欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 438-446.doi: 10.3724/SP.J.1006.2023.21011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦倒春寒抗性评价方法研究

刘方方(), 万映秀, 曹文昕, 李耀, 张琪琪, 李炎, 张平治()   

  1. 安徽省农业科学院作物研究所 / 农作物品质改良安徽省重点实验室, 安徽合肥 230031
  • 收稿日期:2022-02-14 接受日期:2022-05-05 出版日期:2022-05-19 网络出版日期:2022-05-19
  • 通讯作者: 张平治
  • 作者简介:E-mail: liuff0510@163.com
  • 基金资助:
    安徽小麦良种联合攻关项目(2021);财政部和农村农业部国家现代农业产业技术体系建设专项(CARS-3-2-14);安徽省科技重大专项(202003a06020010)

Evaluation method of late spring coldness tolerance in wheat

LIU Fang-Fang(), WAN Ying-Xiu, CAO Wen-Xin, LI Yao, ZHANG Qi-Qi, LI Yan, ZHANG Ping-Zhi()   

  1. Crop Research Institute, Anhui Academy of Agricultural Sciences / Anhui Provincial Key Laboratory of Crop Quality Improvement, Hefei 230031, Anhui, China
  • Received:2022-02-14 Accepted:2022-05-05 Published:2022-05-19 Published online:2022-05-19
  • Contact: ZHANG Ping-Zhi
  • Supported by:
    Joint Research of Wheat Variety Improvement of Anhui(2021);China Agriculture Research System of MOF and MARA(CARS-3-2-14);Science and Technology Major Special Project of Anhui Province(202003a06020010)

摘要:

倒春寒是造成小麦减产的重要因素, 培育抗倒春寒品种是重要育种目标。为了明确小麦倒春寒抗性鉴定的适宜处理条件, 建立倒春寒抗性评价方法, 本研究选用倒春寒抗性差异明显的6个品种进行不同发育时期和不同温度处理, 以死茎率作为评价指标, 筛选小麦倒春寒抗性鉴定最适处理条件, 并用120份小麦品种(系)对该方法进行验证。结果表明, 死茎率随温度降低和发育进程推进总体呈升高趋势。药隔期-6℃下处理6 h, 品种间死茎率差异最明显, 是进行倒春寒抗性鉴定的最适处理条件。验证试验表明该处理条件能有效区分120份小麦品种(系)的倒春寒抗性, 聚类分析将120份小麦品种分成极强、强、中等、弱、极弱5类, 根据分类结果建立了小麦倒春寒抗性评价标准。本研究为开展小麦倒春寒抗性鉴定和抗性品种培育提供了技术支撑。

关键词: 小麦, 倒春寒, 分级标准, 抗性评价方法

Abstract:

Sensitivity to late spring coldness can result in considerable yield loss in wheat, and the breeding cold-resistant cultivar becomes an important breeding objective. In order to investigate the suitable treatment conditions for late spring coldness tolerance and to establish an evaluation method for the resistance to late spring coldness in wheat, six cultivars with different late spring coldness tolerance were used for different temperature treatments at different developmental stages based on the dead stem rate. The optimum treatment conditions had been revealed and validated with 120 varieties (lines). The results showed significant differences in the dead stem rate was observed at anther connective formation phase (ACFP) under -6℃ after 6 h stress treatment, which was the most suitable treatment condition for the identification of resistance to late spring coldness. Furthermore, the variation in late spring coldness tolerance among 120 wheat varieties (lines) could be effectively distinguished from the treatment conditions. Cluster analysis demonstrated that the 120 wheat varieties (lines) can be divided into five categories in the resistance to late spring coldness: highly resistant, resistant, moderately resistant, susceptible, and highly susceptible. The established evaluation standard of late spring coldness in wheat will provide technical support for the identification and breeding of resistant wheat varieties in late spring coldness.

Key words: wheat, late spring coldness, ranked standard, resistance evaluation method

表1

试验材料及抗性水平"

序号
Number
品种
Cultivar
倒春寒抗性
Late spring coldness tolerance
1 济麦22 Jimai 22 抗 Resistant
2 烟农19 Yannong 19 中等 Moderately resistant
3 郑州8329 Zhengzhou 8329 敏感 Susceptible
4 皖麦50 Wanmai 50 敏感 Susceptible
5 郑麦366 Zhengmai 366 敏感 Susceptible
6 西安8号 Xi’an 8 敏感 Susceptible

表2

低温处理设计"

时期
Stage
温度 Temperature (℃) 时间
Time (h)
0 -2 -4 -6 -7 -8 -10
雌雄蕊分化期 Pistil and stamen primordia differentiation stage 6
药隔形成期 Anther connective tissue formation stage
四分体期 Tetrad formation stage
抽穗期 Heading stage
开花期 Anthesis stage

表3

不同处理下6个品种的死茎率"

时期
Stage
温度
Temperature
(℃)
品种Variety 均值
Mean
济麦22
Jimai 22
烟农19
Yannong 19
郑州8329
Zhengzhou 8329
皖麦50
Wanmai 50
郑麦366
Zhengmai 366
西安8号
Xi’an 8
雌雄蕊分化期
Pistil and stamen primordia differentiation stage
-4 0.00±0.00 a 0.09±0.08 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.06±0.04 a 0.02 a
-6 0.00±0.00 a 0.17±0.07 c 0.00±0.00 a 0.44±0.07 c 0.00±0.00 a 0.21±0.04 b 0.18 b
-8 0.52±0.05 b 0.85±0.08 c 0.21±0.08 a 0.81±0.08 c 0.79±0.018 c 0.87±0.04 c 0.68 c
-10 0.72±0.04 a 0.94±0.02 c 0.71±0.07 a 0.89±0.06 bc 0.88±0.04 a 0.90±0.01 b 0.84 d
药隔形成期
Anther connective tissue formation stage
-4 0.00±0.00 a 0.17±0.06 b 0.03±0.03 a 0.21±0.10 bc 0.18±0.06 bc 0.33±0.12 c 0.16 a
-6 0.08±0.06 a 0.30±0.10 b 0.04±0.02 a 0.78±0.12 d 0.55±0.08 c 0.60±0.11 cd 0.39 b
-7 0.70±0.08 a 0.96±0.08 bc 0.61±0.13 a 0.83±0.13 b 0.80±0.18 b 1.00±0.00 c 0.83 c
-8 0.87±0.08 ab 0.93±0.05 ab 0.78±0.17 a 0.97±0.05 b 0.93±0.12 ab 0.97±0.05 b 0.91 d
-10 0.94±0.02 a 1.00±0.00 a 0.87±0.12 a 1.00±0.00 a 1.00±0.00 a 1.00±0.00 a 0.97 e
四分体期
Tetrad formation stage
-2 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00 a
-4 0.17±0.05 a 0.34±0.09 b 0.16±0.10 a 0.34±0.02 b 0.30±0.09 b 0.29±0.13 b 0.26 b
-6 0.80±0.08 ab 1.00±0.00 c 0.72±0.09 a 0.81±0.10 ab 0.79±0.06 ab 0.85±0.13 b 0.83 c
-8 1.00±0.00 a 1.00±0.00 a 0.92±0.11 a 1.00±0.00 a 1.00±0.00 a 1.00±0.00 a 0.99 d
抽穗期
Heading stage
0 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00 a
-2 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00 a
-4 0.09±0.06 a 0.08±0.04 a 0.09±0.05 a 0.30±0.08 b 0.06±0.05 a 0.31±0.10 b 0.15 b
-6 0.96±0.04 ab 0.92±0.05 ab 0.92±0.09 ab 0.99±0.02 b 0.90±0.07 a 0.97±0.02 ab 0.94 c
开花期
Anthesis stage
0 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00 a
-2 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00 a
-4 0.17±0.07 ab 0.18±0.07 ab 0.15±0.07 ab 0.21±0.06 a 0.22±0.15 b 0.18±0.08 ab 0.17 b
-6 1.00±0.00 b 1.00±0.00 b 1.00±0.00 b 0.96±0.13 a 0.94±0.13 a 1.00±0.00 b 0.92 c

图1

-4℃和-6℃低温处理下6个品种在不同发育时期死茎率散点图 A:6个品种在-4℃低温下的死茎率散点图; B:6个品种在-6℃低温下的死茎率散点图; PSPDP:雌雄蕊分化期; ACFP:药隔期; TFP:四分体期; HP:抽穗期; AP:开花期; JM:济麦22; YN:烟农19; ZZ:郑州8329; ZM:郑麦366; WM:皖麦50; XA:西安8号。"

表4

120个小麦品种(系)的死茎率"

编号
No.
品种
Accession
死茎率
Dead stem rate
编号
No.
品种
Accession
死茎率
Dead stem rate
编号
No.
品种
Accession
死茎率
Dead stem rate
1 矮抗58 Aikang 58 0.48 41 扬麦158 Yangmai 158 0.26 81 20XDQK31 0.22
2 矮早781 Aizao 781 0.23 42 郑7698 Zheng 7698 0.50 82 20XDQK32 0.15
3 安科1303 Anke 1303 0.38 43 郑麦366 Zhengmai 366 0.58 83 20XDQK33 0.41
4 安科157 Anke 157 0.25 44 郑麦9023 Zhengmai 9023 0.38 84 20XDQK34 0.28
5 安农0711 Annong 0711 0.25 45 郑州8329 Zhengzhou 8329 0.04 85 20XDQK35 0.28
6 百农207 Bainong 207 0.35 46 中麦578 Zhongmai 578 0.21 86 20XDQK36 0.27
7 泛麦5号 Fanmai 5 0.48 47 中麦895 Zhongmai 895 0.53 87 20XDQK37 0.26
8 丰德存麦5号 Fengdecunmai 5 0.22 48 周麦18 Zhoumai 18 0.58 88 20XDQK38 0.70
9 恒进麦8号 Hengjinmai 8 0.61 49 周麦36 Zhoumai 36 0.54 89 20XDQK39 0.56
10 华成3366 Huacheng 3366 0.43 50 紫麦19 Zimai 19 0.72 90 20XDQK40 0.47
11 淮麦18 Huaimai 18 0.12 51 20XDQK1 0.00 91 20XDQK41 0.36
12 淮麦20 Huaimai 20 0.24 52 20XDQK2 0.44 92 20XDQK42 0.47
13 淮麦30 Huaimai 30 0.21 53 20XDQK3 0.08 93 20XDQK43 0.05
14 淮麦33 Huaimai 33 0.07 54 20XDQK4 0.05 94 20XDQK44 0.57
15 淮麦40 Huaimai 40 0.16 55 20XDQK5 0.00 95 20XDQK45 0.29
16 淮麦45 Huaimai 45 0.00 56 20XDQK6 0.11 96 20XDQK46 0.82
17 济麦22 Jimai 22 0.10 57 20XDQK7 0.74 97 20XDQK47 0.49
18 济麦44 Jimai 44 0.48 58 20XDQK8 0.52 98 20XDQK48 0.66
19 济南17 Jinan 17 0.45 59 20XDQK9 0.12 99 20XDQK49 0.22
20 连麦2号 Lianmai 2 0.00 60 20XDQK10 0.05 100 20XDQK50 0.20
21 明麦1号 Mingmai 1 0.45 61 20XDQK11 0.03 101 20XDQK51 0.15
22 青农3号 Qingnong 3 0.34 62 20XDQK12 0.52 102 20XDQK52 0.18
23 瑞华麦516 Ruihuamai 516 0.74 63 20XDQK13 0.08 103 20XDQK53 0.37
24 瑞华麦520 Ruihuamai 520 0.52 64 20XDQK14 0.32 104 20XDQK54 0.17
25 山农20 Shannong 20 0.20 65 20XDQK15 0.17 105 20XDQK55 0.54
26 石家庄8号 Shijiazhuang 8 0.30 66 20XDQK16 0.08 106 20XDQK56 0.00
27 天益科5号 Tianyike 5 0.30 67 20XDQK17 0.17 107 20XDLYQK1 0.91
28 皖垦麦0622 Wankenmai 0622 0.10 68 20XDQK18 0.19 108 20XDLYQK2 0.18
29 皖麦50 Wanmai 50 0.80 69 20XDQK19 0.00 109 20XDLYQK3 0.36
30 皖麦52 Wanmai 52 0.30 70 20XDQK20 0.41 110 20XDLYQK4 0.27
31 未来0818 Weilai 0818 0.72 71 20XDQK21 0.06 111 20XDLYQK5 0.27
32 西农511 Xinong 511 0.26 72 20XDQK22 0.70 112 20XDLYQK6 0.23
33 新麦18 Xinmai 18 0.38 73 20XDQK23 0.00 113 20XDLYQK7 0.15
34 新麦26 Xinmai 26 0.73 74 20XDQK24 0.13 114 20XDLYQK8 0.30
35 宿553 Su 553 0.50 75 20XDQK25 0.09 115 20XDLYQK9 0.47
36 徐农029 Xunong 029 0.22 76 20XDQK26 0.00 116 20XDLYQK10 0.17
37 烟农19 Yannong 19 0.36 77 20XDQK27 0.19 117 20XDLYQK11 0.33
38 烟农5158 Yannong 5158 0.22 78 20XDQK28 0.50 118 20XDLYQK12 0.16
39 烟农999 Yannong 999 0.50 79 20XDQK29 0.37 119 20XDLYQK13 0.48
40 偃展4110 Yanzhan 4110 0.33 80 20XDQK30 0.67 120 20XDLYQK14 0.85

表5

120个小麦品种(系)倒春寒抗性聚类分析"

项目
Item
聚类 Cluster
I II III IV V
中心值 Cluster center 0.05 0.21 0.35 0.51 0.75
范围 Range 0.00-0.13 0.15-0.28 0.29-0.41 0.43-0.61 0.66-0.91
品种(系)数目 Number of accessions 25 35 20 27 13

表6

小麦倒春寒抗性评价标准"

倒春寒抗性
Late spring coldness tolerance
死茎率
Dead stem rate
等级
Resistance level
极强 Highly resistant ≤0.13 1
强 Resistant 0.14-0.28 2
中等 Moderately resistant 0.29-0.42 3
弱 Susceptible 0.43-0.65 4
极弱 Highly susceptible ≥0.66 5

图2

药隔期不同抗性级别小麦植株的冻害表现 A: 对照, 不处理; B: 1极强; C: 2强; D: 3中等; E: 4弱; F: 5极弱。"

图3

50个推广品种和70个省区试材料不同抗性等级分布频率 RWV50:50个推广品种; RTA70:70个省区试材料。"

[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018, 8(1): 99-106. (in Chinese with English abstract)
[2] Frederiks T M, Christopher J T, Fletcher S E H, Borrell A K. Post head-emergence frost resistance of barley genotypes in the northern grain region of Australia. Crop Past Sci, 2011, 62: 736-745.
doi: 10.1071/CP11079
[3] Holman J D, Schlegel A J, Thompson C R, Lingenfelser J E. Influence of precipitation, temperature, and 56 years on winter wheat yields in western Kansas. Crop Man, 2011, 10: 1-10.
[4] 陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020, 40: 243-250.
Chen X, Lin T, Lin F F, Zhang Y, Su H, Hu Y M, Song Y H, Wei F Z, Li J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region. J Triticeae Crops, 2020, 40: 243-250. (in Chinese with English abstract)
[5] 张淑娟, 宋国琦, 高洁, 李玉莲, 张荣志, 李玮, 王姣, 陈明丽, 韩小东, 李根英. 小麦春季抗寒性研究进展. 山东农业科学, 2017, 49 (6): 157-162.
Zhang S J, Song G Q, Gao J, Li Y L, Zhang R Z, Li W, Wang J, Chen M L, Han X D, Li G Y. Research advances on cold resistance of wheat (Triticum aestivum L.) in spring. Shandong Agric Sci, 2017, 49(6): 157-162. (in Chinese with English abstract)
[6] 赵虹, 王西成, 胡卫国, 曹廷杰, 李博. 黄淮南片麦区小麦倒春寒冻害成因及预防措施. 河南农业科学, 2014, 43(8): 34-38.
Zhao H, Wang X C, Hu W G, Cao T J, Li B. Genetic analysis and countermeasures of wheat late-spring-coldness injury in south Huang-Huai wheat region. Henan Agric Sci, 2014, 43(8): 34-38. (in Chinese with English abstract)
[7] Ji H T, Xiao L J, Xia Y M, Song H, Liu B, Tang L, Cao W X, Zhu Y, Liu L L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric Forest Meteorol, 2017, 243: 33-42.
doi: 10.1016/j.agrformet.2017.04.016
[8] 李春燕, 徐雯, 刘立伟, 雷晓伟, 杨景, 周冬冬, 朱新开, 郭文善. 药隔至开花期低温对小麦产量和生理特性的影响. 麦类作物学报, 2016, 36: 77-85.
Li C Y, Xu W, Liu L W, Lei X W, Yang J, Zhou D D, Zhu X K, Guo W S. Effect of short-time low temperature from anther connective stage to anthesis on wheat yield and physiological characteristics. J Triticeae Crops, 2016, 36: 77-85. (in Chinese with English abstract)
[9] 刘平湘, 郭天财, 韩巧霞, 王永华, 吴晓. 不同类型冬小麦品种拔节后幼穗低温敏感期的鉴定. 中国农学通报, 2010, 26(19): 94-98.
Liu P X, Guo T C, Han Q X, Wang Y H, Wu X. Identification of young ear’s low temperature sensitive phase after jointing stage of different type winter wheat. Chin Agric Sci Bull, 2010, 26(19): 94-98. (in Chinese with English abstract)
[10] 钟秀丽, 王道龙, 吉田久胡新, 赵鹏, 韩立帅, 王晓光, 黄绍华, 黄建英, 孙忠富. 冬小麦品种抗霜冻力的影响因素分析. 作物学报, 2007, 33: 1810-1814.
Zhong X L, Wang D L, Ji T J, Hu X, Zhao P, Han L S, Wang X G, Huang S H, Huang J Y, Sun Z F. Analysis on the factors affecting frost resistance for winter wheat. Acta Agron Sin, 2007, 33: 1810-1814. (in Chinese with English abstract)
[11] 薛辉, 余慷, 马晓玲, 刘晓丹, 宋艳红, 朱保磊, 刘冬成, 张爱民, 詹克慧. 黄淮麦区小麦品种耐倒春寒相关性状的评价及关联分析. 麦类作物学报, 2018, 38: 1174-1188.
Xue H, Yu K, Ma X L, Liu X D, Song Y H, Zhu B L, Liu D C, Zhang A M, Zhan K H. Assessment and genome-wide association analysis of resistance to late-spring coldness in winter wheat from the Huang-Huai Valley of China. J Triticeae Crops, 2018, 38: 1174-1188. (in Chinese with English abstract)
[12] 姜丽娜, 马建辉, 樊婷婷, 宋飞, 刘佩, 余海波, 李欣, 李春喜. 孕穗期低温对小麦生理抗寒性的影响. 麦类作物学报, 2014, 34: 1373-1382.
Jiang L N, Ma J H, Fan T T, Song F, Liu P, Yu H B, Li X, Li C X. Effects of low temperature at booting stage on physiological cold resistance of wheat. J Triticeae Crops, 2014, 34: 1373-1382. (in Chinese with English abstract)
[13] 姜丽娜, 张黛静, 宋飞, 刘佩, 樊婷婷, 余海波, 李春喜. 不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价. 生态学报, 2014, 34: 4251-4261.
Jiang L N, Zhang D J, Song F, Liu P, Fan T T, Yu H B, Li C X. Evaluation of cold resistance of different wheat varieties based on physiological responses of leaves to low temperature at the jointing stage. Acta Ecol Sin, 2014, 34: 4251-4261. (in Chinese with English abstract)
[14] 张军, 孙树贵, 王亮明, 王秀娟, 杨群会, 陈新宏. 孕穗期低温对冬小麦生理生化特性和产量的影响. 西北植物学报, 2013, 33: 2249-2256.
Zhang J, Sun S G, Wang L M, Wang X J, Yang Q H, Chen X H. Physiological and biochemical characteristics and grain yield of winter wheat under low temperature at booting stage. Acta Bot Boreal-Occident Sin, 2013, 33: 2249-2256. (in Chinese with English abstract)
[15] 王树刚, 王振林, 王平, 王海伟, 李府, 黄玮, 武玉国, 尹燕枰. 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011, 31: 1064-1072.
Wang S G, Wang Z L, Wang P, Wang H W, Li F, Huang W, Wu G Y, Yin Y P. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress. Acta Ecol Sin, 2011, 31: 1064-1072 (in Chinese with English abstract).
[16] 安晓东, 靖金莲, 阎翠萍, 刘玲玲, 李世平, 黄丽波, 王全亮, 单杰. 冬小麦不同品种倒春寒抗性差异鉴定分析. 山西农业科学, 2017, 45(2): 156-159.
An X D, Jing J L, Yan C P, Liu L L, Li S P, Huang L B, Wang Q L, Shan J. The appraisal analysis of differences between varieties resistant to frozen injury of coldness in later spring on winter wheat. Shanxi Agric Sci, 2017, 45(2): 156-159. (in Chinese with English abstract)
[17] 刘蕾蕾, 纪洪亭, 刘兵, 马吉锋, 肖浏骏, 汤亮, 曹卫星, 朱艳. 拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响. 中国农业科学, 2018, 51: 4434-4448.
Liu L L, Ji H T, Liu B, Ma J F, Xiao L J, Tang L, Cao W X, Zhu Y. Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyll fluorescence. Sci Agric Sin, 2018, 51: 4434-4448. (in Chinese with English abstract)
[18] 曹文昕, 万映秀, 张琪琪, 李炎, 张平治. 黄淮麦区主要推广小麦品种抗寒性的演变规律. 麦类作物学报, 2015, 35: 57-63.
Cao W X, Wan Y X, Zhang Q Q, Li Y, Zhang P Z. Evolution of cold-resistance of the main wheat varieties released in Huang-Huai wheat zone. J Triticeae Crops, 2015, 35: 57-63. (in Chinese with English abstract)
[19] 陈贵菊, 陈明丽, 王福玉, 高国良, 江涛, 尹逊利, 李根英, 宋国琦. 药隔期低温对小麦生长发育的影响. 山东农业科学, 2015, 47(2): 25-28.
Chen G J, Chen M L, Wang F Y, Gao G L, Jiang T, Yin X L, Li G Y, Song G Q. Influences of low temperature in connectivum period on wheat growth and development. Shandong Agric Sci, 2015, 47(2): 25-28. (in Chinese with English abstract)
[20] 欧行奇, 王玉玲. 黄淮南片麦区小麦耐倒春寒育种研究初探. 麦类作物报, 2019, 39: 560-566.
Ou Q X, Wang Y L. Preliminary study on wheat breeding for late spring coldness tolerance in south of Huang-Huai region. J Triticeae Crops, 2019, 39: 560-566. (in Chinese with English abstract)
[21] 余卫东, 伍露, 冯利平, 胡程达. 越冬期低温胁迫对黄淮地区不同品种小麦的影响. 生态学杂志, 2021, 40: 2431-2440.
Yu W D, Wu L, Feng L P, Hu C D. Effects of freezing stress on different varieties of wheat during overwinter period in Huang-Huai area. Chin J Ecol, 2021, 40: 2431-2440. (in Chinese with English abstract)
[22] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选. 作物学报, 2022, 48: 11-24.
Zhang H Y, Xie B T, Jiang C S, Feng X Y, Zhang Q, Dong S X, Wang B Q, Zhang L M, Qin Z, Duan W X. Screening of leaf physiological characteristics and drought-tolerant indexes of sweet-potato cultivars with drought resistance. Acta Agron Sin, 2022, 48: 11-24. (in Chinese with English abstract)
[23] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 13-25.
Hu L L, Wang S H, Wang L X, Cheng X Z, Chen H L. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage. Acta Agron Sin, 2022, 48: 13-25. (in Chinese with English abstract)
[24] 武永峰, 胡新, 任德超, 史萍, 游松财. 晚霜冻胁迫后冬小麦株高降低及其与籽粒产量关系. 中国农业科学, 2018, 51: 41-56.
Wu Y F, Hu X, Ren D C, Shi P, You S C. Reduction of plant height in winter wheat and its relationship with grain yield under late frost stress. Sci Agric Sin, 2018, 51: 41-56. (in Chinese with English abstract)
[25] 刘峻明, 汪念, 王鹏新, 胡新, 黄健熙, 潘佩珠. SHAW模型在冬小麦晚霜冻害监测中的适用性研究. 农业机械学报, 2016, 47(6): 265-273.
Liu J M, Wang N, Wang P X, Hu X, Huang J X, Pan P Z. Applicability of simultaneous heat and water model for monitoring late frost injury of winter wheat. Trans CSAM, 2016, 47(6): 265-273. (in Chinese with English abstract)
[26] Livingston III D P, Tuong T D, Isleib T G, Murphy J P. Differences between wheat genotypes in damage from freezing temperatures during reproductive growth. Eur J Agron, 2016, 74: 164-172.
doi: 10.1016/j.eja.2015.12.002
[27] 王春艳, 李茂松, 胡新, 王道龙, 吉田久. 黄淮地区冬小麦的抗晚霜冻害能力. 自然灾害学报, 2006, 15(6): 211-215.
Wang C Y, Li M S, Hu X, Wang D L, Yoshida H. Spring frost resistance of winter wheat in Huang-Huai area. J Nat Disast, 2006, 15(6): 211-215. (in Chinese with English abstract)
[28] 胡新, 黄绍华, 黄建英, 肖召杰. 晚霜冻害与小麦品种的关系:1998年霜冻害调查报告之一. 中国农业气象, 1999, 20(3): 28-30.
Hu X, Huang S H, Huang J Y, Shao Z J. Influence of late frost on different wheat cultivars-the first report of investigation on late frost injury to wheat in 1998. Chin J Agromet, 1999, 20(3): 28-30. (in Chinese with English abstract)
[29] Zhong X, Mei X, Li Y, Yoshida H, Sun Z. Changes in frost resistance of wheat young ears with development during jointing stage. J Agron Crop Sci, 2008, 194: 343-349.
doi: 10.1111/j.1439-037X.2008.00320.x
[30] 河北省质量技术监督局. 小麦耐盐性鉴定技术规程. 见: 河北省地方标准. DB13T 1470-2011, 2011. pp 1-4.
Supervising Department of Quality and Technology of Hebei Province. Rules for identifying and evaluation of wheat salt tolerance. In: Local Standards of Hebei Province. DB13T 1470-2011, 2011. (in Chinese)
[31] 国家质量技术监督局. 小麦抗旱性鉴定评价技术规范. 见: 中华人民共和国国家标准. GB/T 21127-2007, 2007. pp 1-5.
Supervising Department of Quality and Technology of China. National Standard of the People’s Republic of China. In: Technical specification of identification and evaluation for drought resistance in wheat. GB/T 21127-2007, 2007. (in Chinese)
[1] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[2] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[3] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[4] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[5] 王雪, 王文辉, 李栋, 姚霞, 朱艳, 曹卫星, 程涛. 二向反射和方向半球反射光谱差异及其对小麦叶片叶绿素含量反演的影响[J]. 作物学报, 2023, 49(2): 485-496.
[6] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[7] 刘晓颖, 张驰, 王雪晴, 杨晨晓, 王光钰, 卞云迪, 方芳, 王颖, 王振英. 栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析[J]. 作物学报, 2023, 49(2): 392-401.
[8] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J]. 作物学报, 2023, 49(1): 286-294.
[9] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[10] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[11] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[12] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[13] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[14] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[15] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!