欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2826-2839.doi: 10.3724/SP.J.1006.2022.14172

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响

马超(), 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞*(), 李友军*()   

  1. 河南科技大学农学院 / 河南省旱地农业工程技术研究中心, 河南洛阳 471000
  • 收稿日期:2021-09-24 接受日期:2022-03-25 出版日期:2022-11-12 网络出版日期:2022-04-20
  • 通讯作者: 李春霞,李友军
  • 作者简介:第一作者联系方式: E-mail: machao840508@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31401323);河南省自然科学基金项目(222300420430);河南省高等学校青年骨干教师培养计划项目(2021GGJS050)

Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean

MA Chao(), FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia*(), LI You-Jun*()   

  1. Agronomy College, Henan University of Science and Technology / Dry-land Agricultural Engineering Technology Research Center in Henan, Luoyang 471000, Henan, China
  • Received:2021-09-24 Accepted:2022-03-25 Published:2022-11-12 Published online:2022-04-20
  • Contact: LI Chun-Xia,LI You-Jun
  • Supported by:
    The National Natural Science Foundation of China(31401323);The Natural Science Foundation of Henan Province(222300420430);The Training Program for University Young Key Teachers in Henan Province(2021GGJS050)

摘要:

为明确黑绿豆种皮各花青素组分积累规律和遮光对其的影响, 以普通绿豆和黑绿豆为试验材料, 在大田栽培条件下于花后5 d开始对豆荚进行遮光处理。采用分光光度法结合液相色谱串联质谱的方法测定了2个绿豆种皮中不同时期各种花青素组分的积累, 利用Real-time PCR方法分析了花青素合成结构基因的表达, 并测定了3种花青素合成酶的活性。结果显示, 黑绿豆种皮在花后16 d (S3时期)开始大量积累花青素, 近成熟期时(S4时期)能检测到的花青素组分分别为: 飞燕草色素(88.67%, 主调色素)、矢车菊色素(8.68%)、原花青素(1.05%)、矮牵牛花色素(0.94%)、天竺葵色素(0.34%)和芍药花色素(0.32%)。其中, 3种主要花青素的主调色素组分分别为飞燕草素-3-O-葡萄糖苷(76.61%)、矢车菊素-3-O-葡萄糖苷(89.17%)、原花青素B3 (28.64%)。Real-time PCR分析表明, 黑绿豆种皮花青素合成结构基因PALC4H4CLCHSCHIF3’HF3’5’HDFRLDOXUFGT相对表达量显著高于普通绿豆, 其中DFR (371.85倍)、LDOX (44.09倍)和F3’5’H (32.99倍) 的差异表达倍数最大。黑绿豆种皮中PAL、CHI和UFGT的活性也均大于普通绿豆。9个花青素合成的结构基因表达量和2个花青素合成相关酶的活性与多数花青素组分含量和总含量都呈显著正相关关系。11个花青素合成结构基因的表达量和3个花青素合成相关酶活性在遮光条件下均显著降低, 最终导致花青素各组分含量和总量显著降低。研究结果为黑绿豆种皮着色的调控机制解析奠定了基础, 也有助于黑绿豆育种的辅助选择。

关键词: 黑绿豆, 遮光, 花青素, 种皮, 基因表达

Abstract:

To investigate the accumulation of anthocyanin in the seed coat of mung bean and the effects of shading on it, two cultivars with different seed colors (green and black) were both shaded after flowering 5 days under the conditions of field cultivation. The accumulation of various anthocyanin components in seed coat were assessed using spectrophotometry combined with liquid chromatography tandem mass spectrometer. The relative expressions of structural genes and the activity of three anthocyanin synthase enzymes were both analyzed. The results showed that the seed coat of black mung bean began to accumulate anthocyanins at 16 days after flowering (S3 period), and the detectable anthocyanins at the near-mature period (S4 period) were delphinidin (88.67%, main pigment), cyanidin (8.68%), procyanidin (1.05%), petunidin (0.94%), pelargonidin (0.34%), and peonidin (0.32%) according to the proportion of each component. In the black mung bean seed coat at S4 period, the main pigment components of the three anthocyanins were delphinidin-3-O-glucoside (76.61%), cyanidin-3-O-glucoside (89.17%), and procyanidin B3 (28.64%). In general, the relative expression levels of the anthocyanin synthesis structural genes (PAL, C4H, 4CL, CHS, CHI, F3H, F35H, DFR, LDOX, and UFGT) in the seed coat of black mung bean were significantly higher than green mung bean, among which DFR (37185%), LDOX (4409%), and F35H (3299%) had the largest differential expression multiples. The activities of PAL, CHI, and UFGT in black mung bean seed coat were also greater than those of green mung bean. The relative expression levels of nine anthocyanin synthesis structural genes and the activity of two anthocyanin synthesis-related enzymes were dramatically positively correlated with the contents and the total contents of most anthocyanin components. The relative expression levels of eleven anthocyanin synthesis structural genes and the activities of three anthocyanin synthesis-related enzymes were remarkably reduced under shading conditions, which ultimately led to a noticeable decrease in the content and total amount of anthocyanin components. The results provide a theoretical foundation for the regulation mechanism of black mung bean seed coat coloration, and also contribute to the auxiliary selection of black mung bean breeding.

Key words: black mung bean, shading, anthocyanin, seed coat, the relative expression levels of genes

图1

普通绿豆和黑绿豆成熟种子表型"

表1

引物序列"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
VrPAL TCTTCATCCTATCACCCCACA TCATGCTATCAATCACCCAATC
VrC4H ATACTAAAGCATTCCACCGTT AGATACATCACCACCTACCCA
Vr4CL GCTGGAAGAAGAACGCTTGTT GTTGTTGGATTGAATGGTGGG
VrCHS GTCCATTCCCAAACCACCTCA TCGGCACTTCCACAACCACTA
VrCHI AAGCTAATAAGAGGATCGAAG AGAGAAACTAAGCCCCAAG
VrF3H CAAATCAAAGGAACCACAAG TTATCACAATCATACACAACAACT
VrF3'H GGTGGTGGAGGTGATGGTG ACTTGGGTCAGGATTCTTGGA
VrF3'5'H CAAAGTGATAGGTAGGGAGCG GGTTGAGAGGAGTTGAAGGGT
VrDFR AATGAAGTGATAAAGCCGACA GCATAAGAAAGGGACCAACG
VrLDOX AGGAGTTGGAGAACATAGGAA AGGATAAACAAGGTGGAAGAA
VrUFGT GGTGTGAGGATAAGATGGTTGT TGCGAGGTAGGGAATGAAGT
VrACTIN GTTCTGTTCCAGCCATCCAT GTGGTGCGACAACCTTGATT

图2

遮光条件下普通绿豆和黑绿豆种皮不同时期的表型分析 S1: 花后10 d; S2: 花后13 d; S3: 花后16 d; S4: 花后19 d。"

图3

遮光对普通绿豆和黑绿豆种皮花青素含量的影响 A: HCl-甲醇法花青素含量; B: LC-MC/MC法花青素含量; C: HCl-甲醇法和LC-MC/MC法花青素含量结果的相关性分析。数值为3个生物学重复的平均值, 误差线为标准误。同一个处理下不同小写字母代表不同时间差异显著。GS1: 普通绿豆花后10 d; GS2: 普通绿豆花后13 d; GS3: 普通绿豆花后16 d; GS4: 普通绿豆花后19 d; BS1: 黑绿豆花后10 d; BS2: 黑绿豆花后13 d; BS3: 黑绿豆花后16 d; BS4: 黑绿豆花后19 d。"

图4

遮光对普通绿豆和黑绿豆种皮花青素组分比例的影响 A: 光照条件下; B: 遮光条件下。缩写同图3。"

表2

遮光对普通绿豆和黑绿豆种皮飞燕草色素组分相对含量的影响"

表3

遮光对普通绿豆和黑绿豆种皮矢车菊色素组分相对含量的影响"

表4

遮光对普通绿豆和黑绿豆种皮原花青素组分相对含量的影响"

图5

遮光对普通绿豆和黑绿豆种皮中花青素结构基因表达特性的影响 缩写同图3。数值为3个生物学重复的平均值, 误差线为标准误。同一个处理下不同小写字母代表不同时间差异显著(P < 0.05)。"

图6

遮光对普通绿豆和黑绿豆种皮中花青素合成相关酶活性的影响 缩写同图3。数值为3个生物学重复的平均值, 误差线为标准误。同一个处理下不同小写字母代表不同时间在0.05水平差异显著。"

表5

花青素含量与相关基因表达及酶活性的相关系数"

指标
Index
总花青素
Total
anthocyanin
飞燕草色素
Delphinidin
矢车菊色素
Cyanidin
矮牵牛色素
Petunidin
原花青素
Procyanidine
天竺葵色素
Pelargonidin
芍药花色素
Peonidin
基因相对表达量
Relative expression
level of genes
PAL 0.97** 0.99** 0.98** 0.99** 0.33 0.63 0.82**
C4H 0.89** 0.96** 0.92** 0.95** 0.46 0.73* 0.90**
4CL 0.93** 0.98** 0.95** 0.98** 0.37 0.66 0.86**
CHS 0.74* 0.84** 0.78** 0.84** 0.61 0.80** 0.91**
CHI 0.37 0.50 0.42 0.50 0.85** 0.86** 0.83**
F3H 0.01 0.02 -0.01 0.02 0.73* 0.62 0.45
F3'H 0.99** 0.98** 0.99** 0.99** 0.33 0.63 0.80**
F3'5'H 0.92** 0.93** 0.91** 0.94** 0.43 0.69 0.86**
DFR 0.94** 0.94** 0.93** 0.97** 0.42 0.69 0.85**
LDOX 0.93** 0.94** 0.93** 0.96** 0.44 0.70* 0.86**
UFGT 0.84** 0.82** 0.83** 0.83** 0.49 0.72* 0.81**
酶活性
Activity
of enzymes
PAL 0.87** 0.93** 0.88** 0.91** 0.42 0.69 0.87**
CHI 0.43 0.08 0.01 0.08 0.65 0.54 0.44
UFGT 0.77** 0.89** 0.83** 0.87** 0.44 0.69 0.87**
[1] 王建花, 张耀文, 程须珍, 王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析. 作物学报, 2017, 43: 1096-1102.
doi: 10.3724/SP.J.1006.2017.01096
Wang J H, Zhang Y W, Cheng X Z, Wang L X. Construction of new genetic map and identification of QTLs related to agronomic traits in mung bean. Acta Agron Sin, 2017, 43: 1096-1102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01096
[2] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响. 作物学报, 2021, 47: 1175-1187.
doi: 10.3724/SP.J.1006.2021.04148
Dang K, Gong X W, Lyu S M, Zhao G, Tian L X, Jin F, Yang P, Feng B L, Gao X L. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping. Acta Agron Sin, 2021, 47: 1175-1187. (in Chinese with English abstract)
[3] 宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019, 52: 4139-4153.
Gong X W, Dang K, Li J, Luo Y, Zhao G, Yang P, Gao X L, Gao J F, Wang P K, Feng B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Sci Agric Sin, 2019, 52: 4139-4153. (in Chinese with English abstract)
[4] 王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42: 1519-1527.
Wang L X, Cheng X Z, Wang S H. Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.). Sci Agric Sin, 2009, 42: 1519-1527. (in Chinese with English abstract)
[5] 左锋, 毛小雨, 许馨予, 杨鹄隽, 刘灵飞, 钱丽丽. 添加萌发绿豆粉对面包品质的影响研究. 中国粮油学报, 2020, 35(8): 38-44.
Zuo F, Mao X Y, Xu X Y, Yang H J, Liu L F, Qian L L. Study on effects of germination mung bean powder on bread quality. J Chin Cereals Oils Assoc, 2020, 35(8): 38-44. (in Chinese with English abstract)
[6] 罗磊, 姬青华, 焦昆鹏, 朱文学, 关宁宁, 薛依涵. 绿豆皮黄酮的提取纯化及其抗氧化研究. 中国粮油学报, 2017, 32(9): 109-115.
Luo L, Ji Q H, Jiao K P, Zhu W X, Guan N N, Xie Y H. Extraction purification and antioxidation of flavonoids from mung bean hull. J Chin Cereals Oils Assoc, 2017, 32(9): 109-115. (in Chinese with English abstract)
[7] 廉雪.绿豆种皮颜色遗传分析及相关基因的定位. 山西大学硕士学位论文, 山西太原, 2020.
Lian X. Genetic Analysis of Seedcoat Color of Mungbean and Location of Related Genes. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2020. (in Chinese with English abstract)
[8] 庄维兵, 刘天宇, 束晓春, 渠慎春, 翟恒华, 王涛, 张凤娇, 王忠. 植物体内花青素苷生物合成及呈色的分子调控机制. 植物生理学报, 2018, 54: 1630-1644.
Zhuang W B, Liu T Y, Shu X C, Qu S C, Zhai H H, Wang T, Zhang F J, Wang Z. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants. Acta Phytophysiol Sin, 2018, 54: 1630-1644 (in Chinese with English abstract).
[9] 王鸿雪, 刘天宇, 庄维兵, 王忠, 朱林, 渠慎春, 翟恒华. 花青素苷在植物逆境响应中的功能研究进展. 农业生物技术学报, 2020, 28: 174-183.
Wang H X, Liu T Y, Zhuang W B, Wang Z, Zhu L, Qu S C, Zhai H H. Research advances in the function of anthocyanin in plant stress response. J Agric Biotechnol, 2020, 28: 174-183. (in Chinese with English abstract)
[10] 许倩, 张晨, 吴嘉维, 欧阳嘉. 花青素的生物合成研究进展. 林产化学与工业, 2020, 40(3): 1-11.
Xu Q, Zhang C, Wu J W, Ou-yang J. Research progress in biosynthesis of anthocyanins. Chem Ind For Prod, 2020, 40(3): 1-11. (in Chinese with English abstract)
[11] Lloyd A, Walbot V, Davis R. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science, 1992, 258: 1773-1775.
pmid: 1465611
[12] Xie X B, Li S, Zhang R F, Zhao J, Chen Y C, Zhao Q, Yao Y X, You C X, Zhang X S, Hao Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ, 2012, 35: 1884-1897.
doi: 10.1111/j.1365-3040.2012.02523.x
[13] Bai Y C, Li C L, Zhang J W, Li S J, Luo X P, Yao H P, Chen H, Zhao H X, Park S U, Wu Q. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol Plant, 2014, 152: 431-440.
doi: 10.1111/ppl.12199
[14] Vetten N D, Quattrocchio F, Mol J, Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev, 1997, 11: 1422-1434.
doi: 10.1101/gad.11.11.1422
[15] Zhao M G, Li J, Zhu L, Chang P, Li L L, Zhang L Y. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes, 2019, 10: 496.
doi: 10.3390/genes10070496
[16] Zhou H, Wang K L, Wang H L, Gu C, Dare A P, Espley R V, He H P, Allan A C, Han Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J, 2015, 82: 105-121.
doi: 10.1111/tpj.12792
[17] Liu C C, Chi C, Jin L J, Zhu J, Yu J Q, Zhou Y H. The bZip transscription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ, 2018, 41: 1762-1775.
doi: 10.1111/pce.13171
[18] Lalusin A G, Nishita K, Kim S-H, Ohta M, Fujimura T. A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam.) is involved in the accumulation of anthocyanin. Mol Genet Genomics, 2006, 275: 44-54.
doi: 10.1007/s00438-005-0080-x
[19] Ren Y R, Zhao Q, Yang Y Y, Zhang T E, Wang X F, You C X, Hao Y J. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. Hortic Res, 2021, 8: 22.
doi: 10.1038/s41438-020-00457-z
[20] 侯泽豪, 王书平, 魏淑东, 刘志雄, 方正武. 植物花青素生物合成与调控的研究进展. 广西植物, 2017, 37: 1603-1613.
Hou Z H, Wang S P, Wei S D, Liu Z X, Fang Z W. Anthocyanin biosynthesis and regulation in plants. Guihaia, 2017, 37: 1603-1613. (in Chinese with English abstract)
[21] 潘晓琴, 宋世威. 光环境影响植物花青素生物合成研究进展. 植物学研究, 2019, 8: 118-125.
Pan X Q, Song S W. Research advance on the effects of light environment on anthocyanin biosynthesis in plants. Bot Res, 2019, 8: 118-125. (in Chinese with English abstract)
[22] 赵霞, 刘然方. 黑米灌浆特性对花青素积累的影响. 西北农林科技大学学报(自然科学版), 2021, 49(8): 51-58.
Zhao X, Liu R F. Effect of grain filling characteristics on anthocyanin accumulation in black rice. J Northwest A&F Univ (Nat Sci Edn), 2021, 49(8): 51-58. (in Chinese with English abstract)
[23] Ma C, Zhang J, Yuan J L, Guo J R, Xiong Y, Feng Y L. Differential expression of microRNAs are responsive to drought stress and exogenous methyl jasmonate in wheat (Triticum aestivum). Int J Agric Biol, 2019, 22: 475-486.
[24] Lister C E, Lancaster J E, Walker J R L. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric, 2015, 71: 313-320.
doi: 10.1002/(SICI)1097-0010(199607)71:3&lt;313::AID-JSFA586&gt;3.0.CO;2-N
[25] 赵善仓, 刘宾, 赵领军, 郭栋梁, 毛江胜, 郭长英, 任凤山, 王宪泽, 田纪春. 蓝、紫粒小麦籽粒花色苷组成分析. 中国农业科学, 2010, 43: 4072-4080.
Zhao S C, Liu B, Zhao L J, Guo D L, Mao J S, Guo C Y, Ren F S, Wang X Z, Tian J C. Research of anthocyanin composition in blue and purple wheat grains. Sci Agric Sin, 2010, 43: 4072-4080. (in Chinese with English abstract)
[26] Zhao X Y, Corrales M, Zhang C, Hu X S, Ma Y, Tauscher B. Composition and thermal stability of anthocyanins from chinese purple corn (Zea mays L.). J Agric Food Chem, 2008, 56: 10761-10766.
doi: 10.1021/jf8025056
[27] 殷丽琴, 彭云强, 钟成, 付绍红, 杨进, 黄敏, 余勤, 韦献雅, 牛应泽. 高效液相色谱法测定8个彩色马铃薯品种中花青素种类和含量. 食品科学, 2015, 36(18): 143-147.
Yin L Q, Peng Y Q, Zhong C, Fu S H, Ying J, Huang M, Yu Q, Wei X Y, Niu Y Z. Determination of anthocyanidin composition of different pigmented potato (Solanum tuberosum L.) cultivars by HPLC. Food Sci, 2015, 36(18): 143-147. (in Chinese with English abstract)
[28] 赵善仓, 万春燕, 董燕婕, 李增梅, 邓立刚, 于涛, 王燕, 张树秋. 黑花生种皮花色苷组成成分的UPLC/Q-TOF分析研究. 花生学报, 2015, 44(3): 1-6.
Zhao S C, Wan C Y, Dong Y J, Li Z M, Deng L G, Yu T, Wang Y, Zhang S Q. The study of anthocyanins composition in black peanut testae by UPLC/Q-TOF methods. J Peanut Sci, 2015, 44(3): 1-6. (in Chinese with English abstract)
[29] Forkmann G, Heller W, Grisebach H. Anthocyanin biosynthesis in flowers of matthiola incana flavanone 3- and flavonoid 3'-hydroxylases. Zeitschrift Für Naturforsch C, 1980, 35: 691-695.
doi: 10.1515/znc-1980-9-1004
[30] Yang G H, Zhao X Q, Li B, Liu J Z, Zheng Q, Tong Y P, Li Z S. Molecular cloning and characterization of a DFR from developing seeds of blue-grained wheat in anthocyanin biosynthetic pathway. Acta Bot Sin, 2003, 45: 1329-1338.
[31] Yang G H, Li B, Gao J W, Liu J Z, Zhao X, Qiang, Zheng Q, Tong Y P, Li Z S. Cloning and expression of two chalcone synthase and a flavonoid 3'5'-hydroxylase 3'-end cDNAs from developing seeds of blue-grained wheat involved in anthocyanin biosynthetic pathway. Acta Bot Sin, 2004, 46: 588-594.
[32] Jeewani D C.蓝粒小麦中花青素生物合成基因的基因定位及转录组分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2017.
Jeewani D C. Mapping and Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis of Blue Wheat. PhD Dissertation of Northwest A&F University, Yangling, Shanxi, China, 2017.. (in Chinese with English abstract)
[33] 王海伟, 王振林, 王平, 王树刚, 黄玮, 武玉国, 孙兰珍, 尹燕枰. 灌浆期遮光对不同粒色小麦籽粒花青素积累与相关酶活性的影响. 作物学报, 2011, 37: 1093-1110.
Wang H W, Wang Z L, Wang P, Wang S G, Huang W, Wu Y G, Sun L Z, Yin Y P. Effect of shading post anthesis on anthocyanin accumulation and activities of related enzymes in colored-grain wheat. Acta Agron Sin, 2011, 37: 1093-1100. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01093
[34] 亓燕红.彩色玉米籽粒中参与花青素合成基因的表达分析. 山东农业大学硕士学位论文, 山东泰安, 2011.
Qi Y H. Expression Analysis of the Genes Involved in Anthocyanin Pathway in Colored Maize Grain. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2011.. (in Chinese with English abstract)
[35] 袁利.UV-C处理对紫甘蓝花青素合成的影响以及花青素酰基转移酶的克隆. 中国农业科学院硕士学位论文, 北京, 2018.
Yuan L. Study on Effect from UV-C Treatment on Anthocyanin Biosynthesis and the Cloning of Anthocyanin Acyltransferase of Red Cabbage. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (in Chinese with English abstract)
[36] Hou F Y, Wang Q M, Dong S X, Li A X, Zhang H Y, Xie B T, Zhang L M. Accumulation and gene expression of anthocyanin in storage roots of purple-freshed sweet potato [Ipomoea batatas (L.) Lam.] under weak light conditions. Agric Sci China, 2010, 11: 1588-1593.
[37] 吴翠平.光照对紫马铃薯块茎花青素合成及品质的影响. 四川农业大学硕士学位论文, 四川雅安, 2016.
Wu C P. Effect of Light on Synthesis of Anthocyanin and Quality of Tuber in Purple Potato. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2016. (in Chinese with English abstract)
[1] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[2] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[3] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[4] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[5] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[6] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[7] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[8] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[11] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
[12] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
[13] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[14] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[15] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .