欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 392-401.doi: 10.3724/SP.J.1006.2023.21003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析

刘晓颖1(), 张驰1, 王雪晴1, 杨晨晓1, 王光钰1, 卞云迪1, 方芳2, 王颖2, 王振英1,*()   

  1. 1天津师范大学生命科学学院 / 天津市动植物抗性重点实验室, 天津 300387
    2天津市宝坻区林业发展服务中心, 天津 301899
  • 收稿日期:2022-01-16 接受日期:2022-05-05 出版日期:2022-05-25 网络出版日期:2022-05-25
  • 通讯作者: 王振英
  • 作者简介:E-mail: skylxy@tjnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31071671);天津市科技支撑项目(18YFZCNC01100);天津市科技支撑项目(17JCZDJC34100)

Cloning and functional analysis of TaRPP13-1B gene related to powdery mildew resistance in wheat cultivar Brock

LIU Xiao-Ying1(), ZHANG Chi1, WANG Xue-Qing1, YANG Chen-Xiao1, WANG Guang-Yu1, BIAN Yun-Di1, FANG Fang2, WANG Ying2, WANG Zhen-Ying1,*()   

  1. 1College of Life Sciences, Tianjin Normal University, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin 300387, China
    2Forestry Development Service Center of Baodi District, Tianjin 301899, China
  • Received:2022-01-16 Accepted:2022-05-05 Published:2022-05-25 Published online:2022-05-25
  • Contact: WANG Zhen-Ying
  • Supported by:
    National Natural Science Foundation of China(31071671);Tianjin Science and Technology Program(18YFZCNC01100);Tianjin Science and Technology Program(17JCZDJC34100)

摘要:

白粉病是小麦生产中的主要病害之一, 发掘抗病基因并实现抗病基因转育是提高作物抗病性的最经济有效的方法。本研究克隆了一个位于小麦染色体1B上、具有典型CC、NBS和LRR结构域的基因TaRPP13-1B。接种白粉菌后, TaRPP13-1B基因在抗病小麦Brock和BJ-1中表达量虽然出现上下调波动, 但平均表达水平一直高于感病小麦品种京411。采用病毒诱导的基因沉默和转基因过表达技术进行功能分析, 发现抑制目标基因表达, 抗病小麦品种Brock对白粉菌的抗性显著降低; 过表达TaRPP13-1B的转基因小麦津强5号对白粉菌抗性明显提高。说明TaRPP13-1B基因参与小麦抗白粉病的防御反应过程。该研究为小麦抗病品种的选育提供了有价值的备选基因。

关键词: 小麦, NBS-LRR类基因, TaRPP13-1B, 抗白粉病

Abstract:

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe wheat disease in China. Cloning and pyramiding of different resistance genes to improve crop disease resistance is one of the most cost-effective methods. In this study, TaRPP13-1B on chromosome 1B, which encodes the CC, NB-ARC, and LRR domains, was isolated from common wheat. The relative expression level of TaRPP13-1B in Brock and BJ-1 fluctuated after Bgt inoculation, but the average expression levels were always higher than the susceptible wheat Jing 411. The function of TaRPP13-1B was elucidated by virus-induced gene silencing (VIGS) and overexpression transgenic technique. Silencing of TaRPP13-1B resulted in decreased disease resistance in Brock. Overexpression of TaRPP13-1B improved disease resistance in the transgenic wheat seedlings of Jinqiang 5 cultivar. The above results demonstrated that TaRPP13-1B was involved in the defense response of wheat to powdery mildew, which provided valuable genetic resources for breeding of resistant varieties.

Key words: wheat, NBS-LRR gene, TaRPP13-1B, powdery mildew resistance

表1

本研究的引物及序列"

引物Primer name 序列Sequence (5'-3') 用途Gene usage
TaRPP13-1B-F/R F: ATGGAGTTAGCCGTGGGCGC
R: TCAATCATGATACTCGTTAATAATTAGGG
cDNA克隆 Isolation of cDNA
RPP13-1B-GSP1 F: GCCTGGGCCAACTACGTTTCAAGTC 3'RACE第1轮PCR 1st run PCR of 3'RACE
RPP13-1B-GSP2 F: AAGCCTTCGAGGGACAGACG 3'RACE 第2轮PCR 2nd run PCR of 3'RACE
RPP13-1B-5RACE-1 R: AATCTCTGTCTCCCTTATGTCTAGGGTC 5'RACE第1轮PCR 1st run PCR of 5'RACE
RPP13-1B-5RACE-2 R: ATGACTTGAAACGTAGTTGGCCCAGG 5'RACE第2轮PCR 2nd run PCR of 5'RACE
TaRPP13-1B-ORF F: ATGGAGTTAGCCGTGGGCGC 全长cDNA克隆 Isolation of full-length cDNA
R: TCAATCATGATACTCGTTAATAATTAGGG
Actin-F/R F: TACTCCCTCACAACAACCG qRT-PCR
R: AGAACCTCCACTGAGAACAA
qRPP13-1B F: CCTACGACATCGAGGACTGC qRT-PCR
R: CGTACAGAGTCCTGCGGATC
RPP13-1B-V F: CTAGCTAGCAAAATGGATTACGGAAGGG BSMVγ: TaRPP13-1B载体构建
Construction of BSMVγ: TaRPP13-1B vector
R: CTAGCTAGCCGACCAGTAGCCACCAAC
RPP13-1B-BglF/BstE R F: GAAGATCTATGGAGTTAGCCGTGGGCGC TaRPP13-1B过表达载体构建
Construction of TaRPP13-1B overexpression vector
R: GGTAACCTCAATCATGATACTCGTTAATAATTAGGG
RPP13-1B-R(35S) TCTTCTGAAAAGTGCTGCCTG 鉴定转基因小麦
Identification of transgenic wheats

图1

TaRPP13-1B基因的结构域分析 A: TaRPP13-1B的基因结构; B: TaRPP13-1B蛋白的结构域; C: 不同植物中RPP13蛋白的进化树。"

图2

TaRPP13-1B和TaRPP13-3的同源性分析"

图3

TaRPP13-1B基因的白粉菌诱导表达分析 Jing 411: 感病小麦品种京411; BJ-1: 京411抗病近等基因系; Brock: 抗病小麦品种; Student’s t测验, *: P < 0.05; **: P < 0.01。"

图4

沉默TaRPP13-1B后小麦抗病性变化 A: Brock接种BSMV病毒后表型; B: 沉默叶片接种白粉菌E09的表型观察; C: 各实验组中TaRPP13-1B基因的相对表达量(*: P < 0.05)。"

图5

TaRPP13-1B基因沉默Brock叶片上白粉菌孢子的显微观察 LA: 分瓣型畸形附着胞; SA: 纤细型附着胞; AGT: 喙型附着胞; SH: 次生菌丝; BC: 念珠状分生孢子。"

图6

TaRPP13-1B T0代转基因小麦的PCR检测 M: DL2000 marker; 1: 1301对照组; 2: 质粒阳性对照; 3~14: T0代转基因植株。"

图7

TaRPP13-1B在T1代转基因小麦中的表达量分析 C: 对照组; 1~11: T1-1~T1-11 转基因单株(**: P < 0.01)。"

图8

过表达TaRPP13-1B基因提高小麦对白粉菌E09的抗性 A: 转基因小麦在白粉菌E09侵染7 d后的叶片表型; B: 白粉菌E09侵染下的小麦叶片病斑面积(**: P < 0.01)。"

[1] Kourelis J, Van Der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell, 2018, 30: 285-299.
doi: 10.1105/tpc.17.00579
[2] Zou S H, Wang H, Li Y W, Kong Z S, Tang D Z. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol, 2018, 218: 298-309.
doi: 10.1111/nph.14964
[3] Xing L P, Hu P, Liu J Q, Witek K, Zhou S, Xu J F, Li W H, Gao L, Huang Z P, Zhang R Q, Wang X E, Chen P D, Wang H Y, Jones D G, Karafiátová M, Vrána J, Bartoš J, Doleže l J, Tian Y C, Wu Y F, Cao A Z. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11: 874-878.
doi: 10.1016/j.molp.2018.02.013
[4] Li M M, Dong L L, Li B B, Wang Z Z, Xie J Z, Qiu D, Li Y H, Shi W Q, Yang L J, Wu Q H, Chen Y X, Lu P, Guo G H, Zhang H Z, Zhang P P, Zhu K Y, Li Y W, Zhang Y, Wang R G, Yuan C G, Liu W, Yu D Z, Luo M C, Fahima T, Nevo E, Li H J, Liu Z Y. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol, 2020, 228: 1027-1037.
doi: 10.1111/nph.16761
[5] Xie J Z, Guo G H, Wang Y, Hu T Z, Wang L L, Li J T, Qiu D, Li Y H, Wu Q H, Lu P, Chen Y X, Dong L L, Li M M, Zhang H Z, Zhang P P, Zhu K Y, Li B B, Deal K R, Huo N X, Zhang Y, Luo M H, Liu S Z, Gu Y Q, Li H J, Liu Z Y. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol, 2020, 228: 1011-1026.
doi: 10.1111/nph.16762
[6] Koller T, Brunner S, Herren G, Hurni S, Keller B. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theor Appl Genet, 2018, 131: 861-871.
doi: 10.1007/s00122-017-3043-9
[7] Hall S A, Allen R L, Baumber R E, Baxter L A, Fisher K, Bittner-Eddy P D, Rose L E, Holub E B, Beynon J L. Maintenance of genetic variation in plants and pathogens involves complex networks of gene-for-gene interactions. Mol Plant Pathol, 2009, 10: 449-457.
doi: 10.1111/j.1364-3703.2009.00544.x pmid: 19523099
[8] Allen R L, Meitz J C, Baumber R E, Hall S A, Lee S C, Rose L E, Beynon J L. Natural variation reveals key amino acids in a downy mildew effector that alters recognition specificity by an Arabidopsis resistance gene. Mol Plant Pathol, 2008, 9: 511-523.
doi: 10.1111/j.1364-3703.2008.00481.x
[9] Rose L E, Bittner-Eddy P D, Langley C H, Holub E B, Beynon J L. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics, 2004, 166: 1517-1527.
doi: 10.1534/genetics.166.3.1517
[10] Rentel M C, Leonelli L, Dahlbeck D, Zhao B, Staskawicz B J. Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci USA, 2008, 105: 1091-1096.
doi: 10.1073/pnas.0711215105
[11] Ramachandran S R, Yin C, Kud J, Tanaka K, Mahoney A K, Xiao F, Hulbert S H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology, 2017, 107: 75-83.
pmid: 27503371
[12] Hu W G, Wang Q H, Wang S W, Wang M M, Wang C Y, Tian Z R, Liu X L, Ji W Q, Zhang H. Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J Genet, 2020, 99: 44-45.
doi: 10.1007/s12041-020-01206-w
[13] Liu X Y, Zhang C Q, Zhang L L, Huang J G, Dang C, Xie C J, Wang Z Y. TaRPP13-3, a CC-NBS-LRR like gene located on chr 7D, promotes disease resistance to wheat powdery mildew in Brock. J Phytopathol, 2020, 168: 688-699.
doi: 10.1111/jph.12949
[14] 王艳红, 肖莹, 郑舒扬, 刘晓颖, 王振英. 白粉菌诱导的小麦品种Brock的差异表达基因解析. 天津师范大学学报(自然科学版), 2015, 35(2): 71-76.
Wang Y H, Xiao Y, Zheng S Y, Liu X Y, Wang Z Y. Analysis on differentially expressed genes of wheat Brock inoculated by Blumeria gramini f. sp. tritici. J Tianjin Nor Univ (Nat Sci Edn), 2015, 35(2): 71-76. (in Chinese with English abstract)
[15] Ramachandran S R, Yin C, Kud J, Tanaka K, Mahoney A K, Xiao F, Hulbert S H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology, 2016, 107: 75-83.
doi: 10.1094/PHYTO-02-16-0083-R
[16] Chen J H, Zhang F Y, Zhao C J, Lyu G G, Sun C W, Pan Y B, Guo X Y, Chen F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J, 2019, 17: 2106-2122.
doi: 10.1111/pbi.13126
[17] 刘登全, 王园秀, 崔朝宇, 秦双林, 欧阳慧, 蒋军喜. 晚熟温州蜜柑 NBS-LRR类抗病基因同源序列的克隆及分析. 江西农业大学学报, 2016, 38: 83-89.
Liu D Q, Wang Y X, Cui C Y, Qin S L, Ou-Yang H, Jiang J X. Cloning and analysis of NBS-LRR disease-resistant gene analogs in Citrus unshiu Marc. Acta Agric Univ Jiangxiensis, 2016, 38: 83-89. (in Chinese with English abstract)
[18] Prabhukarthikeyan S R, Manikandan R, Durgadevi D, Keerthana U, Harish S, Karthikeyan G, Raguchander T. Bio-suppression of turmeric rhizome rot disease and understanding the molecular basis of tripartite interaction among Curcuma longa, Pythium aphanidermatum and Pseudomonas fluorescens. Biol Control, 2017, 111: 23-31.
doi: 10.1016/j.biocontrol.2017.05.003
[19] Chen T, Lv Y, Zhao T M, Li N, Yang Y w, Yu W, He X, Liu T, Zhang B L. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One, 2013, 8: e80816.
doi: 10.1371/journal.pone.0080816
[20] Han L J, Weng K, Ma H, Xiang G Q, Li Z Q, Wang Y J, Liu G T, Xu Y. Identification and characterization of erysiphe necator-responsive MicroRNAs in Chinese wild vitis pseudoreticulata by high-throughput sequencing. Front Plant Sci, 2016, 7: 621.
doi: 10.3389/fpls.2016.00621 pmid: 27303408
[21] Khan S A, Zhang C, Ali N, Gandeka M. Highdensity SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus favus resistance in peanut (Arachis hypogaea). Theor Appl Genet, 2020, 133: 2239-2257.
doi: 10.1007/s00122-020-03594-0
[22] Howlader J, Robin A, Natarajan S, Biswas M K, Nou I S. Transcriptome analysis by RNA-Seq reveals genes related to plant height in two sets of parent-hybrid combinations in easter lily (Lilium longiflorum). Sci Rep, 2020, 10: 9082-9097.
doi: 10.1038/s41598-020-65909-x pmid: 32494055
[23] 黄建国. 小麦抗白粉病基因 SSR 分子标记筛选及AP2/ERF转录因子家族分析. 天津师范大学硕士学位论文, 天津, 2021.
Huang J G. Screening for SSR Markers Linked to Powdery Mildew Resistance Gene and Bioinformatics Analysis of AP2/ERF Transcription Factor Family in Wheat. MS Thesis of Tianjin Normal University, Tianjin, China, 2021. (in Chinese with English abstract)
[24] 刘晓颖. 小麦品种Brock响应白粉菌侵染早期抗病相关基因表达和功能分析. 中国农业大学博士学位论文, 北京, 2021.
Liu X Y. Expression and Functional Analysis of Genes Associated with Early Powdery Mildew Resistance in Wheat Variety Brock. PhD Dissertation of China Agricultural University, Beijing, China, 2021. (in Chinese with English abstract)
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Liu X Y, Wang J Y, Fan B L, Shang Y T, Sun Y F, Dang C, Xie C J, Wang Z Y, Peng Y K. A COI1 gene in wheat contributes to the early defence response against wheat powdery mildew. J Phytopathol, 2018, 166: 116-122.
doi: 10.1111/jph.12667
[27] 栗聪, 雒景吾, 张磊, 田增荣, 刘新伦, 吉万全. 小麦成熟胚再生体系优化及优良受体基因型筛选. 麦类作物学报, 2014, 34: 583-590.
Li C, Luo J W, Zhang L, Tian Z R, Liu X L, Ji W Q. Optimizing the regeneration system from mature embryo and screening of elite wheat genotypes. J Triticeae Crops, 2014, 34: 583-590. (in Chinese with English abstract)
[28] 王艳丽, 叶兴国, 刘艳鹏, 杜丽璞, 徐惠君. 农杆菌敏感小麦基因型的筛选研究. 麦类作物学报, 2005, 25(6): 6-10.
Wang Y L, Ye X G, Liu Y P, Du L P, Xu H J. Screening of wheat genotype sensitive to Agrobacterium tumefaciens infection. J Triticeae Crops, 2005, 25(6): 6-10 (in Chinese with English abstract).
[29] 王怡, 彭永康. 抗、感白粉病春小麦感染白粉菌后抗病特性的细胞学观察. 天津农业科学, 2014, 20(4): 1-4.
Wang Y, Peng Y K. Cytological analysis of spring wheat with different resistance to powdery mildew induced by Bgt. J Tianjin Agric Sci, 2014, 20(4): 1-4. (in Chinese with English abstract)
[30] 河南省植保站. 河南省主要农作物病虫害测报办法. 郑州: 河南科学技术出版社, 1995. pp 11-18.
Plant Protection and Quarantine Station of Henan Province. Forecasting Methods of the Main Crop Diseases and Insect Pests in Henan Province. Zhengzhou: Henan Science and Technology Press, 1995. pp 11-18. (in Chinese)
[31] Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538.
doi: 10.1046/j.1365-313x.2003.01977.x pmid: 14756761
[32] Brunner S, Hurni S, Herren G, Kalinina O, Burg S V, Zeller S L, Schmid B, Winzeler M, Keller B. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol J, 2011, 9: 897-910.
doi: 10.1111/j.1467-7652.2011.00603.x
[33] Brunner S, Stirnweis D, Quijano C D, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C, Winzeler M. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol J, 2012, 10: 398-409.
doi: 10.1111/j.1467-7652.2011.00670.x
[34] He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11: 879-882.
doi: S1674-2052(18)30090-X pmid: 29567454
[35] 王海燕, 肖进, 袁春霞, 徐涛, 于春艳, 孙昊杰, 陈佩度, 王秀娥. 携带抗白粉病基因Pm21的小麦-簇毛麦小片段易位染色体在不同小麦背景中的传递率及遗传稳定性. 作物学报, 2016, 42: 361-367.
doi: 10.3724/SP.J.1006.2016.00361
Wang H Y, Xiao J, Yuan C X, Xu T, Yu C Y, Sun H J, Chen P D, Wang X E. Transmission and genetic stability of no-homoeologous small fragment wheat-Haynaldia villosa translocation chromosomes with Pm21 in various cultivar backgrounds of common wheat. Acta Agron Sin, 2016, 42: 361-367. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00361
[36] Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger S G, Wicker T, Doležel J, Keller B, Wulff B B H. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol, 2016, 17: 221.
pmid: 27795210
[37] 陈芳, 乔麟轶, 李锐, 刘成, 李欣, 郭慧娟, 张树伟, 常利芳, 李东方, 阎晓涛, 任永康, 张晓军, 畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位. 作物学报, 2019, 45: 1503-1510.
Chen F, Qiao L Y, Li R, Li C, Li X, Guo H J, Zhang S W, Chang L F, Li D F, Yan X T, Ren Y K, Zhang X J, Chang Z J. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357. Acta Agron Sin, 2019, 45: 1503-1510. (in Chinese with English abstract)
[38] 陈芳. 小偃麦衍生品系抗白粉病基因的遗传定位及图位克隆. 山西大学博士论文, 山西太原, 2020.
Chen F. Genetic Mapping and Positional Cloning of Powdery Mildew Resistance Genes in the Derived Lines from a Wheat- Thinopyrum Hybrid. PhD Dissertation of Shanxi University, Taiyuan, Shanxi, China, 2020. (in Chinese with English abstract)
[39] 李根桥, 房体麟, 朱婕, 高亮亮, 李闪, 解超杰, 杨作民, 孙其信, 刘志勇. 普通小麦品种Brock抗白粉病基因分子标记定位. 作物学报, 2009, 35: 1613-1619.
Li G Q, Fang T L, Zhu J, Gao L L, Li S, Xie C J, Yang Z M, Sun Q X, Liu ZY. Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin, 2009, 35: 1613-1619. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01613
[40] Zou S H, Wang H, Li Y W, Kong Z S, Tang D Z. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol, 2017, 218: 298-309.
doi: 10.1111/nph.14964
[41] Zhou F S, Kurth J, Wei F S, Elliott C, Valè G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P. Cell-autonomous expression of Barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1 independent signaling pathway. Plant Cell, 2001, 13: 337-350.
pmid: 11226189
[42] Halterman D A, Wei F, Wise R P. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol, 2003, 131: 558-567.
pmid: 12586880
[43] Chang C, Yu D S, Jiao J, Jing S J, Schulze-Lefert P, Shen Q H. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell, 2013, 25: 1158-1173.
doi: 10.1105/tpc.113.109942
[1] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[2] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[3] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[4] 刘方方, 万映秀, 曹文昕, 李耀, 张琪琪, 李炎, 张平治. 小麦倒春寒抗性评价方法研究[J]. 作物学报, 2023, 49(2): 438-446.
[5] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[6] 王雪, 王文辉, 李栋, 姚霞, 朱艳, 曹卫星, 程涛. 二向反射和方向半球反射光谱差异及其对小麦叶片叶绿素含量反演的影响[J]. 作物学报, 2023, 49(2): 485-496.
[7] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[8] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J]. 作物学报, 2023, 49(1): 286-294.
[9] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[10] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[11] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[12] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[13] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[14] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[15] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!