作物学报 ›› 2023, Vol. 49 ›› Issue (1): 73-85.doi: 10.3724/SP.J.1006.2023.14217
张程1(), 张展2, 杨佳宝1, 孟晚秋1, 曾令露1, 孙黎1,*()
ZHANG Cheng1(), ZHANG Zhan2, YANG Jia-Bao1, MENG Wan-Qiu1, ZENG Ling-Lu1, SUN Li1,*()
摘要:
二酰基甘油酰基转移酶(Diacylglycerol acyltransferase, DGAT)在植物油脂代谢和抗逆过程中发挥重要作用。为探究DGAT基因在向日葵(Helianthus annuus L.)中的进化及在油脂积累和非生物胁迫应答中的功能, 本研究以拟南芥AtDGATs基因为基础序列, 通过同源比对从向日葵基因组中获得18个DGAT同源基因序列, 并对其染色体分布、基因结构、蛋白保守结构域、系统进化关系、组织特异性表达以及非生物胁迫下的表达模式进行系统分析。结果表明, 向日葵DGATs基因可分为4个亚族(DGAT1、DGAT2、DGAT3和WSD), 且同一亚族成员具有相似的基因结构和蛋白保守基序; HaDGATs基因的启动子区富含逆境和植物激素响应相关元件; 片段复制是导致该基因家族扩张的主要因素; qRT-PCR结果表明, HaDGAT1、HaDGAT2和HaDGAT3主要在种子发育的早、中期表达, 与种子油脂快速积累密切相关, 而HaWSDs亚家族基因主要在茎、叶和花中表达。盐、低温、干旱和ABA处理后, 多数HaWSDs基因在向日葵根、茎和叶中呈现诱导表达, 推测其可能在对逆境胁迫的响应中起重要作用。这些结果为进一步研究向日葵DGATs基因的功能奠定了基础。
[1] |
Hryvusevich P, Navaselsky I, Talkachova Y, Straltsova D, Keisham M, Viatoshkin A, Samokhina V, Smolich I, Sokolik A, Huang X, Yu M, Bhatla S, Demidchik V. Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Front Plant Sci, 2020, 11: 613936.
doi: 10.3389/fpls.2020.613936 |
[2] | 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL. 作物学报, 2018, 44: 385-396. |
Lyu P, Yu H F, Hou J H. QTL mapping of yield traits in sunflower using drought resistant selection introgression lines. Acta Agron Sin, 2018, 44: 385-396. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00385 |
|
[3] |
Nelson G J. Dietary fat, trans fatty acids, and risk of coronary heart disease. Nutr Rev, 1998, 56: 250-252.
pmid: 9735680 |
[4] |
Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 1998, 95: 13018-13023.
doi: 10.1073/pnas.95.22.13018 |
[5] | 唐桂英, 柳展基, 单雷. 二酰基甘油酰基转移酶(DGAT)研究进展. 中国油料作物学报, 2010, 32: 320-328. |
Tang G Y, Liu Z J, Shan L. Progress of diacylglycerol acyltransferase (DGAT) study. Chin Oil Crop Sci, 2010, 32: 320-328. (in Chinese with English abstract) | |
[6] |
He X H, Grace Q C, Lin J T, McKeon T A. Regulation of diacylglycerol transferase in developing seeds of castor. Lipids, 2004, 39: 865-871.
doi: 10.1007/s11745-004-1308-1 |
[7] |
Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367-372.
doi: 10.1038/ng.85 pmid: 18278045 |
[8] | Nykiforuk C L, Laroche A, Weselake R J. Isolation and characterization of a cDNA encoding a second putative diacylglycerol transferase from a microspore-derived cell suspension culture of Brassica napus L. cv Jet Neuf. Plant Physiol, 1999, 121: 1957-1959. |
[9] |
Bouvier-Navé P, Benveniste P, Oelkers P, Sturley S L, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur J Biochem, 2000, 267: 85-96.
pmid: 10601854 |
[10] |
Shockey J M, Gidda S K, Chapital D C, Kuan JC, Dhanoa P K, Bland J M, Rothstein S J, Mullen R T, Dyer J M. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 2006, 18: 2294-2313.
doi: 10.1105/tpc.106.043695 |
[11] |
Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J Exp Bot, 2011, 62: 521-532.
doi: 10.1093/jxb/erq286 |
[12] |
Li R, Yu K, Hildebrand D F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145-157.
doi: 10.1007/s11745-010-3385-4 |
[13] |
Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor D C. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J, 1999, 19: 645-653.
pmid: 10571850 |
[14] |
Zhou X R, Shrestha P, Yin F, Petrie J R, Singh S P. AtDGAT2 is a functional acyl-CoA: diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Lett, 2013, 587: 2371-2376.
doi: 10.1016/j.febslet.2013.06.003 |
[15] |
Zhang T T, He H, Xu C J, Fu Q, Tao Y B, Xu R, Xu Z F. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas. Plants (Basel), 2021, 10: 699.
doi: 10.3390/plants10040699 |
[16] |
Aymé L, Arragain S, Canonge M, Baud S, Touati N, Bimai O, Jagic F, Louis-Mondésir C, Briozzo P, Fontecave M, Chardot T. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci Rep, 2018, 8: 17254.
doi: 10.1038/s41598-018-35545-7 |
[17] |
Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol, 2006, 141: 1533-1543.
pmid: 16798944 |
[18] |
Gao H, Gao Y, Zhang F, Liu B, Ji C, Xue J, Yuan L, Li R. Functional characterization of an novel acyl-CoA: diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa. Plant Sci, 2021, 303: 110752.
doi: 10.1016/j.plantsci.2020.110752 |
[19] |
Kalscheuer R, Steinbüchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem, 2003, 278: 8075-8082.
doi: 10.1074/jbc.M210533200 pmid: 12502715 |
[20] | Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol, 2008, 148: 97-107. |
[21] |
Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer A J, Schreiber L, Dörmann P. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J, 2019, 98: 727-744.
doi: 10.1111/tpj.14269 |
[22] |
Abdullah H M, Rodriguez J, Salacup J M, Castañeda I S, Schnell D J, Pareek A, Dhankher O P. Increased cuticle waxes by overexpression of WSD1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa. Int J Mol Sci, 2021, 22: 5173.
doi: 10.3390/ijms22105173 |
[23] | 牛永志, 王国平, 郑昀晔, 马文广. 烟草DGAT基因家族全基因组鉴定与分析. 中国烟草科学, 2020, 41(1): 1-8. |
Niu Y Z, Wang G P, Zheng Y Y, Ma W G. Genome-wide identification and analysis of DGAT family genes in tobacco. Chin Tob Sci, 2020, 41(1): 1-8. (in Chinese with English abstract) | |
[24] |
Zhao Y, Wu N, Li W, Shen J, Chen C, Li F, Hou Y. GhDGAT3D evolution and characterization of acetyl coenzyme A: diacylglycerol acyltransferase genes in cotton identify the roles of in oil biosynthesis and fatty acid composition. Genes (Basel), 2021, 12: 1045.
doi: 10.3390/genes12071045 |
[25] | 郑玲, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6): 10-18. |
Zheng L, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y. Bioinformatics analysis of peanut DGAT gene family. Shandong Agric Sci, 2018, 50(6): 10-18. (in Chinese with English abstract) | |
[26] |
Yan B, Xu X, Gu Y, Zhao Y, Zhao X, He L, Zhao C, Li Z, Xu J. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61: 735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654 |
[27] | Rosli R, Chan P, Chan K, Amiruddin N, Low E, Singh R, Harwood J, Murphy D. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Sci, 2018, 275: 84-96. |
[28] |
Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA: diacylglycerol acyltransferase from soybean identifies GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol, 2019, 242: 153019.
doi: 10.1016/j.jplph.2019.153019 |
[29] |
Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol, 2009, 60: 433-453.
doi: 10.1146/annurev.arplant.043008.092122 pmid: 19575588 |
[30] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[31] | 李培江, 米瑶, 余竟, 李碧娟, 廖芳, 李关荣. 美国引进向日葵种子含油量和脂肪酸组成比较分析. 中国油脂, 2015, 40(11): 104-106. |
Li P J, Mi Y, Yu J, Li B J, Liao F, Li G R. Comparative analysis of oil content and fatty acid composition of sunflower seeds introduced from the United States. China Oils Fats, 2015, 40(11): 104-106. (in Chinese with English abstract) | |
[32] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[33] |
Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol, 2016, 67: 179-206.
doi: 10.1146/annurev-arplant-043015-111641 pmid: 26845499 |
[34] |
Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366 |
[35] |
Misra A, Khan K, Niranjan A, Nath P, Sane V A. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry, 2013, 96: 37-45.
doi: 10.1016/j.phytochem.2013.09.020 |
[36] |
Xu J, Francis T, Mietkiewska E, Giblin E M, Barton D L, Zhang Y, Zhang M, Taylor D C. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 2008, 6: 799-818.
doi: 10.1111/j.1467-7652.2008.00358.x |
[37] |
Zhang M, Fan J L, Taylor D C, Ohlrogge J B. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 2009, 21: 3885-3901.
doi: 10.1105/tpc.109.071795 |
[38] |
Lu C L, de Noyer S B, Hobbs D H, Kang J, Wen Y, Krachtus D, Hills M J. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Plant Mol Biol, 2003, 52: 31-41.
doi: 10.1023/A:1023935605864 |
[39] |
鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究. 作物学报, 2020, 46: 1283-1290.
doi: 10.3724/SP.J.1006.2020.94192 |
Lu G, Tang X, Lu J X, Li D, Hu Q Y, Hu T, Zhang T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens. Acta Agron Sin, 2020, 46: 1283-1290. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94192 |
|
[40] |
Takeda S, Iwasaki A, Matsumoto N, Uemura T, Tatematsu K, Okada K. Physical interaction of floral organs controls petal morphogenesis in Arabidopsis. Plant Physiol, 2013, 161: 1242-1250.
doi: 10.1104/pp.112.212084 pmid: 23314942 |
[41] |
Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One, 2014, 9: e105834.
doi: 10.1371/journal.pone.0105834 |
[42] |
Tan W J, Yang Y C, Zhou Y, Huang L P, Xu L, Chen Q F, Yu L J, Xiao S. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiol, 2018, 177: 1303-1318.
doi: 10.1104/pp.18.00402 |
[43] |
Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol, 2002, 129: 1352-1358.
doi: 10.1104/pp.006122 |
[44] |
Weselake R J, Shah S, Tang M, Quant P A, Snyder C L, Furukawa-Stoffer T L, Zhu W, Taylor D C, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney M M, Harwood J L. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot, 2008, 59: 3543-3549.
doi: 10.1093/jxb/ern206 pmid: 18703491 |
[1] | 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413. |
[2] | 杨佳宝, 张展, 周至铭, 吕新华, 孙黎. 向日葵HaLACS9基因的克隆与功能分析[J]. 作物学报, 2023, 49(2): 426-437. |
[3] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[4] | 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104. |
[5] | 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350. |
[6] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
[7] | 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613. |
[8] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[9] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[10] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[11] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812. |
[14] | 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839. |
[15] | 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933. |
|