作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1625-1634.doi: 10.3724/SP.J.1006.2022.11043
郭楠楠(), 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮()
GUO Nan-Nan(), LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang()
摘要:
印度梨形孢定殖植物会促进植物生物产量提高, 其分子机制有待深入挖掘。LncRNA是一类长链非编码RNA, 在植物生长发育过程中具有重要调控作用。然而, 目前我们还不清楚大麦中LncRNA是否对印度梨形孢的定殖有响应。本研究发现, 印度梨形孢定殖大麦会诱导大麦根系迅速发育, 促进较多根分枝。采用全基因组高通量测序RNA-seq和生物信息学方法鉴定LncRNA, 发现在P. indica定殖后3 d和7 d分别有752个和932个差异表达的LncRNA, 7 d相对于3 d有70个差异表达的LncRNA。其中在P. indica定殖后3 d有375个LncRNA表达上调, 377个LncRNA表达下调; 在P. indica定殖后7 d有459个LncRNA表达上调, 473个LncRNA表达下调; 7 d相对于3 d组中, 有39个LncRNA表达上调, 31个LncRNA表达下调。qPCR验证LncRNA的表达与RNA-seq结果一致。GO和KEGG分析表明, 在P. indica定殖大麦促生过程中, 部分LncRNA参与了激素信号途径的转录调控。该工作对于进一步理解LncRNA与靶基因的相互作用以及其对靶基因的调控功能提供了新的理论基础和实验依据, 并以LncRNA为靶点, 进行作物性状改良提供新的思路和方向。
[1] |
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci, 2013, 70: 4785-4794.
doi: 10.1007/s00018-013-1423-0 |
[2] |
Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009, 23: 1494-1504.
doi: 10.1101/gad.1800909 |
[3] |
Rinn J L, Chang H Y. Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012, 81: 145-166.
doi: 10.1146/annurev-biochem-051410-092902 |
[4] |
Kang C, Liu Z. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics, 2015, 16: 815.
doi: 10.1186/s12864-015-2014-2 |
[5] |
Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lyu Y, Zhao H, Xiao H, Song R. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. Plant Cell, 2015, 27: 532-545.
doi: 10.1105/tpc.114.134858 |
[6] |
Chekanova J A. Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol, 2015, 27: 207-216.
doi: 10.1016/j.pbi.2015.08.003 pmid: 26342908 |
[7] |
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi P P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146: 353-358.
doi: 10.1016/j.cell.2011.07.014 |
[8] |
Rubio-Somoza I, Weigel D, Franco-Zorilla J M, Garcia J A, Paz-Ares J. ceRNAs: miRNA target mimic mimics. Cell, 2011, 147: 1431-1432.
doi: 10.1016/j.cell.2011.12.003 pmid: 22196719 |
[9] |
Fan C, Hao Z, Yan J, Li G. Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics, 2015, 16: 793.
doi: 10.1186/s12864-015-2024-0 |
[10] |
Shuai P, Liang D, Tang S, Zhang Z, Ye C Y, Su Y, Xia X, Yin W.Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot, 2014, 65: 4975-4983.
doi: 10.1093/jxb/eru256 pmid: 24948679 |
[11] |
Wang T Z, Liu M, Zhao M G, Chen R, Zhang W H. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol, 2015, 15: 131.
doi: 10.1186/s12870-015-0530-5 |
[12] |
Lu X, Chen X, Mu M, Wang J, Wang X, Wang D, Yin Z, Fan W, Wang S, Guo L, Ye W. Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton (Gossypium hirsutum L.). PLoS One, 2016, 11: e0156723.
doi: 10.1371/journal.pone.0156723 |
[13] |
Lyu Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, Peng Z, Zhao H. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics, 2016, 17: 350.
doi: 10.1186/s12864-016-2650-1 |
[14] |
Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol, 2011, 11: 61.
doi: 10.1186/1471-2229-11-61 |
[15] |
Shumayla, Sharma S, Taneja M, Tyagi S, Singh K, Upadhyay S K. Survey of High Throughput RNA-Seq Data reveals potential roles for LncRNAs during development and stress response in bread wheat. Front Plant Sci, 2017, 8: 1019.
doi: 10.3389/fpls.2017.01019 pmid: 28649263 |
[16] |
Heo J B, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 2011, 331: 76-79.
doi: 10.1126/science.1197349 |
[17] |
Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 2009, 462: 799-802.
doi: 10.1038/nature08618 |
[18] |
Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA, 2012, 109: 2654-2659.
doi: 10.1073/pnas.1121374109 |
[19] |
Qin T, Zhao H, Cui P, Albesher N, Xiong L. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol, 2017, 175: 1321-1336.
doi: 10.1104/pp.17.00574 |
[20] |
Zou Y, Tang H, Li T, Sun M, Qu X, Zhou J, Yang C, Mu Y, Jiang Q, Liu Y, Chen G, Chen G, Zheng Y, Wei Y, Lan X, Ma J. Identification and characterization of mRNAs and LncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica, 2020, 148: 55-68.
doi: 10.1007/s10709-020-00087-2 |
[21] |
Karlik E, Gözükırmızı N. Evaluation of barley LncRNAs expression analysis in salinity stress. Russ J Genet, 2018, 54: 198-204.
doi: 10.1134/S1022795418020096 |
[22] |
Unver T, Tombuloglu H. Barley long non-coding RNAs (LncRNA) responsive to excess boron. Genomics, 2020, 112: 1947-1955.
doi: 10.1016/j.ygeno.2019.11.007 |
[23] |
Michael A H, Bryan P, Amanda S B, Sarah A K, Wei Y, Steven R S, Nicholas C C. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci USA, 2008, 105: 20534-20539.
doi: 10.1073/pnas.0809408105 |
[24] |
Qiu C W, Zhao J, Chen Q, Wu F. Genome-wide characterization of drought stress responsive long non-coding RNAs in Tibetan wild barley. Environ Exp Bot, 2019, 164: 124-134.
doi: 10.1016/j.envexpbot.2019.05.002 |
[25] |
Karlik E, Gozukirmizi N. Expression analysis of LncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity. Mol Biol Rep, 2018, 45: 1597-1609.
doi: 10.1007/s11033-018-4289-2 pmid: 30298351 |
[26] |
Weiss M, Selosse M A, Rexer K H, Urban A, Oberwinkler F. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res, 2004, 108: 1003-1010.
doi: 10.1017/S0953756204000772 |
[27] |
Ghaffari M R, Mirzaei M, Ghabooli M, Khatabi B, Wu Y, Zabet-Moghaddam M, Mohammadi-Nejad G, Haynes P A, Hajirezaei M R, Sepehri M, Salekdeh G H. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ Exp Bot, 2019, 157: 197-210.
doi: 10.1016/j.envexpbot.2018.10.002 |
[28] |
Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan V M, Nitz I, Varma A, Grundler F M, Oelmuller R. PYK10, a b-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J, 2008, 54: 428-439.
doi: 10.1111/j.1365-313X.2008.03424.x |
[29] |
Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, Qiu L, Oelmuller R. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav, 2018, 13: e1414121.
doi: 10.1080/15592324.2017.1414121 |
[30] |
Abdelaziz M E, Abdelsattar M, Abdeldaym E A, Atia M A M, Mahmoud A W M, Saad M M, Hirt H. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic (Amsterdam), 2019, 256: 108532.
doi: 10.1016/j.scienta.2019.05.059 |
[31] |
Varma A, Verma S, Sudha X, Sahay N, Butehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol, 1999, 65: 2741-2744.
doi: 10.1128/AEM.65.6.2741-2744.1999 |
[32] | Yang L, Cao J L, Zou Y N, Wu Q S, Kuča K. Piriformospora indica: a root endophytic fungus and its roles in plants. Not Bot Hortic Agrobo, 2020, 48: 1-13. |
[33] | Bagde U S, Prasad R, Varma A. Impact of culture filtrate of Piriformospora indica on biomass and biosynthesis of active ingredient aristolochic acid in Aristolochia elegans Mart. Int J Agric Biol, 2013, 6: 29-37. |
[34] |
Kumar V, Sarma M V, Saharan, Kumar L, Sahai V, Bisaria V S, Sharma A K. Effect of formulated root endophytic fungus Piriformospora indica and plant growth promoting rhizobacteria fluorescent pseudomonads R62 and R81 on Vigna mungo. World J Microbiol Biotechnol, 2012, 28: 595-603.
doi: 10.1007/s11274-011-0852-x |
[35] |
Sharma G, Agrawal V. Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol, 2013, 29: 1133-1138.
doi: 10.1007/s11274-013-1263-y |
[36] |
Vadassery J, Ranf S, Drzewiecki C, Mithofer A, Mazars C, Scheel D, Lee J, Oelmuller R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J, 2009, 59: 193-206.
doi: 10.1111/j.1365-313X.2009.03867.x |
[37] |
Yadav V, Kumar M, Deep D K, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena A K, Johri A K. Withdrawal: a phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem, 2010, 285: 26532-26544.
doi: 10.1074/jbc.M110.111021 |
[38] |
Lee Y C, Johnson J M, Chien C T, Sun C, Cai D, Lou B, Oelmüller R, Yeh K W. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by Mycelium-synthesized auxin. Mol Plant Microbe Interact, 2011, 24: 421-443.
doi: 10.1094/MPMI-05-10-0110 |
[39] |
Sun C, Johnson J M, Cai D, Sherameti I, Oelmuller R, Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol, 2010, 167: 1009-1017.
doi: 10.1016/j.jplph.2010.02.013 |
[40] |
Baltruschat H, Fodor J, Harrach B D, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K H, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol, 2008, 180: 501-510.
doi: 10.1111/j.1469-8137.2008.02583.x pmid: 18681935 |
[41] |
Schafer P, Pfiffi S, Voll L M, Zajic D, Chandler P M, Waller F, Scholz U, Pons-Kuhnemann J, Sonnewald S, Sonnewald U, Kogel K H.Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J, 2009, 59: 461-474.
doi: 10.1111/j.1365-313X.2009.03887.x |
[42] |
Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel K H.Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog, 2011, 7: e1002290.
doi: 10.1371/journal.ppat.1002290 |
[1] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[2] | 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657. |
[3] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[4] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[7] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[8] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[9] | 王娜, 白建芳, 马有志, 郭昊宇, 王永波, 陈兆波, 赵昌平, 张立平. 小麦lncRNA27195及其靶基因TaRTS克隆及表达分析[J]. 作物学报, 2021, 47(8): 1417-1426. |
[10] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. |
[11] | 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630. |
[12] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[13] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[14] | 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813. |
[15] | 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531. |
|