欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 62-72.doi: 10.3724/SP.J.1006.2023.24007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析

齐阳阳(), 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰()   

  1. 东北农业大学大豆生物学教育部重点实验室 / 农业农村部东北大豆生物学与遗传育种重点实验室, 黑龙江哈尔滨 150030
  • 收稿日期:2022-01-04 接受日期:2022-03-25 出版日期:2023-01-12 网络出版日期:2022-04-20
  • 通讯作者: 姜振峰
  • 作者简介:E-mail: qyy2022@126.com
  • 基金资助:
    国家自然科学基金项目(31571693);国家自然科学基金项目(32172072);财政部和农业农村部国家现代农业产业技术体系建设专项(大豆, 重点任务)(CARS-04-04B);黑龙江省自然科学基金项目(LH2021C025)

Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean

QI Yang-Yang(), DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng()   

  1. Northeast Agricultural University, Key Laboratory of Soybean Biology in Chinese Ministry of Education / Key Laboratory of Soybean Biology and Genetics Breeding of Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China
  • Received:2022-01-04 Accepted:2022-03-25 Published:2023-01-12 Published online:2022-04-20
  • Contact: JIANG Zhen-Feng
  • Supported by:
    National Natural Science Foundation of China(31571693);National Natural Science Foundation of China(32172072);China Agriculture Research System of MOF and MARA (Soybean, Key Task)(CARS-04-04B);Natural Science Foundation of Heilongjiang Province(LH2021C025)

摘要:

为了解大豆节间在不同温度和外源赤霉素(gibberellic acid, GA)诱导条件下的表型变化规律, 分析GA合成重要途径和挖掘调控节间的关键候选基因, 本研究将大豆品种Charleston在培养箱条件和室外盆栽条件种植, 进行不同温度处理和外源GA涂抹处理, 利用徒手切片配合显微照相方法, 分析大豆节间长度和细胞形态变化; 利用液相色谱-质谱联机结合转录组测序方法分析大豆节间GA合成主要通路并挖掘调控节间生长的关键候选基因。结果表明在25℃和30℃条件下, 外源涂抹不同浓度GA可以诱导大豆生长节间伸长, 随着伸长量的增加, 大豆节间都变得纤细。外源GA对细胞作用效果主要为促进伸长, 对宽度影响不明显。高温处理对节间的伸长效果高于低温处理。本研究鉴定到GA2氧化酶基因在大豆生长节间表达和较高含量的GA19和GA53, 及这2种GA下游的GA20 (活性GA前体), 以及这条合成途径的活性GA产物GA3也被检测到都存在于细胞伸长区组织, 说明从GA前体物质到GA53, 再到GA19, 通过GA20最终合成GA3是大豆节间生长的一条重要GA合成通路, 进一步说明GA2氧化酶在大豆节间生长过程中有重要作用。挖掘到某些DELLA、GA和PIF基因家族成员具有组织表达特异性, 为调节大豆节间和株高提供了候选基因。

关键词: 大豆, 生长节间, GA途径, GA-GID1-DELLA

Abstract:

The objective of this study is to explore the effects of temperature and exogenous GA on the development of soybean internode and the key genes related to gibberellin (GA) signal transduction pathway. The soybean variety ‘Charleston’ was grown in chambers or in pots under outdoor condition, and subjected to the treatments with different temperature and concentration of GA solutions. Phenotype observation, section with hand, LC-MS analysis, and RNA-seq experiments were performed to investigate the internode changes and the genes involved in the GA signal transduction pathway. Different temperature and exogenous GA all induced the internode elongation and the longer the length increased, the slender the internode became. Exogenous GA had an evident elongating effect on the cell length of the internode despite of no effect on the cell width. The internodes grown in 30℃ growth condition were longer than those in 25℃ growth condition. GA2-oxidase, GA19, GA53, GA20, and bioactive GA3 were detected in the elongation zone of soybean internode, suggesting that GA2-oxidase might play an important role in the developmental process of soybean internode. Tissue-specific genes in DELLA, GAI, and PIF gene families could be identified and facilitate the gene selection to regulate the internode growth and plant height from GA signal transduction pathway. Soybean internode was regulated by temperature and exogenous GA. From GA53 to GA19 to GA20 and ultimately to GA3 was an important GA synthesis pathway. GA2-oxidase played an important role on the internode development of soybean. The GA-GID1-DELLA complex was expressed specifically in soybean internode. The candidate genes related to the internode development could be filtered from GID1 and DELLA gene family.

Key words: soybean, internode development, GA pathway, GA-GID1-DELLA

图1

温度升高促进对大豆节间生长 左侧2株为高温处理; 右侧2株低温处理。"

表1

不同温度对大豆生长节间的影响"

温度处理
Temperature treatment
处理前
Before treatment (cm)
12 h后
After 12 hours (cm)
差值
Range (cm)
30℃ 3.02±0.32 3.38±0.35 0.36±0.03
25℃ 2.74±0.13 2.99±0.14 0.25±0.01

图2

外源GA促进大豆节间生长 A: 100 mmol L-1 GA处理; B: 250 mmol L-1 GA处理; C: 对照。"

图3

不同浓度GA外源施用对大豆节间生长影响 A: 25℃条件下GA处理; B: 30℃条件下GA处理。0 h: 未进行GA处理节间长度; 24 h: GA处理24 h后节间长度。"

图4

外源GA处理条件促进不同温度条件下大豆节间伸长区和成熟区细胞响应 A: 高温EZ; B: 高温MZ; C: 低温EZ; D: 低温MZ。"

表2

外源GA处理不同温度条件下大豆节间EZ和MZ细胞响应情况"

节间
Internode
30℃ 25℃
长度 Length (pixel) 宽度 Width (pixel) 长度 Length (pixel) 宽度 Width (pixel)
伸长区 EZ 206.00±4.48 63.78±6.00 131.59±6.48 54.87±1.20
成熟区 MZ 708.33±21.20 65.78±1.11 665.79±27.51 79.18±2.51

表3

大豆植株生长节间不同GA含量"

节间
Internode
GA3 GA15 GA19 GA20 GA53
伸长区 EZ 0.13±0.01 0.24±0.03 48.14±0.01 0.24±0.02 19.40±0.01
成熟区 MZ 47.91±0.02 19.38±0.02

图5

节间生长关键基因响应温度和外源GA的表达量变化 HCK: 30℃对照; LCK: 25℃对照; HG: 30℃ GA处理; LG: 25℃ GA处理。"

图6

高低密度条件下GA途径关键基因表达量变化 CD1: 低密度茎尖第1节; CD21: 低密度第2节伸长区; CD22: 低密度第2节成熟区; CD3: 低密度第3节; CH1: 高密度茎尖第1节; CH21: 高密度第2节伸长区; CH22: 高密度第2节成熟区; CH3: 高密度第3节。"

表4

GA信号转导关键基因的组织特异表达分析"

基因
Gene name
嫩叶
Young leaf

Flower
1 cm荚
One-cm pod
10 d种子
Seed of 10 DAF
42 d种子
Seed of 42 DAF

Root
根瘤
Nodule
Glyma.12g213700
Glyma.13g288000 2.88 3.91 6.75
Glyma.20g141200 1.60 5.00 4.03
Glyma.05g130600 8.09
Glyma.13g361700 3.44 3.61 1.58 0.35 6.34 3.70
Glyma.15g012100 3.83 1.27 4.58 2.67 6.34 6.61
Glyma.04g150500 2.05 4.54 4.43 1.15 1.48 1.73 0.86
Glyma.06g213100 2.37 3.25 1.30 1.03 1.70 2.36 1.97
Glyma.06g213100 2.37 3.25 1.30 1.03 1.70 2.36 1.97
Glyma.11g216500 -2.88 -0.36 0.01 -0.03 -2.63 -2.33 -4.65
Glyma.18g040000 -2.31 -0.33 1.40 0.77 -3.97 -2.12 -4.03
Glyma.08g095800 -0.83 -1.01 -0.08 -0.87 -1.33 -1.96 -2.62
Glyma.20g200500 3.75 2.83 2.63 1.28 0.17 3.09 1.76
Glyma.05g140400 -1.51 -1.34 -0.84 -2.29 -1.65 -1.80 -1.94
Glyma.10g190200 3.66 3.14 2.00 1.03 -1.08 4.77 2.44
Glyma.15g141400 5.00 6.61
Glyma.03g148300 1.20 -1.75 0.65 -0.67 1.13 -1.49 -1.42
Glyma.10g022900 2.62 1.57 6.17 4.67 1.39 0.88 0.46
Glyma.02g151100 3.51 2.25 3.51 2.09 2.88 1.55 1.22
Glyma.20g230600 2.70 3.42 2.05 3.09 2.25 2.02 1.53
Glyma.10g158000 1.44 1.96 1.43 0.50 2.25 0.39 -0.10
Glyma.03g170300
Glyma.03g225000
Glyma.10g142600 3.66 2.54 3.85 -0.35 3.17 3.50 3.16
Glyma.20g091200 6.71 4.97 0.06
Glyma.02g282100 7.83 3.68 8.09
Glyma.U031209
[1] Lyu X, Cheng Q, Qin C, Li Y, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2020, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016
[2] Jiang Z F, Liu D D, Wang T Q, Liang X L, Cui Y H, Liu Z H, Li W B. Concentration difference of Auxin involved in stem development in soybean. J Integr Agric, 2020, 19: 952-963.
[3] Shi D B, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova V V, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. Plant Cell, 2021, 33: 200-223.
doi: 10.1093/plcell/koaa019
[4] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[5] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[6] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a
[7] 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 38(2): 195-204.
Li Y D, Shan X H. Regulation of gibberellin metabolism and the green revolution. Biotechnol Bull, 38(2): 195-204. (in Chinese with English abstract)
[8] Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
doi: 10.1073/pnas.1000088107
[9] Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607
[10] 张久坤, 齐阳阳, 李立竹, 宁哓霜, 刘志华, 姜振峰, 李文滨. 利用BSA法定位大豆全基因组株高QTL及关键候选基因分析. 华北农学报, 2020, 35(增刊1): 1-10.
Zhang J K, Qi Y Y, Li L Z, Ning X S, Liu Z H, Jiang Z F, Li W B. Mapping soybean whole genome plant height QTL and key candidate gene analysis using BSA method. Acta Agric Boreali-Sin, 2020, 35(S1): 1-10. (in Chinese with English abstract)
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位. 作物学报, 2022, 48: 1091-1102.
doi: 10.3724/SP.J.1006.2022.14063
Yu C M, Zhang Y, Wang H R, Yang X Y, Dong Q Z, Xue H, Zhang M M, Li W W, Wang L, Hu K F, Gu Y Z, Qiu L J. High-density genetic map construction of cultivated soybean × semi-wild soybean and QTL mapping of plant height. Acta Agron Sin, 2022, 48: 1091-1102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14063
[12] Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62: 1868-1879.
doi: 10.1111/jipb.12988
[13] Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12: 667242.
doi: 10.3389/fpls.2021.667242
[14] Li Z F, Guo Y, Ou L, Hong H L, Wang J, Liu Z X, Guo B F, Zhang L J, Qiu L J. Identification of the dwarf gene GmDW1 in soybean (Glycine max L.) by combining mapping-by- sequencing and linkage analysis. Theor Appl Genet, 2018, 131: 1001-1016.
doi: 10.1007/s00122-017-3044-8
[15] Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S L, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9- mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562-572.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439
[16] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[17] Radley M. Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars. Planta, 1970, 92: 292-300.
doi: 10.1007/BF00385096 pmid: 24500299
[18] Spielmeyer W, Ellis M H, Chandler P M. Semi-dwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043-9048.
doi: 10.1073/pnas.132266399
[19] Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D. Exploiting DELLA signaling in cereals. Trends Plant Sci, 2017, 22: 880-893.
doi: S1360-1385(17)30161-9 pmid: 28843766
[20] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-698.
doi: 10.1038/nature04028
[21] Harberd N P, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell, 2009, 21: 1328-1339.
doi: 10.1105/tpc.109.066969
[22] Franklin K A, Whitelam G C. Phytochromes and shade-avoidance responses in plants. Ann Bot, 2005, 96: 169-175.
doi: 10.1093/aob/mci165
[23] Liu W G, Jiang T, Zhou X R, Yang W Y. Characteristics of expansins in soybean internodes and responses to shade stress. Asian J Crop Sci, 2011, 3: 26-34.
doi: 10.3923/ajcs.2011.26.34
[24] 王一, 杨文钰, 张霞, 雍太文, 刘卫国, 苏本营. 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013, 39: 1871-1879.
doi: 10.3724/SP.J.1006.2013.01871
Wang Y, Yang W Y, Zhang X, Yong T W, Liu W G, Sun B Y. The effect of shading at different growth periods on the morphological characters and yield of soybean. Acta Agron Sin, 2013, 39: 1871-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01871
[25] Cooper R L. Development of short-statured soybean cultivars 1. Crop Sci, 1981, 21: 27-131.
[26] Cooper R L. Breeding semidwarf soybeans. Plant Breed Rev, 1985, 3: 89-311.
[27] 姜振峰, 赵彩桐, 李佳男, 孙士祥, 刘志华, 李文滨. 不同生长习性大豆株高形成规律分析. 东北农业大学学报, 2019, 50: 33-42.
Jiang Z F, Zhao C T, Li J N, Sun S X, Liu Z H, Li W B. Analysis on the formation law of soybean plant height with different growth habits. J Northeast Agric Univ, 2019, 50: 33-42. (in Chinese with English abstract)
[28] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报, 2016, 42: 1319-1331.
doi: 10.3724/SP.J.1006.2016.01319
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of soybean stalk morphogenesis under shade stress. Acta Agron Sin, 2016, 42: 1319-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01319
[29] Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G, Zhang H, Liu Z, Shi Miao, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182: 1-15.
doi: 10.1016/j.cell.2020.05.008
[30] 吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响. 大豆科学, 2007, 26: 868-872.
Wu Q L, Wang Z, Yang W Y. Effect of shading in seedling stage on soybean stalk morphology and substance accumulation. Soybean Sci, 2007, 26: 868-872 (in Chinese with English abstract).
[31] Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant, 2018, 11: 288-299.
doi: S1674-2052(17)30374-X pmid: 29253619
[32] Lyu X, Cheng Q, Qin C, Li Y, Xu X, Ji R, Mu R, Li H, Zhao T, Liu J, Zhou Y, Li H, Yang G, Chen Q, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol Plant, 2021, 14: 298-314.
doi: 10.1016/j.molp.2020.11.016 pmid: 33249237
[33] Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014
[34] Jiang B, Shi Y, Peng Y, Dong X, Li H, Dong J, Li J, Gong Z, Thomashow M F, Yang S. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol Plant, 2020, 13: 894-906.
doi: 10.1016/j.molp.2020.04.006
[35] Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429
[36] Jiang B, Shi Y, Zhang X, Xin X, Yang S. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114: E66695-E6702.
[1] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[2] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[3] 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118.
[4] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[5] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[6] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[7] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[8] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[9] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[10] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[11] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[12] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[13] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[14] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[7] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[8] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[9] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[10] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .