欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 402-413.doi: 10.3724/SP.J.1006.2023.24031

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用

黄震1(), 吴启境1, 陈灿妮1, 吴霞1, 曹珊1, 张辉1, 岳娇1, 胡亚丽1, 罗登杰1, 李赟1, 廖长君3, 李茹2, 陈鹏1,*()   

  1. 1广西大学农学院 / 广西高校植物遗传育种重点实验室, 广西南宁 530004
    2广西大学生命科学与技术学院, 广西南宁 530004
    3广西博世科环保科技股份有限公司, 广西南宁 530007
  • 收稿日期:2022-01-25 接受日期:2022-06-07 出版日期:2022-07-04 网络出版日期:2022-07-04
  • 通讯作者: 陈鹏
  • 作者简介:E-mail: 549935163@qq.com
  • 基金资助:
    国家自然科学基金项目(31960368);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-16-E14);广西博世科环保科技股份有限公司合作项目(GXU-BFY-2020-015)

Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress

HUANG Zhen1(), WU Qi-Jing1, CHEN Can-Ni1, WU Xia1, CAO Shan1, ZHANG Hui1, YUE Jiao1, HU Ya-Li1, LUO Deng-Jie1, LI Yun1, LIAO Chang-Jun3, LI Ru2, CHEN Peng1,*()   

  1. 1College of Agriculture, Guangxi University / Key Laboratory of Plant Genetics and Breeding, Nanning 530004, Guangxi, China
    2College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
    3Guangxi Bossco Environmental Protection Technology, Nanning 530007, Guangxi, China
  • Received:2022-01-25 Accepted:2022-06-07 Published:2022-07-04 Published online:2022-07-04
  • Contact: CHEN Peng
  • Supported by:
    National Natural Science Foundation of China(31960368);China Agriculture Research System of MOF and MARA(CARS-16-E14);Guangxi Bossco Environmental Protection Technology Co., Ltd.(GXU-BFY-2020-015)

摘要:

钙调素是一类钙依赖性调节蛋白, 参与植物的生长发育、抗逆胁迫等多种生物学过程。本课题组前期通过蛋白质乙酰化修饰组学研究发现, 红麻钙调素蛋白7的乙酰化修饰参与了红麻花粉的发育调控。为研究其参与抗逆性的机制, 本研究以红麻保持系P3B双核期的花药为材料, 使用PCR法克隆了钙调素基因HcCaM7, 最大开放阅读框(open reading frame, ORF)为450 bp, 其由149个氨基酸组成, 编码相对分子质量16.85 kD的蛋白; 亚细胞定位结果显示, HcCaM7蛋白的表达主要定位在细胞质和细胞膜中; 利用病毒诱导的基因沉默技术沉默HcCaM7基因, 导致红麻沉默植株的生长受到抑制; 进一步在体外采用基因密码子扩展技术对发生乙酰化修饰氨基酸位点进行突变, 成功获得具有体外乙酰化修饰位点的蛋白HcCaM7mut, 并成功诱导表达了无乙酰化修饰的蛋白HcCaM7, 结果表明HcCaM7蛋白发生乙酰化修饰后可以显著促进NADK (NAD激酶)活性; 用点板法检测含有HcCaM7蛋白和HcCaM7mut蛋白的重组菌在盐(400 mmol L-1和500 mmol L-1 NaCl)、干旱(400 mmol L-1和600 mmol L-1甘露醇)、重金属(30 mmol L-1和50 μmol L-1 CdCl2)及低温胁迫后(利用液氮反复冻融模拟)在LB固体培养基上的存活率发现, 含有HcCaM7蛋白的重组菌存活率显著高于空载对照菌, 而含有乙酰化修饰的HcCaM7mut蛋白的重组菌存活率进一步提升, 表明HcCaM7蛋白能够提高大肠杆菌对非生物胁迫的耐受性, 并且乙酰化修饰后效果更佳。因此, HcCaM7基因可以调控红麻生长发育和响应非生物胁迫, 乙酰化修饰可以促进HcCaM7蛋白发挥作用。

关键词: 红麻, 钙调素蛋白7, 蛋白乙酰化修饰, 病毒诱导的基因沉默, 基因密码子扩展技术, 非生物胁迫

Abstract:

Calmodulin (CaM) is a kind of calcium-dependent regulatory proteins involved in plant growth and development, stress tolerance, and other biological processes. In the previous study in kenaf acetylome, our team found that the protein acetylation modification calmodulin protein7 (CaM7) was involved in the regulation pollen development in kenaf. In order to explore its specific mechanism, we cloned the calmodulin gene HcCaM7 from kenaf P3B binuclear anther by using the PCR cloning way. Its maximum open reading frame (ORF) was 450 bp, encoding a protein containing 149 amino acids with a molecular weight of 16.85 kD. Subcellular localization revealed that HcCaM7 was mainly located in cytoplasm and cell membrane. Silencing HcCaM7 by virus induced gene silencing technique caused growth inhibition in kenaf. Furthermore, the protein HcCaM7mut with acetylation modification site was successfully obtained in vitro and the expression of HcCaM7 without acetylation modification was successfully induced. Acetylation of HcCaM7 protein significantly promoted NADK (NAD kinase) activity, indicating HcCaM7 acetylation involved in its functional regulation. The recombinant bacteria containing HcCaM7 protein and HcCaM7mut protein were detected in NaCl (400 mmol L-1 and 500 mmol L-1 NaCl), drought (400 mmol L-1 and 600 mmol L-1 mannitol) and heavy metals (30 μmol L-1 and 50 μmol L-1) by dot plate method. The results showed that the survival rate of recombinant bacteria containing HcCaM7 protein was significantly higher than that of empty control bacteria, in addition, the survival rate of recombinant bacteria containing acetylated HcCaM7mut protein was further improved. The results indicated that HcCaM7 protein could enhance the abiotic stress resistance of E.coli, and the effect of acetylation modification was better. Therefore, HcCaM7 gene regulated the growth and development of kenaf and abiotic stress resistance, and acetylation modification could promote the role of HcCaM7 protein.

Key words: kenaf, calmodulin protein 7, protein acetylation modification, virus induced gene silencing, gene codon extension technology, abiotic stress

表1

研究所用引物列表"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
HcCaM7-F ATGGCCGATCAGCTCACC
HcCaM7-R CTTGGCCATCATCACTTTGA
HcCaM7-GFP-F CAGGATATCCAGATCCAGTGGGATCCATGGCCGATCAGCTCACC
HcCaM7-GFP-R TAAGCTTGGTACCGAGCTCACCCGGGGATCCCTTGGCCATCATCACTTTGA
HcCaM7- pTRV2-F GATTCTGTGAGTAAGGTTACCGAATTCGGCGGAACTCCAAGATATGA
HcCaM7- pTRV2-R CCCCATGGAGGCCTTCTAGAGAATTCACCATCAACATCGGCTTCAC
HcCaM7mut-F GGTGTTTGACtAGGATCAGAATGGTTTCATATCTGC
HcCaM7mut-R GATCCTaGTCAAACACCCTGAATGCCTCTTTA
HcCaM7-pET32α-F AAGCTTGTCGACGGAGCTC GAATTCCTTGGCCATCATCACTTTGA
HcCaM7-pET32α-R CATGGCTGATATCGGATCC GAATTCATGGCCGATCAGCTCACC
HcCaM7-qPCR-F GATGCTGATGGAAACGGG
HcCaM7-qPCR-R CCATCACCATCAACATCGG

图1

HcCaM7基因的克隆及表达分析 A: HcCaM7的PCR扩增产物; M: DL2000 marker; 1: HcCaM7 ORF扩增。B: HcCaM7基因在红麻P3A和P3B不同组织中表达分析。数据为3个生物学重复±标准差。柱上不同小写字母表示差异显著(P < 0.05)。"

图2

HcCaM7的生物信息学分析 A: HcCaM7蛋白保守结构域的预测; B: HcCaM7蛋白三级结构预测结果; C: HcCaM7蛋白的系统发育树分析。"

图3

HcCaM7蛋白亚细胞定位 A: Mcherry通道; B: GFP通道; C: 明场; D: 融合场。"

图4

HcCaM7基因VIGS沉默分析 A: 转基因植株的qRT-PCR分析, pTRV2空载为对照, 1~9代表HcCaM7基因沉默植株; B: 沉默HcCaM7植株的表型分析; C: CaM7-pTRV2红麻植株鲜重; D: CaM7-pTRV2红麻植株株高。数据为3个生物学重复±标准差; 不同小写字母表示之间差异显著(P < 0.05)。"

图5

红麻P3A和P3B花药中HcCaM7基因和其蛋白在表达水平定量分析 A: HcCaM7在红麻P3A和P3B花药中相对表达量; B: HcCaM7蛋白在红麻P3A和P3B花药中表达水平, 1: P3A的花药, 2: P3B的花药。数据为3个生物学重复±标准差; 不同小写字母表示之间差异显著(P < 0.05)。"

图6

HcCaM7蛋白乙酰化修饰位点定点突变"

图7

HcCaM7蛋白及其点突变蛋白纯化结果及His标签和乙酰化修饰检测 A: HcCaM7mut蛋白纯化结果, 1、2、3为纯化结果; B: HcCaM7蛋白纯化结果, 1、2、3为纯化结果; C: His-Tag Western-blot检测结果, 1是HcCaM7mut蛋白, 2是HcCaM7蛋白; D: 蛋白乙酰化修饰Western blot检测结果, 1是HcCaM7mut蛋白, 2是HcCaM7蛋白。"

图8

HcCaM7乙酰化修饰对NADK酶活的影响 数据为3个生物学重复±标准差。不同小写字母表示之间差异显著(P < 0.05)。"

图9

HcCaM7在大肠杆菌中应对非生物胁迫的抗性检测 A: 盐胁迫; B: 甘露醇胁迫; C: CdCl2胁迫; D: 冷胁迫; a, b, c, d: 胁迫后稀释了104倍的菌落存活数。数据为3个生物学重复±标准差。不同小写字母表示之间差异显著(P < 0.05)。"

[1] Chen P, Wei F, Li R, Li Z Q, Kashif M H, Zhou R Y. Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. Physiol Plant, 2019, 166: 960-978.
doi: 10.1111/ppl.12850 pmid: 30353937
[2] Chen P, Li Z Q, Luo D J, Jia R X, Lu H, Tang M Q, Hu Y L, Yue J, Huang Z. Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars. Chemosphere, 2021, 263: 12.
[3] Tang M Q, Yue J, Huang Z, Hu Y L, Li Z Q, Luo D J, Cao S, Zhang H, Pan J, Wu X, Wu Q J, Chen P. Physiological and DNA methylation analysis provides epigenetic insights into chromium tolerance in kenaf. Environ Exp Bot, 2022, 194: 11.
[4] Kashif M H, Wei F, Tang D F, Tang M Q, Luo D J, Hai L, Li R, Chen P. iTRAQ-based comparative proteomic response analysis reveals regulatory pathways and divergent protein targets associated with salt-stress tolerance in kenaf (Hibiscus cannabinus L.). Ind Crops Prod, 2020, 153: 13.
[5] 林亚, 李世国, 谢莉萍, 张荣庆. 栉孔扇贝钙调素类似蛋白基因的克隆及其与钙调素基因表达特征的比较分析. 水产科学, 2014, 33: 692-701.
Lin Y, Li S G, Xie L P, Zhang R Q. Cloning of calmodulin-like protein gene from Scallop chlamys farreri and comparison of its expression characteristics with calmodulin gene. Fish Sci, 2014, 33: 692-701. (in Chinese)
[6] 顾采琴. Ca2+、CaM及其目标酶与乙烯诱导番茄和草莓果实成熟衰老关系的研究. 浙江大学博士学位论文,浙江杭州, 2003.
Gu C Q. Studies of Relationship between Ca2+, CaM, Its Target Enzymes and Ethylene Inducing Maturation, Ripening and Senescence of Tomato and Strawberry Fruits. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2003. (in Chinese with English abstract)
[7] 马力耕, 崔素娟, 徐小冬, 孙大业. G蛋白在细胞外钙调素启动花粉萌发和花粉管伸长中的作用. 自然科学进展, 1997, (6): 149-116.
Ma L G, Cui S J, Xu X D, Sun D Y. Role of G protein in extracellular calmodulin-activated pollen germination and pollen tube elongation. Prog Nat Sci, 1997, (6): 149-116. (in Chinese)
[8] Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666-680.
doi: 10.1104/pp.102.011999
[9] Kim K N, Lee J S, Han H, Choi S A, Go S J, Yoon I S. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol, 2003, 52: 1191-1202.
doi: 10.1023/B:PLAN.0000004330.62660.a2
[10] Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathionereductase via direct binding. PLoS Genet, 2016, 12: 28.
[11] Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L. Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol, 2010, 153: 1895-1906.
doi: 10.1104/pp.110.160424 pmid: 20576787
[12] Cha J Y, Su'udi M, Kim W Y, Kim D R, Kwak Y S, Son D. Functional characterization of orchardgrass cytosolic Hsp70 (DgHsp70) and the negative regulation by Ca2+/AtCaM2 binding. Plant Physiol Biochem, 2012, 58: 29-36.
doi: 10.1016/j.plaphy.2012.06.006
[13] Yoo J H, Park C Y, Kim J C, Heo W D, Cheong M S, Park H C, Kim M C, Moon B C, Choi M S, Kang Y H, Lee J H, Kim H S, Lee S M, Yoon H W, Lim C O, Yun D J, Lee S Y, Chung W S, Cho M J. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem, 2005, 280: 3697-3706.
doi: 10.1074/jbc.M408237200 pmid: 15569682
[14] Wu H C, Luo D L, Vignols F, Jinn T L. Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ, 2012, 35: 1543-1557.
doi: 10.1111/j.1365-3040.2012.02508.x
[15] Yang J, Ji L, Liu S, Jing P, Xie G. The CaM1-Associated CCaMK-MKK1/6 cascade positively affects the lateral root growth through auxin signaling under salt stress in rice. J Exp Bot, 2021, 72: 6611-6627.
doi: 10.1093/jxb/erab287 pmid: 34129028
[16] Reddy A S N, Ali G S, Celesnik H, Day I S. Coping with stresses: roles of calcium and calcium/calmodulin-regulated gene expression. Plant Cell, 2011, 23: 2010-2032.
doi: 10.1105/tpc.111.084988
[17] Yang N, Peng C, Cheng D, Huang Q, Xu G, Gao F, Chen L. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene, 2013, 521: 32-37.
doi: 10.1016/j.gene.2013.03.048 pmid: 23528224
[18] Mann M, Jensen O N. Proteomic analysis of post-translational modifications. Nat Biotechnol, 2003, 21: 255-261.
pmid: 12610572
[19] Kahn P. Molecular biology: from genome to proteome: looking at a cell’s proteins. Science, 1995, 369-370.
[20] Rardin M J, Newman J C, Held J M, Cusack M P, Sorensen D J, Li B A, Schilling B, Mooney S D, Kahn C R, Verdin E, Gibson B W. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA, 2013, 110: 6601-6606.
doi: 10.1073/pnas.1302961110
[21] Choudhary C, Kumar C, Gnad F, Nielsen M L, Rehman M, Walther T C, Olsen J V. Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325: 834-840.
doi: 10.1126/science.1175371 pmid: 19608861
[22] Wang Q J, Zhang Y K, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y F, Ning Z B, Zeng R, Xiong Y, Guan K L, Zhao S M, Zhao G P. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327: 1004-1007.
doi: 10.1126/science.1179687 pmid: 20167787
[23] Zhou C, Lin Z, Duan J, Miki B, Wu K. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in arabidopsis. Plant Cell, 2005, 17: 1196-1204.
doi: 10.1105/tpc.104.028514
[24] Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J, 2006, 46: 124-133.
pmid: 16553900
[25] Kim J M, To T K, Matsui A, Tanoi K, Kobayashi N I, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S. Acetate-mediated novel survival strategy against drought in plants. Mol Cell, 2017, 3: 1.
doi: 10.1016/S1097-2765(00)80169-0
[26] Zhao J, Zhang J, Wei Z, Wu K, Duan J. Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci, 2014, 5: 8.
[27] Li T, Su H, Li Z, Xu X, Wang H, Li Y, Li Z. Genome-wide identification and expression analysis in biotic and abiotic stress of HDACs gene family in tomato. Chin J Trop Crops, 2015, 36: 1994-2001.
[28] Fan C, Xiong H, Reynolds N M, Soell D. Rationally evolving tRNA(Pyl) for efficient incorporation of noncanonical amino acids. Nucleic Acids Res, 2015, 43: 10230-10235.
[29] Shi N N, Yang Q, Zhang H R, Lu J Q, Lin H S, Yang X, Abulimiti A, Cheng J L, Wang Y, Tong L, Wang T C, Zhang X D, Chen H M, Xia Q. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Engin, 2021, 6: 195-206.
doi: 10.1038/s41551-021-00774-1
[30] Nikic-Spiegel I. Expanding the genetic code for neuronal studies. Chem Biol Chem, 2020, 21: 3169-3179.
doi: 10.1002/cbic.202000300
[31] Li Z Q, Hu Y L, Chang M M, Kashif M H, Tang M Q, Luo D J, Cao S, Lu H, Zhang W, Huang Z, Yue J, Chen P. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). Chemosphere, 2021, 271: 10.
[32] Bryson D I, Fan C, Guo L T, Miller C, Soll D, Liu D R. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol, 2017, 13: 1253-1260.
doi: 10.1038/nchembio.2474 pmid: 29035361
[33] Wang L, Brock A, Herberich B, Schultz P G. Expanding the genetic code of Escherichia coli. Science, 2001, 292: 498-500.
pmid: 11313494
[34] Tharp J M, Liu W R. Genetic code expansion: Synthetases pick up the PACE. Nat Chem Biol, 2017, 13: 1205-1206.
doi: 10.1038/nchembio.2516 pmid: 29161249
[35] Venkat S, Chen H, Stahman A, Hudson D, McGuire P, Gan Q, Fan C. Characterizing lysine acetylation of isocitrate dehydrogenase in Escherichia coli. J Mol Biol, 2018, 430: 1901-1911.
doi: S0022-2836(18)30342-5 pmid: 29733852
[36] Weinert B T, Iesmantavicius V, Wagner S A, Scholz C, Gummesson B, Beli P, Nystrom T, Choudhary C. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell, 2013, 51: 265-272.
doi: 10.1016/j.molcel.2013.06.003 pmid: 23830618
[37] Berridge M J, Bootman M D, Li P. Calcium: a life and death signal. Nature, 1998, 395: 645-648.
doi: 10.1038/27094
[38] Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak J M. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol, 2015, 167: 1630-1642.
doi: 10.1104/pp.114.251298
[39] Cheval C, Aldon D, Galaud J P, Ranty B. Calcium/calmodulin- mediated regulation of plant immunity. BBA-Mol Cell Res, 2013, 1833: 1766-1771.
[40] Stephan C, Laval-Martin D L. Changes in NAD(+) kinase activity during germination of Phaseolus vulgaris and P. acutifolius, and effects of drought stress. J Plant Physiol, 2000, 157: 65-73.
doi: 10.1016/S0176-1617(00)80137-6
[41] Jiang X, Gao Y, Zhou H, Chen J, Wu J, Zhang S. Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia. Plant Cell Rep, 2014, 33: 255-263.
doi: 10.1007/s00299-013-1526-y pmid: 24145911
[42] Chung H H, Benson D R, Schultz P G. Probing the structure and mechanism of Ras protein with an expanded genetic code. Science, 1993, 259: 806-9.
pmid: 8430333
[43] Tang H, Zhang P, Luo X. Recent technologies for genetic code expansion and their implications on synthetic biology applications. J Mol Biol, 2021, 434: 167382-167382.
doi: 10.1016/j.jmb.2021.167382
[44] Uttamapinant C, Howe J D, Lang K, Beranek V, Davis L, Mahesh M, Barry N P, Chin J W. Genetic code expansion enables live-cell and super resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc, 2018, 140: 13986-13986.
doi: 10.1021/jacs.8b10479 pmid: 30351131
[45] Hallows W C, Lee S, Denu J M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA, 2006, 103: 10230-10235.
doi: 10.1073/pnas.0604392103
[1] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[2] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[3] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[4] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[7] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053.
[8] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[9] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[10] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[11] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[12] 苏强,荣玮,张增艳. 小麦类受体蛋白激酶基因TaPK3A的克隆与抗纹枯病功能初步分析[J]. 作物学报, 2019, 45(8): 1158-1165.
[13] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[14] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[15] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!