作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1635-1644.doi: 10.3724/SP.J.1006.2022.14106
戴丽诗1,2(), 常玮1,2(), 张赛1,2, 钱明超1,2, 黎小东1,2, 张凯1,2, 李加纳1,2,3, 曲存民1,2,3,*(), 卢坤1,2,3,*()
DAI Li-Shi1,2(), CHANG Wei1,2(), ZHANG Sai1,2, QIAN Ming-Chao1,2, LI Xiao-Dong1,2, ZHANG Kai1,2, LI Jia-Na1,2,3, QU Cun-Min1,2,3,*(), LU Kun1,2,3,*()
摘要:
MicroRNA参与油菜种子发育、胁迫响应和胚胎发育等多种生物学过程, 但其在油菜株型和花器官发育方面的报道还较少。本研究以高/低收获指数油菜中显著差异表达的Bna-novel-miR36421为对象, 通过转基因植株表型、靶基因预测、表达量和双荧光素酶报告系统等解析其调控机制。Bna-novel-miR36421与植物miR167家族成员高度同源, 可能为油菜新的miR167成员。Bna-novel-miR36421能靶向并抑制Bna.C03ARF6、Bna.C06ARF8、Bna.A09PATL2和Bna.C03DUF581的表达。过表达拟南芥植株中, Bna-novel-miR36421的表达量显著上调, 而上述4个靶基因的拟南芥同源基因表达量极显著下降。过表达拟南芥植株株型矮小, 茎间缩短, 叶片高度卷曲; 花器官发育异常, 雌蕊膨大, 雄蕊花丝缩短, 花药不开裂, 花粉败育。推测Bna-novel-miR36421可能通过抑制Bna.C03ARF6、Bna.C06ARF8、Bna.A09PATL2和Bna.C03DUF581基因表达, 进而对油菜株型和花器官的发育起到重要的调控作用。研究结果对解析miRNA介导的植物株型和花器官发育分子机制, 挖掘重要发育性状关键基因奠定了重要基础。
[1] |
Yu Y, Jia T, Chen X M. The ‘how’ and ‘where’ of plant microRNAs. New Phytol, 2017, 216: 1002-1017.
doi: 10.1111/nph.14834 pmid: 29048752 |
[2] |
Jones-Rhoades M W, Bartel D P. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14: 787-799.
pmid: 15200956 |
[3] |
Lewis B P, Burge C B, Ba Rtel D P J C. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120: 15-20.
doi: 10.1016/j.cell.2004.12.035 |
[4] |
Stark A, Brennecke J, Bushati N, Russell R B, Cohen S M J C. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell, 2005, 123: 1133-1146.
doi: 10.1016/j.cell.2005.11.023 |
[5] |
Cuperus J T, Fahlgren N, Carrington J C J P C. Evolution and functional diversification of MIRNA genes. Plant Cell, 2011, 23: 431-442.
doi: 10.1105/tpc.110.082784 |
[6] |
Lee C T, Risom T, Strauss W M. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol, 2007, 26: 209-218.
doi: 10.1089/dna.2006.0545 |
[7] |
Heimberg A M, Sempere L F, Moy V N, Donoghue P C J, Peterson K J. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA, 2008, 105: 2946-2950.
doi: 10.1073/pnas.0712259105 |
[8] | Lu J, Fu Y, Kumar S, Shen Y, Zeng K, Xu A, Carthew R, Wu C I. Adaptive evolution of newly emerged micro-RNA genes in Drosophila. Genome Biol Evol, 2008, 25: 929-938. |
[9] |
Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet, 2011, 12: 846-860.
doi: 10.1038/nrg3079 pmid: 22094948 |
[10] |
Chen L, Chen L, Zhang X X, Liu T T, Niu S L, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Identification of miRNAs that regulate silique development in Brassica napus. Plant Sci, 2018, 269: 106-117.
doi: S0168-9452(17)31095-6 pmid: 29606207 |
[11] |
Xie F L, Huang S Q, Guo K, Xiang A L, Zhu Y Y, Nie L, Yang Z M. Computational identification of novel microRNAs and targets in Brassica napus . FEBS Lett, 2007, 581: 1464-1474.
doi: 10.1016/j.febslet.2007.02.074 |
[12] |
Zhao Y T, Wang M, Fu S X, Yang W C, Qi C K, Wang X J. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development- correlated expression and new small RNA classes. Plant Physiol, 2012, 158: 813-823.
doi: 10.1104/pp.111.187666 |
[13] |
Huang D, Koh C, Feurtado J A, Tsang E W, Cutler A J. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics, 2013, 14: 140.
doi: 10.1186/1471-2164-14-140 |
[14] |
Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
doi: 10.1007/BF00056241 |
[15] |
Peiffer J A, Romay M C, Gore M A, Flint-Garcia S A, Zhang Z, Millard M J, Gardner C A, McMullen M D, Holland J B, Bradbury P J. The genetic architecture of maize height. Genetics, 2014, 196: 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905 |
[16] |
Heimberg A M, Sempere L F, Moy V N, Donoghue P C, Peterson K J. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA, 2008, 105: 2946-2950.
doi: 10.1073/pnas.0712259105 |
[17] |
Sun C, Wang B, Wang X, Hu K, Li K, Li Z, Li S, Yan L, Guan C, Zhang J. Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016, 6: 33673.
doi: 10.1038/srep33673 |
[18] |
Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016, 6: 38493.
doi: 10.1038/srep38493 pmid: 27922076 |
[19] |
Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theor Appl Genet, 2017, 130: 727-741.
doi: 10.1007/s00122-016-2846-4 pmid: 28093630 |
[20] |
Wang T, Ping X, Cao Y, Jian H, Gao Y, Wang J, Tan Y, Xu X, Lu K, Li J. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019, 19: 336.
doi: 10.1186/s12870-019-1936-2 |
[21] |
Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006, 45: 616-629.
pmid: 16441352 |
[22] | Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M, Fan Y, Ma J, Sun W, Qu C, Liu L, Li N, Liang Y, Wang R, Qian W, Tang Z, Xu X, Lei B, Zhang K, Li J. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236. |
[23] |
Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew R W, Wang S M, Wu C I. The birth and death of microRNA genes in Drosophila. Nat Genet, 2008, 40: 351.
doi: 10.1038/ng.73 |
[24] |
Quah S, Hui J H, Holland P W. A burst of miRNA innovation in the early evolution of butterflies and moths. Mol Biol Evol, 2015, 32: 1161-1174.
doi: 10.1093/molbev/msv004 |
[25] | Zheng L, Nagpal P, Villarino G, Trinidad B, Bird L, Huang Y, Reed J W. miR167 limits anther growth to potentiate anther dehiscence. Development, 2019, 146: dev174375. |
[26] |
Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574.
doi: 10.1242/dev.02012 |
[27] |
Reeves P H, Ellis C M, Ploense S E, Wu M F, Yadav V, Tholl D, Chetelat A, Haupt I, Kennerley B J, Hodgens C, Farmer E E, Nagpal P, Reed J W. A regulatory network for coordinated flower maturation. PLoS Genet, 2012, 8: e1002506.
doi: 10.1371/journal.pgen.1002506 |
[28] |
Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C E, Ueno Y, Yamamoto K T, Machida Y, Nakamura K, Ishiguro S. Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol, 2010, 51: 164-175.
doi: 10.1093/pcp/pcp176 pmid: 20007966 |
[29] |
Nagpal P, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, Hagen G, Alonso J M, Cohen J D, Farmer E E. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132: 4107-4118.
doi: 10.1242/dev.01955 |
[30] | Tejos R, Rodriguez-Furlan C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci, 2018, 131: jcs204198. |
[31] |
Forestan C, Varotto S. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Mol Plant, 2012, 5: 787-798.
doi: 10.1093/mp/ssr103 |
[32] |
Gallavotti A. The role of auxin in shaping shoot architecture. J Exp Bot, 2013, 64: 2593-2608.
doi: 10.1093/jxb/ert141 pmid: 23709672 |
[33] |
Laxmi A. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One, 2014, 9: e99074.
doi: 10.1371/journal.pone.0099074 |
[34] |
Nietzsche M, Schießl I, Börnke F. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci 2014, 5: 54.
doi: 10.3389/fpls.2014.00054 pmid: 24600465 |
[35] |
Bitrian M, Roodbarkelari F, Horvath M, Koncz C. BAC- recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant J, 2011, 65: 829-842.
doi: 10.1111/j.1365-313X.2010.04462.x |
[36] |
Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541-544.
doi: 10.1038/ng.591 |
[37] |
Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
doi: 10.1038/nplants.2015.195 |
[38] |
Nair S K, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G X, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA, 2010, 107: 490-495.
doi: 10.1073/pnas.0909097107 |
[39] |
Silva G F F, Silva E M, da Silva Azevedo M, Guivin M A C, Ramiro D A, Figueiredo C R, Carrer H, Peres L E P, Nogueira F T S. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J, 2014, 78: 604-618.
doi: 10.1111/tpj.12493 |
[40] |
Tang J, Chu C. microRNAs in crop improvement: fine-tuners for complex traits. Nat Plants, 2017, 3: 17077.
doi: 10.1038/nplants.2017.77 |
[1] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[2] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[3] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[4] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[5] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|