, Yan G. Comparative transcriptome analyses for metribuzin tolerance provide insights into key genes and mechanisms restoring photosynthetic efficiency in bread wheat (Triticum aestivum L.). Genomics, 2021, 113: 910-918.
doi: 10.1016/j.ygeno.2021.02.004 |
[8] |
Borjigin C, Schilling R K, Jewell N, Brien C, Sanchez-Ferrero J C, Eckermann P J, Watson-Haigh N S, Berger B, Pearson A S, Roy S J. Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. Funct Plant Biol, 2021, 48: 1148-1160.
doi: 10.1071/FP21140 pmid: 34600599 |
[9] |
Avenson T J, Cruz J A, Kanazawa A, Kramer D M. Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 9709-9713.
doi: 10.1073/pnas.0503952102 pmid: 15972806 |
[10] |
Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017 |
[11] |
Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P D S, Snape J W. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004, 135: 255-263.
doi: 10.1023/B:EUPH.0000013255.31618.14 |
[12] |
Rasheed A, Takumi S, Hassan M A, Imtiaz M, Ali M, Morgunov A I, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. Theor Appl Genet, 2020, 133: 1503-1520.
doi: 10.1007/s00122-019-03523-w pmid: 31897516 |
[13] |
Quarrie S, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes J D, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot, 2006, 57: 2627-2637.
doi: 10.1093/jxb/erl026 pmid: 16831847 |
[14] |
Guo P, Baum M, Varshney R K, Graner A, Grando S, Ceccarelli S. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 2008, 163: 203-214.
doi: 10.1007/s10681-007-9629-6 |
[15] |
Czyczylo-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Resour, 2011, 9: 291-295.
doi: 10.1017/S1479262111000207 |
[16] |
Zhang K, Fang Z, Liang Y, Tian J. Genetic dissection of chlorophyll content at different growth stages in common wheat. J Genet, 2009, 88: 183-189.
doi: 10.1007/s12041-009-0026-x pmid: 19700856 |
[17] |
Yu M, Mao S L, Chen G Y, Liu Y X, Li W, Wei Y M, Liu C J, Zheng Y L. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. J Integr Agric, 2014, 13: 31-39.
doi: 10.1016/S2095-3119(13)60354-8 |
[18] | Yang B, Yan X, Wang H Y, Li X X, Ma H X, Wang S G, Sun D Z, Jing R L. Dynamic QTL analysis of chlorophyll content during grain filling stage in winter wheat (Triticum aestivum L.). Rom Agric Res, 2016, 33: 77-85. |
[19] |
Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009, 37: 499-511.
doi: 10.1556/CRC.37.2009.4.3 |
[20] |
Kumar U, Joshi A K, Kumari M, Paliwal R, Kumar S, Roeder M S. Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica, 2010, 174: 437-445.
doi: 10.1007/s10681-010-0155-6 |
[21] |
Saleh M S, Al-Doss A A, Elshafei A A, Moustafa K A, Al-Qurainy F H, Barakat M N. Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biol Plant, 2014, 58: 64-70.
doi: 10.1007/s10535-013-0351-z |
[22] |
Barakat M N, Saleh M, Al-Doss A A, Moustafa K A, Elshafei A A, Al-Qurainy F H. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition. Acta Biol Hung, 2015, 66: 93-102.
doi: 10.1556/ABiol.66.2015.1.8 pmid: 25740441 |
[23] |
Li X M, He Z H, Xiao Y G, Xia X C, Trethowan R, Wang H J, Chen X M. QTL mapping for leaf senescence-related traits in common wheat under limited and full irrigation. Euphytica, 2015, 203: 569-582.
doi: 10.1007/s10681-014-1272-4 |
[24] |
Yang D, Li M, Liu Y, Chang L, Cheng H, Chen J, Chai S. Identification of quantitative trait loci and water environmental interactions for developmental behaviors of leaf greenness in wheat. Front Plant Sci, 2016, 7: 273-288.
doi: 10.3389/fpls.2016.00273 pmid: 27014298 |
[25] |
Shi S, Azam F I, Li H, Chang X, Li B, Jing R. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica, 2017, 213: 246-264.
doi: 10.1007/s10681-017-2002-5 |
[26] | Yan X, Wang S, Yang B, Zhang W, Cao Y, Shi Y, Sun D, Jing R. QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS One, 2020, 15: e0229912. |
[27] | 郑军, 李晓华, 赵佳佳, 尚保华, 曹勇, 马小飞, 张晓军, 乔玲, 乔麟轶, 郑兴卫, 张建诚. 山西省小麦育成品种遗传多样性分析. 植物遗传资源学报, 2018, 19: 619-626. |
Zheng J, Li X H, Zhao J J, Shang B H, Cao Y, Ma X F, Zhang X J, Qiao L, Qiao L Y, Zheng X W, Zhang J C. Genetic diversity analysis of wheat cultivars in Shanxi province. J Plant Genet Resour, 2018, 19: 619-626. (in Chinese with English abstract) | |
[28] |
Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J, 2018, 6: 236-243.
doi: 10.1016/j.cj.2018.01.004 |
[29] |
Wang N, Xie Y, Li Y, Wu S, Li S, Guo Y, Wang C. High-resolution mapping of the novel early leaf senescence gene els2 in common wheat. Plants (Basel), 2020, 9: 698.
doi: 10.3390/plants9060698 |
[30] |
Wang N, Xie Y Z, Li Y Z, Wu S N, Wei H S, Wang C S. Molecular mapping of a novel early leaf-senescence gene els2 in common wheat by SNP genotyping arrays. Crop Past Sci, 2020, 71: 356-367.
doi: 10.1071/CP19435 |
[31] | Chang C, Lu J, Zhang H P, Ma C X, Sun G. Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat. PLoS One, 2015, 10: e0145970. |
[32] |
Zhu X F, Zhang H P, Hu M J, Wu Z Y, Jiang H, Cao J J, Xia X C, Ma C X, Chang C. Cloning and characterization of Tabas1-B1 gene associated with flag leaf chlorophyll content and thousand-grain weight and development of a gene-specific marker in wheat. Mol Breed, 2016, 36: 142-153.
doi: 10.1007/s11032-016-0563-y |
[33] |
Wang H, Wang S, Chang X, Hao C, Sun D, Jing R. Identification of TaPPH-7A haplotypes and development of a molecular marker associated with important agronomic traits in common wheat. BMC Plant Biol, 2019, 19: 296.
doi: 10.1186/s12870-019-1901-0 |
[34] | 乔玲, 刘成, 郑兴卫, 赵佳佳, 尚保华, 马小飞, 乔麟轶, 盖红梅, 姬虎太, 刘建军, 张建诚, 郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析. 作物学报, 2018, 44: 931-937. |
Qiao L, Liu C, Zheng X W, Zhao J J, Shang B H, Ma X F, Qiao L Y, Ge H M, Ji H T, Liu J J, Zhang J C, Zheng J. Genetic analysis of haplotype-blocks from wheat founder parent Linfen 5064. Acta Agron Sin, 2018, 44: 931-937. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00931 |
|
[35] |
Li F, Wen W, Liu J, Zhai S, Cao X, Liu C, Cheng D, Guo J, Zi Y, Han R, Wang X, Liu A, Song J, Liu J, Li H, Xia X. Genome-wide linkage mapping for canopy activity related traits using three RIL populations in bread wheat. Euphytica, 2021, 217: 67-82.
doi: 10.1007/s10681-021-02797-w |
[36] |
McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99.
pmid: 9291963 |
[37] |
胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48: 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055 |
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48:1346-1356. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11055 |
|
[38] | 李玮瑜, 张斌, 张嘉楠, 昌小平, 李润植, 景蕊莲. 利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异. 作物学报, 2012, 38: 962-970. |
Li W Y, Zhang B, Zhang J N, Chang X P, Li R Z, Jing R L. Exploring elite alleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agron Sin, 2012, 38: 962-970. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00962 |
|
[39] |
Li H, Tong Y, Li B, Jing R, Lu C, Li Z. Genetic analysis of tolerance to photo-oxidative stress induced by high light in winter wheat (Triticum aestivum L.). J Genet Genomics, 2010, 37: 399-412.
doi: 10.1016/S1673-8527(09)60058-8 |
[40] |
Hassan F S C, Solouki M, Fakheri B A, Nezhad N M, Masoudi B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 2018, 24: 1231-1243.
doi: 10.1007/s12298-018-0590-8 |
[41] |
Tahmasebi S, Heidari B, Pakniyat H, McIntyre C L. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 2017, 60: 26-45.
doi: 10.1139/gen-2016-0017 pmid: 27996306 |
[42] |
Bhusal N, Sharma P, Sareen S, Sarial A K. Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biol Plant, 2018, 62: 721-731.
doi: 10.1007/s10535-018-0811-6 |
[43] | 曹卫东, 贾继增, 金继运. 不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究. 植物营养与肥料学报, 2004, 10: 473-478. |
Cao W D, Jia J Z, Jin J Y. Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr Fert Sci, 2004, 10: 473-478. (in Chinese with English abstract) | |
[44] |
Li H, Wang G, Zheng Q, Li B, Jing R, Li Z. Genetic analysis of biomass and photosynthetic parameters in wheat grown in different light intensities. J Integr Plant Biol, 2014, 56: 594-604.
doi: 10.1111/jipb.12174 |
[45] |
Gupta P K, Balyan H S, Gahlaut V. QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy (Basel), 2017, 7: 5.
doi: 10.3390/agronomy7010005 |
[46] |
Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
doi: 10.1007/s00122-006-0346-7 pmid: 16838135 |
[47] |
Guan P F, Lu L H, Jia L J, Kabir M R, Zhang J B, Lan T Y, Zhao Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci, 2018, 9: 529-546.
doi: 10.3389/fpls.2018.00529 |
[48] |
Wu X Y, Cheng R R, Xue S L, Kong Z X, Wan H S, Li G Q, Huang Y L, Jia H Y, Jia J Z, Zhang L X, Ma Z Q. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed, 2014, 33: 129-138.
doi: 10.1007/s11032-013-9939-4 |
[49] | 姜雪, 龙武华, 李祖军, 唐会会, 吴朝昕, 张习春, 吴娴, 朱速松. 水稻叶绿素合成途径关键基因自然变异分析. 分子植物育种, 2022, [2022-04-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20220118.1547.004.html. |
Jiang X, Long W H, Li Z J, Tang H H, Wu C X, Zhang X C, Wu X, Zhu S S. Variation analysis of chlorophyll biosynthesis key genes in natural populations of rice (Oryza sativa L.). Mol Plant Breed, 2022, [2022-04-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20220118.1547.004.html. (in Chinese with English abstract) | |
[50] | 杨小龙, 李漾漾, 刘玉凤, 齐明芳, 李天来. 植物叶绿体蛋白质周转的研究进展及潜在应用. 植物生理学报, 2019, 55: 577-586. |
Yang X L, Li Y Y, Liu Y F, Qi M F, Li T L. Recent advances in chloroplast protein turnover and potential applications. Acta Phytophysiol Sin, 2019, 55: 577-586. (in Chinese with English abstract) | |
[51] |
Zhou J, Wang Z G, Huang Z W, Lu C, Han Z, Zhang J F, Jiang H M, Ge C L, Yang J C. Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots. J Environ Sci, 2014, 26: 650-661.
doi: 10.1016/S1001-0742(13)60446-5 |
[52] | 罗莎, 罗韬, 彭鹏, 李艳萍, 黎小刚. 镁离子螯合酶活性调控及其功能. 植物生理学报, 2015, 51: 806-812. |
Luo S, Luo T, Peng P, Li Y P, Li X G. Activity regulation and functions of Mg chelatase. Acta Phytophysiol Sin, 2015, 51: 806-812. (in Chinese with English abstract) | |
[53] | 薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗. 植物光合作用循环电子传递的研究进展. 植物生理学报, 2017, 53: 145-158. |
Xue X, Xu H M, Wu H Y, Shen Y B, Xiao J W, Wan Y L. Research progress of cyclic electron transport in plant photosynthesis. Acta Phytophysiol Sin, 2017, 53: 145-158. (in Chinese with English abstract) | |
[54] |
Hong C Y, Chao Y Y, Yang M Y, Cheng S Y, Cho S C, Kao C H. NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil, 2009, 320: 103-115.
doi: 10.1007/s11104-008-9874-z |
[1] | 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892. |
[2] | 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916. |
[3] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[4] | 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139. |
[5] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[6] | 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794. |
[7] | 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832. |
[8] | 刘方方, 万映秀, 曹文昕, 李耀, 张琪琪, 李炎, 张平治. 小麦倒春寒抗性评价方法研究[J]. 作物学报, 2023, 49(2): 438-446. |
[9] | 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582. |
[10] | 王雪, 王文辉, 李栋, 姚霞, 朱艳, 曹卫星, 程涛. 二向反射和方向半球反射光谱差异及其对小麦叶片叶绿素含量反演的影响[J]. 作物学报, 2023, 49(2): 485-496. |
[11] | 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458. |
[12] | 刘晓颖, 张驰, 王雪晴, 杨晨晓, 王光钰, 卞云迪, 方芳, 王颖, 王振英. 栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析[J]. 作物学报, 2023, 49(2): 392-401. |
[13] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[14] | 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J]. 作物学报, 2023, 49(1): 286-294. |
[15] | 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285. |
|