作物学报 ›› 2023, Vol. 49 ›› Issue (1): 62-72.doi: 10.3724/SP.J.1006.2023.24007
齐阳阳(), 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰()
QI Yang-Yang(), DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng()
摘要:
为了解大豆节间在不同温度和外源赤霉素(gibberellic acid, GA)诱导条件下的表型变化规律, 分析GA合成重要途径和挖掘调控节间的关键候选基因, 本研究将大豆品种Charleston在培养箱条件和室外盆栽条件种植, 进行不同温度处理和外源GA涂抹处理, 利用徒手切片配合显微照相方法, 分析大豆节间长度和细胞形态变化; 利用液相色谱-质谱联机结合转录组测序方法分析大豆节间GA合成主要通路并挖掘调控节间生长的关键候选基因。结果表明在25℃和30℃条件下, 外源涂抹不同浓度GA可以诱导大豆生长节间伸长, 随着伸长量的增加, 大豆节间都变得纤细。外源GA对细胞作用效果主要为促进伸长, 对宽度影响不明显。高温处理对节间的伸长效果高于低温处理。本研究鉴定到GA2氧化酶基因在大豆生长节间表达和较高含量的GA19和GA53, 及这2种GA下游的GA20 (活性GA前体), 以及这条合成途径的活性GA产物GA3也被检测到都存在于细胞伸长区组织, 说明从GA前体物质到GA53, 再到GA19, 通过GA20最终合成GA3是大豆节间生长的一条重要GA合成通路, 进一步说明GA2氧化酶在大豆节间生长过程中有重要作用。挖掘到某些DELLA、GA和PIF基因家族成员具有组织表达特异性, 为调节大豆节间和株高提供了候选基因。
[1] |
Lyu X, Cheng Q, Qin C, Li Y, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2020, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016 |
[2] | Jiang Z F, Liu D D, Wang T Q, Liang X L, Cui Y H, Liu Z H, Li W B. Concentration difference of Auxin involved in stem development in soybean. J Integr Agric, 2020, 19: 952-963. |
[3] |
Shi D B, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova V V, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. Plant Cell, 2021, 33: 200-223.
doi: 10.1093/plcell/koaa019 |
[4] |
Hedden P. The genes of the green revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[5] |
Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307 |
[6] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 38(2): 195-204. |
Li Y D, Shan X H. Regulation of gibberellin metabolism and the green revolution. Biotechnol Bull, 38(2): 195-204. (in Chinese with English abstract) | |
[8] |
Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
doi: 10.1073/pnas.1000088107 |
[9] |
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607 |
[10] | 张久坤, 齐阳阳, 李立竹, 宁哓霜, 刘志华, 姜振峰, 李文滨. 利用BSA法定位大豆全基因组株高QTL及关键候选基因分析. 华北农学报, 2020, 35(增刊1): 1-10. |
Zhang J K, Qi Y Y, Li L Z, Ning X S, Liu Z H, Jiang Z F, Li W B. Mapping soybean whole genome plant height QTL and key candidate gene analysis using BSA method. Acta Agric Boreali-Sin, 2020, 35(S1): 1-10. (in Chinese with English abstract) | |
[11] |
于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位. 作物学报, 2022, 48: 1091-1102.
doi: 10.3724/SP.J.1006.2022.14063 |
Yu C M, Zhang Y, Wang H R, Yang X Y, Dong Q Z, Xue H, Zhang M M, Li W W, Wang L, Hu K F, Gu Y Z, Qiu L J. High-density genetic map construction of cultivated soybean × semi-wild soybean and QTL mapping of plant height. Acta Agron Sin, 2022, 48: 1091-1102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14063 |
|
[12] |
Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62: 1868-1879.
doi: 10.1111/jipb.12988 |
[13] |
Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12: 667242.
doi: 10.3389/fpls.2021.667242 |
[14] |
Li Z F, Guo Y, Ou L, Hong H L, Wang J, Liu Z X, Guo B F, Zhang L J, Qiu L J. Identification of the dwarf gene GmDW1 in soybean (Glycine max L.) by combining mapping-by- sequencing and linkage analysis. Theor Appl Genet, 2018, 131: 1001-1016.
doi: 10.1007/s00122-017-3044-8 |
[15] |
Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S L, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9- mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562-572.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[16] |
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378 |
[17] |
Radley M. Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars. Planta, 1970, 92: 292-300.
doi: 10.1007/BF00385096 pmid: 24500299 |
[18] |
Spielmeyer W, Ellis M H, Chandler P M. Semi-dwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043-9048.
doi: 10.1073/pnas.132266399 |
[19] |
Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D. Exploiting DELLA signaling in cereals. Trends Plant Sci, 2017, 22: 880-893.
doi: S1360-1385(17)30161-9 pmid: 28843766 |
[20] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-698.
doi: 10.1038/nature04028 |
[21] |
Harberd N P, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell, 2009, 21: 1328-1339.
doi: 10.1105/tpc.109.066969 |
[22] |
Franklin K A, Whitelam G C. Phytochromes and shade-avoidance responses in plants. Ann Bot, 2005, 96: 169-175.
doi: 10.1093/aob/mci165 |
[23] |
Liu W G, Jiang T, Zhou X R, Yang W Y. Characteristics of expansins in soybean internodes and responses to shade stress. Asian J Crop Sci, 2011, 3: 26-34.
doi: 10.3923/ajcs.2011.26.34 |
[24] |
王一, 杨文钰, 张霞, 雍太文, 刘卫国, 苏本营. 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013, 39: 1871-1879.
doi: 10.3724/SP.J.1006.2013.01871 |
Wang Y, Yang W Y, Zhang X, Yong T W, Liu W G, Sun B Y. The effect of shading at different growth periods on the morphological characters and yield of soybean. Acta Agron Sin, 2013, 39: 1871-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01871 |
|
[25] | Cooper R L. Development of short-statured soybean cultivars 1. Crop Sci, 1981, 21: 27-131. |
[26] | Cooper R L. Breeding semidwarf soybeans. Plant Breed Rev, 1985, 3: 89-311. |
[27] | 姜振峰, 赵彩桐, 李佳男, 孙士祥, 刘志华, 李文滨. 不同生长习性大豆株高形成规律分析. 东北农业大学学报, 2019, 50: 33-42. |
Jiang Z F, Zhao C T, Li J N, Sun S X, Liu Z H, Li W B. Analysis on the formation law of soybean plant height with different growth habits. J Northeast Agric Univ, 2019, 50: 33-42. (in Chinese with English abstract) | |
[28] |
任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报, 2016, 42: 1319-1331.
doi: 10.3724/SP.J.1006.2016.01319 |
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of soybean stalk morphogenesis under shade stress. Acta Agron Sin, 2016, 42: 1319-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01319 |
|
[29] |
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G, Zhang H, Liu Z, Shi Miao, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182: 1-15.
doi: 10.1016/j.cell.2020.05.008 |
[30] | 吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响. 大豆科学, 2007, 26: 868-872. |
Wu Q L, Wang Z, Yang W Y. Effect of shading in seedling stage on soybean stalk morphology and substance accumulation. Soybean Sci, 2007, 26: 868-872 (in Chinese with English abstract). | |
[31] |
Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant, 2018, 11: 288-299.
doi: S1674-2052(17)30374-X pmid: 29253619 |
[32] |
Lyu X, Cheng Q, Qin C, Li Y, Xu X, Ji R, Mu R, Li H, Zhao T, Liu J, Zhou Y, Li H, Yang G, Chen Q, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2021, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016 pmid: 33249237 |
[33] |
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014 |
[34] |
Jiang B, Shi Y, Peng Y, Dong X, Li H, Dong J, Li J, Gong Z, Thomashow M F, Yang S. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol Plant, 2020, 13: 894-906.
doi: 10.1016/j.molp.2020.04.006 |
[35] |
Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429 |
[36] | Jiang B, Shi Y, Zhang X, Xin X, Yang S. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114: E66695-E6702. |
[1] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[2] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[3] | 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118. |
[4] | 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35. |
[5] | 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187. |
[6] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[7] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[8] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[9] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[10] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[11] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[12] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[13] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[14] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[15] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
|