欢迎访问作物学报,今天是

作物学报

• •    

鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响

马超,冯雅岚,吴姗薇,张均,郭彬彬,熊瑛,李春霞*,李友军*   

  1. 河南科技大学农学院 / 河南省旱地农业工程技术研究中心,河南洛阳 471000
  • 收稿日期:2021-09-24 修回日期:2022-03-25 接受日期:2022-03-25 网络出版日期:2022-04-20
  • 通讯作者: 李春霞, E-mail: lichx@haust.edu.cn; 李友军, E-mail: kdnxylyj@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31401323),河南省自然科学基金项目(222300420430)和河南省高等学校青年骨干教师培养计划项目(2021GGJS050)资助。

Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean

MA Chao,FENG Ya-Lan,WU Shan-Wei,ZHANG Jun,GUO Bin-Bin,XIONG Ying,LI Chun-Xia*,LI You-Jun*   

  1. Agronomy College, Henan University of Science and Technology / Dry-land Agricultural Engineering Technology Research Center in Henan, Luoyang 471000, Henan, China
  • Received:2021-09-24 Revised:2022-03-25 Accepted:2022-03-25 Published online:2022-04-20
  • Contact: Li Chunxia, E-mail: lichx@haust.edu.cn; Li Youjun, E-mail: kdnxylyj@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31401323), the Natural Science Foundation of Henan Province (222300420430), and the Training Program for University Young Key Teachers in Henan Province (2021GGJS050).

摘要: 为明确黑绿豆种皮各花青素组分积累规律和遮光对其的影响,以普通绿豆和黑绿豆为试验材料,在大田栽培条件下于花后5 d开始对豆荚进行遮光处理。采用分光光度法结合液相色谱串联质谱的方法测定了2个绿豆种皮中不同时期各种花青素组分的积累,利用Real-time PCR方法分析了花青素合成结构基因的表达,并测定了3种花青素合成酶的活性。结果显示,黑绿豆种皮在花后16 d(S3时期)开始大量积累花青素,近成熟期时(S4时期)能检测到的花青素组分分别为:飞燕草色素(88.67%,主调色素)、矢车菊色素(8.68%)、原花青素(1.05%)、矮牵牛花色素(0.94%)、天竺葵色素(0.34%)和芍药花色素(0.32%)。其中,3种主要花青素的主调色素组分分别为飞燕草素-3-O-葡萄糖苷(76.61%)、矢车菊素-3-O-葡萄糖苷(89.17%)、原花青素B3(28.64%)。Real-time PCR分析表明,黑绿豆种皮花青素合成结构基因PALC4H4CLCHSCHIF3’HF3’5’HDFRLDOXUFGT相对表达量显著高于普通绿豆,其中DFR(371.85倍)、LDOX(44.09倍)和F3’5’H(32.99倍) 的差异表达倍数最大。黑绿豆种皮中PAL、CHI和UFGT的活性也均大于普通绿豆。9个花青素合成的结构基因表达量和2个花青素合成相关酶的活性与多数花青素组分含量和总含量都呈显著正相关关系。11个花青素合成结构基因的表达量和3个花青素合成相关酶活性在遮光条件下均显著降低,最终导致花青素各组分含量和总量显著降低。研究结果为黑绿豆种皮着色的调控机制解析奠定了基础,也有助于黑绿豆育种的辅助选择。

关键词: 黑绿豆, 遮光, 花青素, 种皮, 基因表达

Abstract: To investigate the accumulation of anthocyanin in the seed coat of mung bean and the effects of shading on it, two cultivars with different seed colors (green and black) were both shaded after flowering 5 days under the conditions of field cultivation. The accumulation of various anthocyanin components in seed coat were assessed using spectrophotometry combined with liquid chromatography tandem mass spectrometer. The relative expressions of structural genes and the activity of three anthocyanin synthase enzymes were both analyzed. The results showed that the seed coat of black mung bean began to accumulate anthocyanins at 16 days after flowering (S3 period), and the detectable anthocyanins at the near-mature period (S4 period) were delphinidin (88.67%, main pigment), cyanidin (8.68%), procyanidin (1.05%), petunidin (0.94%), pelargonidin (0.34%), and peonidin (0.32%) according to the proportion of each component. In the black mung bean seed coat at S4 period, the main pigment components of the three anthocyanins were delphinidin-3-O-glucoside (76.61%), cyanidin-3-O-glucoside (89.17%), and procyanidin B3 (28.64%). In general, the relative expression levels of the anthocyanin synthesis structural genes (PAL, C4H, 4CL, CHS, CHI, F3'H, F3'5'H, DFR, LDOX, and UFGT) in the seed coat of black mung bean were significantly higher than green mung bean, among which DFR (37185%), LDOX (4409%), and F3'5'H (3299%) had the largest differential expression multiples. The activities of PAL, CHI, and UFGT in black mung bean seed coat were also greater than those of green mung bean. The relative expression levels of nine anthocyanin synthesis structural genes and the activity of two anthocyanin synthesis-related enzymes were dramatically positively correlated with the contents and the total contents of most anthocyanin components. The relative expression levels of eleven anthocyanin synthesis structural genes and the activities of three anthocyanin synthesis-related enzymes were remarkably reduced under shading conditions, which ultimately led to a noticeable decrease in the content and total amount of anthocyanin components. The results provide a theoretical foundation for the regulation mechanism of black mung bean seed coat coloration, and also contribute to the auxiliary selection of black mung bean breeding.

Key words: black mung bean, shading, anthocyanin, seed coat, the relative expression levels of genes

[1] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[2] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[3] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[4] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[5] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[6] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[7] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[10] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[11] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[12] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[13] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[14] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[15] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!