欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 73-85.doi: 10.3724/SP.J.1006.2023.14217

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

向日葵DGATs基因家族的鉴定及表达分析

张程1(), 张展2, 杨佳宝1, 孟晚秋1, 曾令露1, 孙黎1,*()   

  1. 1新疆石河子大学生命科学学院, 新疆石河子 832003
    2兵团兴新职业技术学院, 新疆巴州841007
  • 收稿日期:2021-11-23 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-24
  • 通讯作者: 孙黎
  • 作者简介:E-mail: 2020002371@qq.com
  • 基金资助:
    国家自然科学基金项目(31760064);国家自然科学基金项目(31360052)

Genome-wide identification and relative expression analysis of DGATs gene family in sunflower

ZHANG Cheng1(), ZHANG Zhan2, YANG Jia-Bao1, MENG Wan-Qiu1, ZENG Ling-Lu1, SUN Li1,*()   

  1. 1College of Life Science, Shihezi University, Shihezi 832003, Xinjiang, China
    2Bingtuan Xingxin Vocational and Technical College, Bazhou 841007, Xinjiang, China
  • Received:2021-11-23 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-24
  • Contact: SUN Li
  • Supported by:
    National Natural Science Foundation of China(31760064);National Natural Science Foundation of China(31360052)

摘要:

二酰基甘油酰基转移酶(Diacylglycerol acyltransferase, DGAT)在植物油脂代谢和抗逆过程中发挥重要作用。为探究DGAT基因在向日葵(Helianthus annuus L.)中的进化及在油脂积累和非生物胁迫应答中的功能, 本研究以拟南芥AtDGATs基因为基础序列, 通过同源比对从向日葵基因组中获得18个DGAT同源基因序列, 并对其染色体分布、基因结构、蛋白保守结构域、系统进化关系、组织特异性表达以及非生物胁迫下的表达模式进行系统分析。结果表明, 向日葵DGATs基因可分为4个亚族(DGAT1DGAT2DGAT3WSD), 且同一亚族成员具有相似的基因结构和蛋白保守基序; HaDGATs基因的启动子区富含逆境和植物激素响应相关元件; 片段复制是导致该基因家族扩张的主要因素; qRT-PCR结果表明, HaDGAT1、HaDGAT2HaDGAT3主要在种子发育的早、中期表达, 与种子油脂快速积累密切相关, 而HaWSDs亚家族基因主要在茎、叶和花中表达。盐、低温、干旱和ABA处理后, 多数HaWSDs基因在向日葵根、茎和叶中呈现诱导表达, 推测其可能在对逆境胁迫的响应中起重要作用。这些结果为进一步研究向日葵DGATs基因的功能奠定了基础。

关键词: 向日葵, DGAT基因家族, 非生物胁迫, 基因表达

Abstract:

Diacylglycerol acyltransferase (DGAT) plays an important role in plant oil metabolism and stress resistance. To explore the evolution of DGAT gene in sunflower (Helianthus annuus L.) and its function in oil biosynthesis and response to abiotic stresses, 18 homologous gene sequences of DGAT were obtained from the sunflower genome database by alignment with Arabidopsis thaliana AtDGATs genes. Then, chromosome distribution, gene structure, conserved protein motifs, phylogenetic relationship, tissue-specific expression of HaDGATs, and their expressing patterns under abiotic stresses were systematically investigated. The results showed that sunflower DGATs genes were divided into four subfamilies (DGAT1, DGAT2, DGAT3, and WSD), and the members of the same subfamily shared similar gene structures and conserved motifs. The promoter regions of HaDGATs harbored multiple cis-elements related to environmental stresses and plant hormone response. The main factor for HaDGATs amplification was fragment duplication. The qRT-PCR indicated that HaDGAT1, HaDGAT2, and HaDGAT3 were mainly expressed in the early and middle stages of sunflower seed development, which coincided with the rapid accumulation period of oil in seeds, while HaWSD subfamily genes were mainly expressed in stems, leaves, and petals. Most of HaWSD genes could be induced by NaCl, low temperature, drought, and ABA treatments in sunflower roots, stems, and leaves, indicating that they might play essential roles in dealing with various abiotic stresses. The results revealed that HaDGATs had functional differentiation in regulating lipid biosynthesis and abiotic stresses. This study provides an important foundation for further understanding the function of sunflower DGAT genes.

Key words: sunflower, DGAT gene family, abiotic stresses, gene expression

表1

qRT-PCR引物序列"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
HaDGAT1-1 TACGTAGGCGTCCGATCACA AATAGGCCTGCATGACTCTGTTT
HaDGAT1-2 GAGGAGCGTGAAGCCTGATG ATGCGCTGGAGAAGAAGCAC
HaDGAT1-3 GCCTAACATCGCCGAATCCA AACGCAACACACTCGTCTGA
HaDGAT2-1 AGTACGGGCGTGGCTATTTT GCCAATGACAGTCCCATCCA
HaDGAT2-2 TCTGGCCGATTGGAGTTGTC TGAACGCCACCTGGTATGAC
HaDGAT3 GTGGGTGTTAAGCAGCGGAA TTGACTTGCTGACCCAACCC
HaWSD1 GAGGATACCGAAACGCCGAT ACCTTCGTCTTTTTGCCCCT
HaWSD2 TGGATGCCGCTAAACACGTC CGGCGATGAAACCGTGAGAT
HaWSD3 TGGAGGATAGGCCAAGACGA TTGTTTCCCCATGTGCCATCT
HaWSD4 GAAAGGAGAGGACCACGACC GCTCCCGTTTTCCTTGTCCA
HaWSD5 GTTGGTCACGGACAAACACG ACGATAGAAGCGAAACGCCA
HaWSD6 GGGGCCAAAGATGACCAAGA CCACCACCGTTGCTTCTAGT
HaWSD7 TTCGTTAGGCGACGGTTTGT GCCCATGCTGCCTTTTAACG
HaWSD8 TGTGTGCACTGGGCTGTTTC ACACCCGCGATTTCACTGTATC
HaWSD9 CACTAAAAGGGTCCGCAGGT GTCGAACGCCTTTGGGAATG
HaWSD10 GCACGACGAACCACTATCCC TCCGCCAATGTTCATGTCCG
HaWSD11 AGCGTGTTTGGCCTCGAAC GTGAGGTCGGCTAGGTATTCG
HaWSD12 TGTGTGGAGGATGTGACCATGT GGTCTTCCCCCTTCACTTCAAC
18S rRNA CTACCACATCCAAGGAAGGCAG CGACAGAAGGGACGAGTAAACC

表2

向日葵HaDGATs基因基本信息"

转录本ID
Transcript ID
基因名称
Gene name
氨基酸数量
Amino acid amounts (aa)
分子量
Molecular
weight (kD)
等电点
pI
亲水性系数
Hydrophilicity coefficient
跨膜结构域数量Transmembrane
domain amounts
OTG30061 HaDGAT1-1 479 55.74 9.24 0.243 8
OTG13343 HaDGAT1-2 517 59.81 8.56 0.166 9
OTG03739 HaDGAT1-3 507 58.52 9.11 0.219 9
OTF98266 HaDGAT2-1 330 37.47 9.12 0.294 2
OTF96040 HaDGAT2-2 336 38.09 9.85 0.191 2
OTG25557 HaDGAT3 329 35.59 8.63 -0.416 0
OTG29248 HaWSD1 666 74.73 6.84 -0.249 0
OTG29986 HaWSD2 455 50.68 8.62 -0.037 0
OTG23138 HaWSD3 476 54.00 8.95 -0.241 0
OTG23434 HaWSD4 486 55.54 9.20 -0.244 0
OTG11715 HaWSD5 474 52.63 8.55 -0.003 0
OTG11716 HaWSD6 461 51.91 8.77 -0.025 0
OTG12880 HaWSD7 491 56.20 9.00 -0.221 1
OTG03949 HaWSD8 508 57.33 9.21 -0.176 1
OTG03950 HaWSD9 509 57.11 9.21 -0.190 1
OTF91362 HaWSD10 458 51.51 8.41 -0.079 0
OTF91364 HaWSD11 456 50.79 8.65 -0.057 0
OTF86778 HaWSD12 475 53.16 7.11 -0.111 0

图1

向日葵和其他植物DGAT家族蛋白系统发育树 Ha: 向日葵; At: 拟南芥; Gm: 大豆; Ah: 花生; Bn: 甘蓝型油菜; Sb: 高粱; Os: 水稻: Eg: 油棕: Aa: 黄花蒿; Ct: 红花; Zm: 玉米。"

图2

向日葵HaDGATs基因结构"

图3

向日葵HaDGATs蛋白的保守基序"

图4

向日葵HaDGATs染色体分布(A)及启动子顺式作用元件(B)分析"

表3

向日葵HaDGATs家族成员基因复制事件和发散时间分析"

重复基因对
Duplicated gene pairs
非同义替换率
Ka
同义替换率
Ks
Ka/Ks 重复类型
Duplicated type
选择类型
Selective type
分化时间
Differentiation time (Mya)
HaDGAT1-1/HaDGAT1-2 0.1424 1.1312 0.1259 片段重复Segmental 纯化Purifying 37.70
HaDGAT1-1/HaDGAT1-3 0.1334 1.0506 0.1270 片段重复Segmental 纯化Purifying 35.02
HaDGAT1-2/HaDGAT1-3 0.0906 0.4019 0.2255 片段重复Segmental 纯化Purifying 13.39
HaWSD3/HaWSD4 0.1488 0.4223 0.3523 串联重复Tandem 纯化Purifying 14.07
HaWSD7/HaWSD8 0.1271 0.5899 0.2155 片段重复Segmental 纯化Purifying 19.66
HaWSD7/HaWSD9 0.1349 0.5677 0.2377 片段重复Segmental 纯化Purifying 18.92
HaWSD8/HaWSD9 0.0635 0.3272 0.1942 串联重复Tandem 纯化Purifying 10.90
HaWSD10/HaWSD11 0.1251 0.3299 0.3793 串联重复Tandem 纯化Purifying 10.99

图5

共线性关系分析 A: 向日葵种内HaDGATs共线性分析; B: 向日葵与拟南芥、红花种间DGATs基因共线性分析。"

图6

HaDGATs在向日葵不同组织的表达模式 DAF: 开花后天数。HaDGATs基因的相对表达量以根的表达量作为对照。"

图7

向日葵种子发育不同时期的油脂含量分析 不同字母表示数值有显著差异(P < 0.05)。"

图8

向日葵HaDGATs在盐(A)和低温(B)胁迫下的表达"

图9

向日葵HaDGATs在外源ABA (A)和干旱(B)处理下的表达"

[1] Hryvusevich P, Navaselsky I, Talkachova Y, Straltsova D, Keisham M, Viatoshkin A, Samokhina V, Smolich I, Sokolik A, Huang X, Yu M, Bhatla S, Demidchik V. Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Front Plant Sci, 2020, 11: 613936.
doi: 10.3389/fpls.2020.613936
[2] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL. 作物学报, 2018, 44: 385-396.
Lyu P, Yu H F, Hou J H. QTL mapping of yield traits in sunflower using drought resistant selection introgression lines. Acta Agron Sin, 2018, 44: 385-396. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00385
[3] Nelson G J. Dietary fat, trans fatty acids, and risk of coronary heart disease. Nutr Rev, 1998, 56: 250-252.
pmid: 9735680
[4] Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 1998, 95: 13018-13023.
doi: 10.1073/pnas.95.22.13018
[5] 唐桂英, 柳展基, 单雷. 二酰基甘油酰基转移酶(DGAT)研究进展. 中国油料作物学报, 2010, 32: 320-328.
Tang G Y, Liu Z J, Shan L. Progress of diacylglycerol acyltransferase (DGAT) study. Chin Oil Crop Sci, 2010, 32: 320-328. (in Chinese with English abstract)
[6] He X H, Grace Q C, Lin J T, McKeon T A. Regulation of diacylglycerol transferase in developing seeds of castor. Lipids, 2004, 39: 865-871.
doi: 10.1007/s11745-004-1308-1
[7] Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367-372.
doi: 10.1038/ng.85 pmid: 18278045
[8] Nykiforuk C L, Laroche A, Weselake R J. Isolation and characterization of a cDNA encoding a second putative diacylglycerol transferase from a microspore-derived cell suspension culture of Brassica napus L. cv Jet Neuf. Plant Physiol, 1999, 121: 1957-1959.
[9] Bouvier-Navé P, Benveniste P, Oelkers P, Sturley S L, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur J Biochem, 2000, 267: 85-96.
pmid: 10601854
[10] Shockey J M, Gidda S K, Chapital D C, Kuan JC, Dhanoa P K, Bland J M, Rothstein S J, Mullen R T, Dyer J M. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 2006, 18: 2294-2313.
doi: 10.1105/tpc.106.043695
[11] Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J Exp Bot, 2011, 62: 521-532.
doi: 10.1093/jxb/erq286
[12] Li R, Yu K, Hildebrand D F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145-157.
doi: 10.1007/s11745-010-3385-4
[13] Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor D C. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J, 1999, 19: 645-653.
pmid: 10571850
[14] Zhou X R, Shrestha P, Yin F, Petrie J R, Singh S P. AtDGAT2 is a functional acyl-CoA: diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Lett, 2013, 587: 2371-2376.
doi: 10.1016/j.febslet.2013.06.003
[15] Zhang T T, He H, Xu C J, Fu Q, Tao Y B, Xu R, Xu Z F. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas. Plants (Basel), 2021, 10: 699.
doi: 10.3390/plants10040699
[16] Aymé L, Arragain S, Canonge M, Baud S, Touati N, Bimai O, Jagic F, Louis-Mondésir C, Briozzo P, Fontecave M, Chardot T. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci Rep, 2018, 8: 17254.
doi: 10.1038/s41598-018-35545-7
[17] Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol, 2006, 141: 1533-1543.
pmid: 16798944
[18] Gao H, Gao Y, Zhang F, Liu B, Ji C, Xue J, Yuan L, Li R. Functional characterization of an novel acyl-CoA: diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa. Plant Sci, 2021, 303: 110752.
doi: 10.1016/j.plantsci.2020.110752
[19] Kalscheuer R, Steinbüchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem, 2003, 278: 8075-8082.
doi: 10.1074/jbc.M210533200 pmid: 12502715
[20] Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol, 2008, 148: 97-107.
[21] Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer A J, Schreiber L, Dörmann P. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J, 2019, 98: 727-744.
doi: 10.1111/tpj.14269
[22] Abdullah H M, Rodriguez J, Salacup J M, Castañeda I S, Schnell D J, Pareek A, Dhankher O P. Increased cuticle waxes by overexpression of WSD1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa. Int J Mol Sci, 2021, 22: 5173.
doi: 10.3390/ijms22105173
[23] 牛永志, 王国平, 郑昀晔, 马文广. 烟草DGAT基因家族全基因组鉴定与分析. 中国烟草科学, 2020, 41(1): 1-8.
Niu Y Z, Wang G P, Zheng Y Y, Ma W G. Genome-wide identification and analysis of DGAT family genes in tobacco. Chin Tob Sci, 2020, 41(1): 1-8. (in Chinese with English abstract)
[24] Zhao Y, Wu N, Li W, Shen J, Chen C, Li F, Hou Y. GhDGAT3D evolution and characterization of acetyl coenzyme A: diacylglycerol acyltransferase genes in cotton identify the roles of in oil biosynthesis and fatty acid composition. Genes (Basel), 2021, 12: 1045.
doi: 10.3390/genes12071045
[25] 郑玲, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6): 10-18.
Zheng L, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y. Bioinformatics analysis of peanut DGAT gene family. Shandong Agric Sci, 2018, 50(6): 10-18. (in Chinese with English abstract)
[26] Yan B, Xu X, Gu Y, Zhao Y, Zhao X, He L, Zhao C, Li Z, Xu J. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61: 735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654
[27] Rosli R, Chan P, Chan K, Amiruddin N, Low E, Singh R, Harwood J, Murphy D. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Sci, 2018, 275: 84-96.
[28] Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA: diacylglycerol acyltransferase from soybean identifies GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol, 2019, 242: 153019.
doi: 10.1016/j.jplph.2019.153019
[29] Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol, 2009, 60: 433-453.
doi: 10.1146/annurev.arplant.043008.092122 pmid: 19575588
[30] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[31] 李培江, 米瑶, 余竟, 李碧娟, 廖芳, 李关荣. 美国引进向日葵种子含油量和脂肪酸组成比较分析. 中国油脂, 2015, 40(11): 104-106.
Li P J, Mi Y, Yu J, Li B J, Liao F, Li G R. Comparative analysis of oil content and fatty acid composition of sunflower seeds introduced from the United States. China Oils Fats, 2015, 40(11): 104-106. (in Chinese with English abstract)
[32] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[33] Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol, 2016, 67: 179-206.
doi: 10.1146/annurev-arplant-043015-111641 pmid: 26845499
[34] Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366
[35] Misra A, Khan K, Niranjan A, Nath P, Sane V A. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry, 2013, 96: 37-45.
doi: 10.1016/j.phytochem.2013.09.020
[36] Xu J, Francis T, Mietkiewska E, Giblin E M, Barton D L, Zhang Y, Zhang M, Taylor D C. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 2008, 6: 799-818.
doi: 10.1111/j.1467-7652.2008.00358.x
[37] Zhang M, Fan J L, Taylor D C, Ohlrogge J B. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 2009, 21: 3885-3901.
doi: 10.1105/tpc.109.071795
[38] Lu C L, de Noyer S B, Hobbs D H, Kang J, Wen Y, Krachtus D, Hills M J. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Plant Mol Biol, 2003, 52: 31-41.
doi: 10.1023/A:1023935605864
[39] 鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究. 作物学报, 2020, 46: 1283-1290.
doi: 10.3724/SP.J.1006.2020.94192
Lu G, Tang X, Lu J X, Li D, Hu Q Y, Hu T, Zhang T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens. Acta Agron Sin, 2020, 46: 1283-1290. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94192
[40] Takeda S, Iwasaki A, Matsumoto N, Uemura T, Tatematsu K, Okada K. Physical interaction of floral organs controls petal morphogenesis in Arabidopsis. Plant Physiol, 2013, 161: 1242-1250.
doi: 10.1104/pp.112.212084 pmid: 23314942
[41] Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One, 2014, 9: e105834.
doi: 10.1371/journal.pone.0105834
[42] Tan W J, Yang Y C, Zhou Y, Huang L P, Xu L, Chen Q F, Yu L J, Xiao S. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiol, 2018, 177: 1303-1318.
doi: 10.1104/pp.18.00402
[43] Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol, 2002, 129: 1352-1358.
doi: 10.1104/pp.006122
[44] Weselake R J, Shah S, Tang M, Quant P A, Snyder C L, Furukawa-Stoffer T L, Zhu W, Taylor D C, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney M M, Harwood J L. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot, 2008, 59: 3543-3549.
doi: 10.1093/jxb/ern206 pmid: 18703491
[1] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[2] 杨佳宝, 张展, 周至铭, 吕新华, 孙黎. 向日葵HaLACS9基因的克隆与功能分析[J]. 作物学报, 2023, 49(2): 426-437.
[3] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[4] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[5] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[6] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[7] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[8] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[9] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[10] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[11] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[14] 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839.
[15] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[6] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[7] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[8] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[9] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[10] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .