欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1635-1644.doi: 10.3724/SP.J.1006.2022.14106

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证

戴丽诗1,2(), 常玮1,2(), 张赛1,2, 钱明超1,2, 黎小东1,2, 张凯1,2, 李加纳1,2,3, 曲存民1,2,3,*(), 卢坤1,2,3,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2南方山地农业教育部工程研究中心, 重庆 400715
    3西南大学农业科学研究院, 重庆 400715
  • 收稿日期:2021-06-22 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-03
  • 通讯作者: 曲存民,卢坤
  • 作者简介:戴丽诗, E-mail: dls375684@163.com
    常玮, E-mail: changwei1919@163.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31871653);国家重点研发计划项目(2018YFD0100500);高等学校学科创新引智基地项目“111项目”(B12006);重庆市自然科学基金重点项目;西南大学种质创制专项资助

Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana

DAI Li-Shi1,2(), CHANG Wei1,2(), ZHANG Sai1,2, QIAN Ming-Chao1,2, LI Xiao-Dong1,2, ZHANG Kai1,2, LI Jia-Na1,2,3, QU Cun-Min1,2,3,*(), LU Kun1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
    3Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
  • Received:2021-06-22 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-03
  • Contact: QU Cun-Min,LU Kun
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31871653);National Key Research and Development Plan(2018YFD0100500);Project of Intellectual Base for Discipline Innovation in Colleges and Universities “the 111 Project”(B12006);Key Project of Natural Science Foundation;Germplasm Creation Special Program of Southwest University

摘要:

MicroRNA参与油菜种子发育、胁迫响应和胚胎发育等多种生物学过程, 但其在油菜株型和花器官发育方面的报道还较少。本研究以高/低收获指数油菜中显著差异表达的Bna-novel-miR36421为对象, 通过转基因植株表型、靶基因预测、表达量和双荧光素酶报告系统等解析其调控机制。Bna-novel-miR36421与植物miR167家族成员高度同源, 可能为油菜新的miR167成员。Bna-novel-miR36421能靶向并抑制Bna.C03ARF6Bna.C06ARF8Bna.A09PATL2Bna.C03DUF581的表达。过表达拟南芥植株中, Bna-novel-miR36421的表达量显著上调, 而上述4个靶基因的拟南芥同源基因表达量极显著下降。过表达拟南芥植株株型矮小, 茎间缩短, 叶片高度卷曲; 花器官发育异常, 雌蕊膨大, 雄蕊花丝缩短, 花药不开裂, 花粉败育。推测Bna-novel-miR36421可能通过抑制Bna.C03ARF6Bna.C06ARF8Bna.A09PATL2Bna.C03DUF581基因表达, 进而对油菜株型和花器官的发育起到重要的调控作用。研究结果对解析miRNA介导的植物株型和花器官发育分子机制, 挖掘重要发育性状关键基因奠定了重要基础。

关键词: 甘蓝型油菜, Bna-novel-miR36421, miR167, 株型, 花器官

Abstract:

MicroRNA is involved in the regulation of various biological processes such as development, stress response, and embryonic development in rapeseed, however, only few studies focused on the regulation of miRNA on the plant architecture and floral organ development of rapeseed. In this study, Bna-novel-miR36421 that differentially expressed between the high and low harvest index accessions of rapeseed was identified, whose biological function and regulation mechanism were further characterized through phenotype analysis in transgenic plants, target gene prediction, expression pattern comparison, and dual luciferase reporter system. The results showed that Bna-novel-miR36421 was highly homologous to miR167 family members, and might be a novel miR167 member in rapeseed. The qRT-PCR and dual luciferase reporter system results indicated that Bna-novel-miR36421 could inhibit the relative expression levels of Bna.C03ARF6, Bna.C06ARF8, Bna.A09PATL2, and Bna.C03DUF581. In the overexpressing Arabidopsis plants, the expression of Bna-novel-miR36421 was significantly increased, while the transcription levels of the Arabidopsis orthologs of its target genes were decreased significantly. Phenotypic observation showed that the plant height of overexpression Arabidopsis plants were reduced, with shortened stems and curled leaves. The development of floral organs was abnormal, with enlarged pistil, shortened stamen filaments, unbreakable anthers, and aborted pollens. Hence, it could be proposed that Bna-novel-miR36421 may regulate plant architecture and floral organ development by repressing Bna.C03ARF6, Bna.C06ARF8, Bna.A09PATL2, and Bna.C03DUF581. The results laid a solid foundation for understanding the molecular mechanism of miRNA-mediated plant architecture and flower organ development, and mining the key genes involved in plant developmental processes.

Key words: Brassica napus, Bna-novel-miR36421, miRNA167, plant architecture, flower organ

附表1

Bna-novel-miR36421的成熟体和前体序列"

类别
Type
序列
Sequence (5'-3')
成熟体序列
Mature sequence
TAAGCTGCCAGCATGATCTTG
前体序列-1
Precursor sequence-1
TAAGCTGCCAGCATGATCTTGTCTTCCTCTCCTAAGCTTCATATATAT
AACTAAGCTAAGGAAATAAATAATTTTCTCGTTCTCATAAGATTATAT
GATAATAGCTTAGAGAGAGAGAGACTAGGTCATGCTGGTAGCTTCAC
前体序列-2
Precursor sequence-2
TAAGCTGCCAGCATGATCTTGTCTTCCTCTCTTAAGCTTCATATATAAC
TAAGCTAAGGAATAATATAATTTTCTTGTTCTCATAAGAATATATGATAA
TAGCTTAGAGAGAGAGAGAGAGAGACTAGGTCATGCTGGTAGTTTCAC

附表2

本研究中所用引物"

引物名称
Prime name
引物序列
Primer sequence (5'-3')
62sk-miR36421F taagcttgatatcgaattcCAATATGAGATTTCGCAGTGACT
62sk-miR36421R cgctctagaactagtggatccCAAACACAACTAACCTTC
0800-C03ARF6F ttctagagcggccgcggatccGGTACAATGACGACACCTTCTAG
0800-C03ARF6R actggtgatttcagcgaattcTCCCCAAGTCATCACAGTTC
0800-C06ARF8F ttctagagcggccgcggatccCTGGATTTCAGAACACTTTGC
0800-C06ARF8R actggtgatttcagcgaattcGAAATGGGTGAGGTTCTGTG
0800-C03DUF581F ttctagagcggccgcggatccATGACTAAAATCTCTGTTGG
0800-C03DUF581R actggtgatttcagcgaattcAGGAACTATAAATAGCTGGCGT
0800-A09PATL2F ttctagagcggccgcggatccTCAGGAGCTACATATTTGAATATGG
0800-A09PATL2R actggtgatttcagcgaattcGACACGTTGTGATCTACAGCTCGT
OVmiR36421F caccAGTGACTAAGAAAGTTACCGAGGG
OVmiR36421R AGTGACTAAGAAAGTTACCGAGGG
F35S3ND GGAAGTTCATTTCATTTGGAGAG
OCS5ND CGATCATAGGCGTCTCGCATATCTC
F BAR CGACATCCGCCGTGCCACCGA
R BAR GTACCGGCAGGCTGAAGTCCAGC
BnaActin7F TGGGTTTGCTGGTGACGAT
BnaActin7R TGCCTAGGACGACCAACAATACT

图1

Bna-novel-miR36421 前体成员二级茎环结构预测 A: Bna-novel-MIR36421-1二级茎环结构, dG = -26.500 kcal mol-1; B: Bna-novel-MIR36421-2二级茎环结构, dG = -63.90 kcal mol-1。"

图2

Bna-novel-miR36421 与甘蓝型油菜Bna-miR167家族成员成熟及前体miRNA的序列比对 A: 成熟miRNA序列比对; B: 前体miRNA序列比对。"

图3

过表达Bna-novel-miR36421转基因拟南芥表达水平及表型观察 A: 过表达Bna-novel-miR36421拟南芥中基因表达水平检测; B: 过表达Bna-novel-miR36421转基因拟南芥表型观察; C: 过表达Bna-novel-miR36421转基因拟南芥表型数据统计。*、**和****分别表示在0.05、0.01和0.0001水平上显著差异; NS表示差异不显著。"

图4

Bna-novel-miR36421及其靶基因在不同材料及不同组织部位中的表达水平分析 P130: 甘蓝型油菜高收获指数极端材料; P202: 甘蓝型油菜低收获指数极端材料; 14dSe: 14 d种子; 14dSp: 14 d角果皮; 28dSe: 28 d种子; 28dSp: 28 d角果皮。**表示在0.01水平上显著差异。"

图5

Bna-novel-miR36421靶向负调控其靶基因 A: 双荧光素酶系统验证Bna-novel-miR36421与靶基因的关系; B: Bna-novel-miR36421及其靶基因表达水平检测。**表示在0.01水平上显著差异。"

图6

甘蓝型油菜Bna-novel-miR36421调节株型及花器官发育的可能模型"

[1] Yu Y, Jia T, Chen X M. The ‘how’ and ‘where’ of plant microRNAs. New Phytol, 2017, 216: 1002-1017.
doi: 10.1111/nph.14834 pmid: 29048752
[2] Jones-Rhoades M W, Bartel D P. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14: 787-799.
pmid: 15200956
[3] Lewis B P, Burge C B, Ba Rtel D P J C. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120: 15-20.
doi: 10.1016/j.cell.2004.12.035
[4] Stark A, Brennecke J, Bushati N, Russell R B, Cohen S M J C. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell, 2005, 123: 1133-1146.
doi: 10.1016/j.cell.2005.11.023
[5] Cuperus J T, Fahlgren N, Carrington J C J P C. Evolution and functional diversification of MIRNA genes. Plant Cell, 2011, 23: 431-442.
doi: 10.1105/tpc.110.082784
[6] Lee C T, Risom T, Strauss W M. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol, 2007, 26: 209-218.
doi: 10.1089/dna.2006.0545
[7] Heimberg A M, Sempere L F, Moy V N, Donoghue P C J, Peterson K J. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA, 2008, 105: 2946-2950.
doi: 10.1073/pnas.0712259105
[8] Lu J, Fu Y, Kumar S, Shen Y, Zeng K, Xu A, Carthew R, Wu C I. Adaptive evolution of newly emerged micro-RNA genes in Drosophila. Genome Biol Evol, 2008, 25: 929-938.
[9] Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet, 2011, 12: 846-860.
doi: 10.1038/nrg3079 pmid: 22094948
[10] Chen L, Chen L, Zhang X X, Liu T T, Niu S L, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Identification of miRNAs that regulate silique development in Brassica napus. Plant Sci, 2018, 269: 106-117.
doi: S0168-9452(17)31095-6 pmid: 29606207
[11] Xie F L, Huang S Q, Guo K, Xiang A L, Zhu Y Y, Nie L, Yang Z M. Computational identification of novel microRNAs and targets in Brassica napus . FEBS Lett, 2007, 581: 1464-1474.
doi: 10.1016/j.febslet.2007.02.074
[12] Zhao Y T, Wang M, Fu S X, Yang W C, Qi C K, Wang X J. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development- correlated expression and new small RNA classes. Plant Physiol, 2012, 158: 813-823.
doi: 10.1104/pp.111.187666
[13] Huang D, Koh C, Feurtado J A, Tsang E W, Cutler A J. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics, 2013, 14: 140.
doi: 10.1186/1471-2164-14-140
[14] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
doi: 10.1007/BF00056241
[15] Peiffer J A, Romay M C, Gore M A, Flint-Garcia S A, Zhang Z, Millard M J, Gardner C A, McMullen M D, Holland J B, Bradbury P J. The genetic architecture of maize height. Genetics, 2014, 196: 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905
[16] Heimberg A M, Sempere L F, Moy V N, Donoghue P C, Peterson K J. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA, 2008, 105: 2946-2950.
doi: 10.1073/pnas.0712259105
[17] Sun C, Wang B, Wang X, Hu K, Li K, Li Z, Li S, Yan L, Guan C, Zhang J. Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016, 6: 33673.
doi: 10.1038/srep33673
[18] Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016, 6: 38493.
doi: 10.1038/srep38493 pmid: 27922076
[19] Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theor Appl Genet, 2017, 130: 727-741.
doi: 10.1007/s00122-016-2846-4 pmid: 28093630
[20] Wang T, Ping X, Cao Y, Jian H, Gao Y, Wang J, Tan Y, Xu X, Lu K, Li J. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019, 19: 336.
doi: 10.1186/s12870-019-1936-2
[21] Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006, 45: 616-629.
pmid: 16441352
[22] Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M, Fan Y, Ma J, Sun W, Qu C, Liu L, Li N, Liang Y, Wang R, Qian W, Tang Z, Xu X, Lei B, Zhang K, Li J. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236.
[23] Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew R W, Wang S M, Wu C I. The birth and death of microRNA genes in Drosophila. Nat Genet, 2008, 40: 351.
doi: 10.1038/ng.73
[24] Quah S, Hui J H, Holland P W. A burst of miRNA innovation in the early evolution of butterflies and moths. Mol Biol Evol, 2015, 32: 1161-1174.
doi: 10.1093/molbev/msv004
[25] Zheng L, Nagpal P, Villarino G, Trinidad B, Bird L, Huang Y, Reed J W. miR167 limits anther growth to potentiate anther dehiscence. Development, 2019, 146: dev174375.
[26] Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574.
doi: 10.1242/dev.02012
[27] Reeves P H, Ellis C M, Ploense S E, Wu M F, Yadav V, Tholl D, Chetelat A, Haupt I, Kennerley B J, Hodgens C, Farmer E E, Nagpal P, Reed J W. A regulatory network for coordinated flower maturation. PLoS Genet, 2012, 8: e1002506.
doi: 10.1371/journal.pgen.1002506
[28] Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C E, Ueno Y, Yamamoto K T, Machida Y, Nakamura K, Ishiguro S. Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol, 2010, 51: 164-175.
doi: 10.1093/pcp/pcp176 pmid: 20007966
[29] Nagpal P, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, Hagen G, Alonso J M, Cohen J D, Farmer E E. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132: 4107-4118.
doi: 10.1242/dev.01955
[30] Tejos R, Rodriguez-Furlan C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci, 2018, 131: jcs204198.
[31] Forestan C, Varotto S. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Mol Plant, 2012, 5: 787-798.
doi: 10.1093/mp/ssr103
[32] Gallavotti A. The role of auxin in shaping shoot architecture. J Exp Bot, 2013, 64: 2593-2608.
doi: 10.1093/jxb/ert141 pmid: 23709672
[33] Laxmi A. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One, 2014, 9: e99074.
doi: 10.1371/journal.pone.0099074
[34] Nietzsche M, Schießl I, Börnke F. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci 2014, 5: 54.
doi: 10.3389/fpls.2014.00054 pmid: 24600465
[35] Bitrian M, Roodbarkelari F, Horvath M, Koncz C. BAC- recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant J, 2011, 65: 829-842.
doi: 10.1111/j.1365-313X.2010.04462.x
[36] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541-544.
doi: 10.1038/ng.591
[37] Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
doi: 10.1038/nplants.2015.195
[38] Nair S K, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G X, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA, 2010, 107: 490-495.
doi: 10.1073/pnas.0909097107
[39] Silva G F F, Silva E M, da Silva Azevedo M, Guivin M A C, Ramiro D A, Figueiredo C R, Carrer H, Peres L E P, Nogueira F T S. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J, 2014, 78: 604-618.
doi: 10.1111/tpj.12493
[40] Tang J, Chu C. microRNAs in crop improvement: fine-tuners for complex traits. Nat Plants, 2017, 3: 17077.
doi: 10.1038/nplants.2017.77
[1] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[2] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .