欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 46-61.doi: 10.3724/SP.J.1006.2023.24005

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析

王恒波(), 张畅(), 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄()   

  1. 福建农林大学农业 / 农村部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心, 福建福州 350002
  • 收稿日期:2022-01-04 接受日期:2022-03-25 出版日期:2023-01-12 网络出版日期:2022-04-20
  • 通讯作者: 阙友雄
  • 作者简介:王恒波, E-mail: wanghengbo_0354@126.com;
    张畅, E-mail: 1223134902@qq.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2018YFD1000503);福建省自然科学基金项目(2022J01160);财政部和农业农村部国家现代农业产业技术体系建设专项(Sugar Crop, CARS-17)

Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar

WANG Heng-Bo(), ZHANG Chang(), WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / Fujian Agriculture and Forestry University / National sugarcane Engineering Technology Research, Fuzhou 350002, Fujian, China
  • Received:2022-01-04 Accepted:2022-03-25 Published:2023-01-12 Published online:2022-04-20
  • Contact: QUE You-Xiong
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000503);Natural Science Foundation of Fujian Province, China(2022J01160);China Agriculture Research System of MOF and MARA(Sugar Crop, CARS-17)

摘要:

NAC (NAM, ATAF和CUC)是陆生植物特有的转录因子家族, 包含18个亚家族, 其中ATAF亚家族成员广泛参与生物和非生物胁迫应答过程。本研究基于甘蔗割手密种基因组数据和栽培品种ROC22的cDNA文库, 首先, 通过比较基因组学方法, 对ATAF亚家族成员进行鉴定、蛋白多序列比对、系统进化分析及启动子区域顺式作用元件预测; 其次, 从甘蔗栽培品种克隆获得割手密种ATAF亚家族成员SsNAC2的同源基因ScNAC2, 在生物信息学分析基础上, 采用qRT-PCR技术分析该基因的组织特异性表达模式, 及其在不同外源胁迫下的表达特性; 最后, 对ScNAC2基因的编码蛋白进行亚细胞定位和转录激活活性试验。结果表明, 一共鉴定到6个ATAF亚家族成员, 开放读阅读框在889~1017 bp之间, 相对分子量介于32.067~35.819 kD之间, 理论等电点分布在5.09~8.92之间, 所有成员的编码蛋白被预测均定位于细胞核上。这些基因的Ka/Ks比值均小于1, 表明纯化选择在进化过程中起重要作用。蛋白的氨基酸序列比对显示, ATAF亚家族成员都含NAM保守结构域(由I、II、III、IV和V亚结构域组成)。系统进化分析揭示, 禾本科的甘蔗、高粱、玉米与水稻亚家族成员都聚类在一起, 表明有较近的亲缘关系, 同时拟南芥、水稻、玉米和高粱等40个ATAF亚家族成员分为两个组(Group A和Group B), 其中玉米ATAF亚家族发生明显的基因扩增现象。此外, ATAF亚家族成员启动子区域均包含响应低温、干旱和激素等逆境胁迫的顺式作用元件, 推测其参与多种生物和非生物胁迫的应答过程。进一步, 从甘蔗栽培品种ROC22中克隆获得ScNAC2基因的cDNA全长序列(GenBank登录号为OL982539), 其开放读码框为891 bp, 编码296个氨基酸残基; 该基因的编码蛋白与割手密种ATAF亚家族Group B 中SsNAC2蛋白的氨基酸序列相似性为97.99%。qRT-PCR表达分析结果表明, ScNAC2基因在甘蔗不同组织中组成型表达, 在蔗叶和蔗皮中表达量高于蔗肉、蔗芽和蔗根; 在水杨酸和茉莉酸甲酯胁迫下, 表达量显著下调; 在脱落酸、4℃低温和氯化钠胁迫下, ScNAC2基因的表达呈现由低到高的模式, 且差异达显著水平。亚细胞定位结果显示, ScNAC2-GFP融合蛋白定位在细胞核上。转录激活活性试验表明, ScNAC2蛋白不具有转录自激活活性。以上结果为深入解析甘蔗NAC-ATAF亚家族成员在响应生物和非生物胁迫应答中的生物学功能奠定了基础, 为甘蔗抗性分子育种提供潜在的基因资源。

关键词: 甘蔗, 转录因子, NAC基因家族, 生物和非生物胁迫, 表达模式

Abstract:

NAC (NAM, ATAF, and CUC) is a family of transcription factors unique to terrestrial plants, including 18 subfamilies, of which ATAF subfamily members are mainly involved in the response processes of biotic and abiotic stresses, such as salicylic acid (SA), methyl jasmonate acid (MeJA), abscisic acid (ABA), pathogenic bacteria, mechanical damage, low temperature, and sodium chloride (NaCl). The data were from the genomic database of Saccharum spontaneum and the cDNA library of a sugarcane cultivar ROC22. Firstly, the ATAF subfamily members in Saccharum were identified and analyzed for their protein multiple sequence alignment, phylogenetic tree construction, and promoter region cis-acting element prediction using comparative genomics methods and various bioinformatics methods. Secondly, one homologous gene of the ATAF subfamily SsNAC2, ScNAC2, was cloned from a prevalent sugarcane cultivar ROC22 in China. The qRT-PCR was used to detect the tissue-specific expression pattern and the relative expression levels of ScNAC2 gene under different exogenous stresses. Finally, the subcellular localization and the transactivation analysis of ScNAC2 protein were performed. The results showed that six members of the ATAF subfamily were identified with the open read reading frames between 889 bp and 1017 bp, relative molecular weights between 32.067 and 35.819 kD, the theoretical isoelectric points from 5.09 to 8.92, and the proteins of all members were predicted to localize on the nucleus. In addition, the Ka/Ks ratios of six gene pairs were all less than 1, indicating that purification selection played an important role during evolution. The amino acid sequence alignment indicated that all members of the ATAF subfamily contained the NAM conserved domains, consisting of I, II, III, IV, and V subdomains. Phylogenetic analysis revealed that the members from sugarcane, sorghum, maize, and rice, that belonged to Gramineae, were clustered together, indicating that they had a close evolutionary relationship. Forty members of the ATAF subfamily from Arabidopsis, rice, maize, and sorghum were divided into two groups (Group A and Group B), in which the subfamily members of maize had obvious gene expansion. Furthermore, the promoter regions of ATAF subfamily members all contained cis-acting elements that responded to stresses such as low temperature, drought, and hormones, and we thus speculated that they were involved in the response processes of a variety of biotic and abiotic stresses. Furthermore, the full-length cDNA sequence of the ScNAC2 gene (GenBank accession number: OL982539) was cloned from the sugarcane cultivar ROC22, with an open reading frame of 891 bp and encoding 296 amino acid residues. The similarity of amino acid sequence between ScNAC2 and SsNAC2 proteins both from ATAF subfamily Group B was 97.99%. The qRT-PCR showed that the ScNAC2 gene was constitutively expressed in different tissues of sugarcane, and its expression level in sugarcane leaves and stem epidermis was higher than that in stem piths, buds, and roots. Besides, the relative expression level of ScNAC2 gene was significantly down-regulated under SA and MeJA stresses, however, it showed an expression pattern from low to high and varied to significant levels under the stress of ABA, 4℃, and NaCl. Subcellular localization revealed that the ScNAC2-GFP fusion protein was localized in the cell nucleus of Nicotiana benthamiana leaves. Furthermore, the transactivation experiment showed that ScNAC2 protein did not have the transcriptional self-activation activity. The above results established the foundation for identifying the biological functions of sugarcane NAC-ATAF subfamily members in response to biotic and abiotic stresses and provided potential genetic resources for sugarcane resistance molecular breeding.

Key words: sugarcane, transcription factor, NAC gene family, biotic and abiotic stress, the relative expression pattern

表1

本研究所用引物序列"

名称 Primer name 引物序列 Primer sequence (5'-3') 备注 Note
ScNAC2-F GCAGCGAGGAACAGTCAAGA 基因克隆
Gene cloning
ScNAC2-R CTTCAATCTTAACTGACCGGC
ScNAC2-qF CAAGGAGGAGGTGGAGGA qRT-PCR
ScNAC2-qR CGAGCATGTTGCCAAAGAAG
GAPDH-F CACGGCCACTGGAAGCA 内参基因
Internal reference gene
GAPDH-R TCCTCAGGGTTCCTGATGCC
ScNAC2-gate-F GGGGACAAGTTTGTACAAAAAAGC
AGGCTTCATGGCGATGGCGACGGTGCA
入门载体构建
Construction of entry vector
ScNAC2-gate-R GGGGACCACTTTGTACAAGAAAGC
TGGGTCGAAGAACGGGAAGCCGGCGT
ScNAC2-yeast-F ATGGGAGTGCCGGTGAGGAGGGA 酵母载体构建
Construction of yeast vector
ScNAC2-yeast-R TCAGCTCAGAATGGCCCCAACCC

表2

甘蔗割手密种SsNAC-ATAF成员的理化性质分析"

基因名称
Gene name
基因ID
Gene ID
开放阅读框
Opening
reading frame
相对分子量
Molecular weight (kD)
理论等电点
pI
不稳定系数
Instability coefficient
高粱直系同源基因
Orthologous gene
from sorghum
非同义和同义替换率
Ka/Ks
SsNAC1 Sspon.001B0024840 960 35.429 6.33 34.38 Sobic.001G040200.1 0.083
SsNAC2 Sspon002C0028310 898 33.557 5.73 48.48 Sobic.002G080100.1 0.150
SsNAC3 Sspon003B0009183 937 34.974 8.58 39.64 Sobic.003G334600.1 0.314
SsNAC4 Sspon004D0012621 889 32.641 8.47 54.78 Sobic.003G379700.1 0.239
SsNAC5 Sspon005B0021590 882 32.067 5.09 43.21 Sobic.005G064600.2 0.225
SsNAC6 Sspon007C0007910 1017 35.819 8.92 51.50 Sobic.009G142200.1 0.532

图1

甘蔗和拟南芥NAC-ATAF亚家族蛋白的序列比对"

图2

NAC-ATAF的系统进化树的构建与保守基序的预测 NAC-ATAF成员分别来自: 玉米: ZmNAC; 拟南芥: ANAC或ATAF1/2; 水稻: OsNAC; 高粱: SbNAC; 大豆: AAX85979.1, GmNAC; 石兰属梭梭: AIS71992.1, HaNAC1; 芒属南荻: AIS74872.1, MlNAC5; 甘蔗热带种: AAW62955.1, SsNAC23; 甘蔗栽培品种: ScNAC2; 大麦: HORVU1Hr1G063740.1, HvNAC6。"

图3

顺式作用元件预测"

图4

ScNAC2的核酸序列及推导的氨基酸序列 下画线部分: ScNAC2蛋白的NAM保守结构域。*: 代表终止密码子。"

图5

ScNAC2基因在甘蔗不同组织的表达量 R: 蔗根; B: 蔗芽; SP: 蔗肉; SE: 蔗皮; L: 蔗叶。误差线为每组处理的标准误差(n = 3)。不同小写字母表示表示5%水平下差异的显著性。"

图6

ScNAC2基因在甘蔗不同逆境胁迫的表达模式 ScNAC2基因在水杨酸、茉莉酸甲酯、脱落酸、氯化钠和4℃低温处理下的表达量。纵坐标代表基因的表达量; 横坐标代表不同处理时间。误差线为每组处理的标准误差(n = 3)。不同小写字母表示表示5%水平下差异的显著性。"

图7

ScNAC2蛋白的亚细胞定位 该结果包含明场、绿色荧光、叠加场3个视野下拍摄的照片。35S::GFP 代表空载的GV3101菌液注射本氏烟叶片的结果; 35S::ScNAC2::GFP重组载体的GV3101菌液注射本氏烟叶片的结果。"

图8

ScNAC2转录激活活性验证 SD/-Trp: 色氨酸营养缺陷型平板培养基; SD/-Trp-His (+X-α-Gal+AbA): 色氨酸+组氨酸营养缺陷型平板培养基(添加5-溴-4-氯-3-吲哚- α-D-半乳糖苷和金担子素A); SD/-Trp-His-Ade (+X-α-Gal+AbA): 色氨酸+组氨酸+腺嘌呤营养缺陷型平板培养基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷和金担子素A)。"

[1] Duval M, Hsieh T F, Kim S Y, Thomas T L. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol, 2002, 50: 237-248.
doi: 10.1023/A:1016028530943
[2] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239-247.
doi: 10.1093/dnares/10.6.239
[3] Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85: 159-170.
pmid: 8612269
[4] Takada S, Hibara K, Ishida T, Tasaka M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 2001, 128: 1127-1135.
doi: 10.1242/dev.128.7.1127
[5] Aida M, Ishida T, Tasaka M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 1999, 126: 1563-1570.
doi: 10.1242/dev.126.8.1563
[6] Christianson J A, Dennis E S, Llewellyn D J, Wilson I W. ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav, 2010, 5: 428-432.
doi: 10.4161/psb.5.4.10847 pmid: 20118664
[7] Delessert C, Kazan K, Wilson I W, Van Der Straeten D, Manners J, Dennis E S, Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J, 2005, 43: 745-757.
doi: 10.1111/j.1365-313X.2005.02488.x
[8] Jensen M K, Rung J H, Gregersen P L, Gjetting T, Fuglsang A T, Hansen M, Joehnk N, Lyngkjaer M F, Collinge D B. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol, 2007, 65: 137-150.
doi: 10.1007/s11103-007-9204-5
[9] 马雪祺, 阴艳红, 冯婧娴, 陈万生, 孙连娜, 肖莹. 植物NAC转录因子研究进展. 植物生理学报, 2021, 57: 2225-2234.
Ma X Q, Yin Y H, Feng J X, Chen W S, Sun L N, Xiao Y. Research progress of NAC transcription factors in plant. Plant Physiol J, 2021, 57: 2225-2234 (in Chinese with English abstract).
[10] Olsen A N, Ernst H A, Leggio L L, Skriver K. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci, 2005, 169: 785-797.
doi: 10.1016/j.plantsci.2005.05.035
[11] 李桂玲, 李思云, 刘卫群. 转录因子NAC及其在植物生长发育中的作用. 分子植物育种, 2019, 17: 811-826.
Li G L, Li S Y, Liu W Q. Transcription factor NAC and its role in plant growth and development. Mol Plant Breed, 2019, 17: 811-826. (in Chinese with English abstract)
[12] Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617-630.
pmid: 17587305
[13] Jin H, Huang F, Cheng H, Song H, Yu D. Overexpression of the GmNAC2gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol Biol Rep, 2013, 31: 435-442.
doi: 10.1007/s11105-012-0514-7
[14] Wang X, Basnayake B M, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact, 2009, 22: 1227-1238.
doi: 10.1094/MPMI-22-10-1227
[15] Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res, 2009, 19: 1279-1290.
doi: 10.1038/cr.2009.108
[16] Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63: 289-305.
doi: 10.1007/s11103-006-9089-8
[17] Jensen M K, Hagedorn P H, De Torres-Zabala M, Grant M R, Rung J H, Collinge D B, Lyngkjaer M F. Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J, 2008, 56: 867-880.
doi: 10.1111/j.1365-313X.2008.03646.x
[18] Nogueira F T S, Schlögl P S, Camargo S R, Fernandez J H, De Rosa V E, Pompermayer P, Arruda P. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci, 2005, 169: 93-106.
doi: 10.1016/j.plantsci.2005.03.008
[19] Carrillo-Bermejo E A, Gamboa-Tuz S D, Pereira-Santana A, Keb-Llanes M A, Castaño E, Figueroa-Yañez L J, Rodriguez-Zapata L C. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. J Plant Res, 2020, 133: 897-909.
doi: 10.1007/s10265-020-01230-y pmid: 33094397
[20] Peng X, Zhao Y, Li X, Wu M, Chai W, Sheng L, Wang Y, Dong Q, Jiang H, Cheng B. Genomewide identification, classification and analysis of NAC type gene family in maize. J Genet, 2015, 94: 377-390.
pmid: 26440076
[21] Kadier Y, Zu Y Y, Dai Q M, Song G, Lin S W, Sun Q P, Pan J B, Lu M. Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regul, 2017, 83: 301-312.
doi: 10.1007/s10725-017-0295-y
[22] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[23] Feng M, Yu Q, Chen Y, Fu Z, Xu L, Guo J. ScMT10, a metallothionein-like gene from sugarcane, enhances freezing tolerance in Nicotiana tabacum transgenic plants. Environ Exp Bot, 2022, 194: 104750.
doi: 10.1016/j.envexpbot.2021.104750
[24] Liu F, Huang N, Wang L, Ling H, Sun T, Ahmad W, Muhammad K, Guo J, Xu L, Gao S, Que Y, Su Y. A novel l-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2018, 8: 2262-2262.
doi: 10.3389/fpls.2017.02262
[25] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract)
[26] Xue B, Guo J, Que Y, Fu Z, Wu L, Xu L. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane. Int J Mol Sci, 2014, 15: 8846-8862.
doi: 10.3390/ijms15058846 pmid: 24857916
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析. 作物学报, 2021, 47: 882-893.
doi: 10.3724/SP.J.1006.2021.04128
Huang N, Hui Q, Fang Z M, Li S S, Ling H, Que Y X, Yuan Z N. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane. Acta Agron Sin, 2021, 47: 882-893. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04128
[29] Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J, Hu R, Zhou G. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep, 2015, 34: 943-958.
doi: 10.1007/s00299-015-1756-2
[30] Lu M, Ying S, Zhang D F, Shi Y S, Song Y C, Wang T Y, Li Y. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep, 2012, 31: 1701-1711.
doi: 10.1007/s00299-012-1284-2
[31] Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genetic syst, 2005, 80: 135-139.
doi: 10.1266/ggs.80.135
[32] Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann J C, Arruda P, D’Hont A. Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J, 2007, 50: 574-585.
pmid: 17425713
[33] Hufford M B, Seetharam A S, Woodhouse M R, Chougule K M, Dawe R K. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373: 655-662.
doi: 10.1126/science.abg5289
[34] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L-Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M-A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[35] Gong L, Zhang H, Liu X, Gan X, Nie F, Yang W, Zhang L, Chen Y, Song Y, Zhang H. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2020, 151: 535-544.
doi: 10.1016/j.plaphy.2020.04.008
[36] D'Hont A, Grivet L, Feldmann P, Glaszmann J C, Rao S, Berding N. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet, 1996, 250: 405-413.
[37] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析. 作物学报, 2020, 46: 1649-1658.
doi: 10.3724/SP.J.1006.2020.04051
Zhang H, Yagn N K, Shang L L, Gao X R, Liu Q C, Zhai H, Gao S P, He S Z. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato. Acta Agron Sin, 2020, 46: 1649-1658. (in Chinese with English abstract)
[38] Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 2016, 7: 4.
doi: 10.3389/fpls.2016.00004 pmid: 26834774
[39] Liu W, Zhao B G, Chao Q, Wang B, Zhang Q, Zhang C, Li S, Jin F, Yang D, Li X. Function analysis of ZmNAC33, a positive regulator in drought stress response in Arabidopsis. Plant Physiol Biochem, 2019, 145: 174-183.
doi: 10.1016/j.plaphy.2019.10.038
[40] Vlot A C, Dempsey D M A, Klessig D F. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol, 2009, 47: 177-206.
doi: 10.1146/annurev.phyto.050908.135202 pmid: 19400653
[41] 龙亚芹, 王万东, 王美存, 陈于福, 解德宏, 陈华蕊, 俞艳春, 尼章光. 水杨酸(SA)诱导植物对病虫害产生抗性及作用机制研究. 热带农业科学, 2009, 29(12): 46-50.
Long Y Q, Wang W D, Wang M C, Chen Y F, Xie D H, Chen H R, Yu Y C, Ni Z G. Salicylic acid induced resistance of plants against insects and diseases and its interaction mechanism. Chin J Trop Agric, 2009, 29(12): 46-50. (in Chinese with English abstract)
[42] 蒋旭, 崔会婷, 王珍, 张铁军, 龙瑞才, 杨青川, 康俊梅. 紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析. 中国农业科学, 2020, 53: 3818-3832.
Jiang X, Cui H T, Wang Z, Zhang T J, Long R C, Yang Q C, Kang J M. Cloning and function analysis of MsNST in lignin and cellulose biosynthesis pathway from alfalfa. Sci Agric Sin, 2020, 53: 3818-3832. (in Chinese with English abstract)
[43] Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics, 2010, 284: 173-183.
doi: 10.1007/s00438-010-0557-0
[44] Bang S W, Choi S, Jin X, Jung S E, Choi J W, Seo J S. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnol J, 2022, 20: 736-747
doi: 10.1111/pbi.13752
[45] Jensen M K, Lindemose S, Masi F D, Reimer J J, Nielsen M, Perera V, Workman C T, Turck F, Grant M R, Mundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 2013, 3: 321-327.
doi: 10.1016/j.fob.2013.07.006
[46] 张艳馥, 沙伟. 转录因子概述. 生物学教学, 2009, 34(10): 7-8.
Zhang F X, Sha W. Overview of transcription factors. Biol Teach, 2009, 34(10): 7-8. (in Chinese with English abstract)
[47] Zhong R, Richardson E A, Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 2007, 19: 2776-2792.
doi: 10.1105/tpc.107.053678
[48] Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell, 2010, 22: 1249-1263.
doi: 10.1105/tpc.108.064048
[1] 韩贝, 孙思敏, 孙伟男, 杨细燕, 张献龙. 植物体细胞胚胎发生的分子机制[J]. 作物学报, 2023, 49(2): 299-309.
[2] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[3] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[4] 杨佳宝, 张展, 周至铭, 吕新华, 孙黎. 向日葵HaLACS9基因的克隆与功能分析[J]. 作物学报, 2023, 49(2): 426-437.
[5] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[6] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[7] 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634.
[8] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[9] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[10] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[11] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657.
[12] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[13] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[14] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[15] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[8] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[9] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[10] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .