欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2691-2705.doi: 10.3724/SP.J.1006.2022.23019

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米叶夹角性状的全基因组关联分析与关键位点优异等位变异挖掘

秦文萱1(), 鲍建喜1(), 王彦博1, 马雅杰1, 龙艳1, 李金萍2, 董振营1,2,*(), 万向元1,2,*()   

  1. 1北京科技大学生物与农业研究中心 / 化学与生物工程学院 / 顺德研究生院 / 北京中智生物农业国际研究院, 北京 100083
    2北京首佳利华科技有限公司 / 主要作物生物育种北京市工程实验室 / 生物育种北京市国际科技合作基地, 北京 100192
  • 收稿日期:2022-02-27 接受日期:2022-05-05 出版日期:2022-11-12 网络出版日期:2022-05-24
  • 通讯作者: 董振营,万向元
  • 作者简介:第一作者联系方式: 秦文萱, E-mail: qwx18649323612@163.com;
    鲍建喜, E-mail: bjx1232003@126.com第一联系人:** 同等贡献。
  • 基金资助:
    本研究由国家重点研发计划项目“农业生物种质资源挖掘与创新利用”重点专项(2021YFD1200700)

Genome-wide association study of leaf angle traits and mining of elite alleles from the major loci in maize

QIN Wen-Xuan1(), BAO Jian-Xi1(), WANG Yan-Bo1, MA Ya-Jie1, LONG Yan1, LI Jin-Ping2, DONG Zhen-Ying1,2,*(), WAN Xiang-Yuan1,2,*()   

  1. 1Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, School of Chemistry and Biological Engineering, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100083, China
    2Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
  • Received:2022-02-27 Accepted:2022-05-05 Published:2022-11-12 Published online:2022-05-24
  • Contact: DONG Zhen-Ying,WAN Xiang-Yuan
  • Supported by:
    The National Key Research and Development Program of China(2021YFD1200700)

摘要:

玉米叶夹角是冠层结构的重要组成之一, 可直接影响光和CO2在冠层的分布及群体的光能利用效率, 从而影响玉米产量。为解析玉米叶夹角的遗传基础, 挖掘与玉米叶夹角性状相关的SNP位点和候选基因, 本研究利用854份玉米自交系作为关联群体, 在5个环境下对玉米穗位上1叶(ULA1)、上2叶(ULA2)和上3叶(ULA3)的叶夹角性状进行测定和统计分析, 并分别利用均匀分布于玉米基因组10条染色体的2795个单核苷酸多态性(single nucleotide polymorphism, SNP)标记进行全基因组关联分析(genome-wide association study, GWAS)。基于FarmCPU算法, 共检测到81个与叶夹角性状显著关联的SNP, 其中与ULA1性状显著关联的SNP为26个, 解释的表型变异率在0.03%~ 9.68%; 与ULA2性状显著关联的SNP为27个, 解释的表型变异率在0.06%~9.30%; 与ULA3性状显著关联的SNP为28个, 解释的表型变异率在0.01%~8.23%。进一步鉴定出17个可被重复检测到的高可信显著关联SNP, 其中3个SNP关联区间为本研究首次报道, 14个SNP标记位于前人已定位QTL置信区间或/和已知叶夹角显著SNP标记1 Mb之内, 9个SNP标记可与不同节位叶夹角性状同时显著关联。鉴定出7个PVE > 5%的主效SNP, 通过等位变异效应分析进一步挖掘出9份聚合7个主效位点优异等位变异、叶夹角性状显著降低的优异种质资源。在17个高可信显著SNP候选区间共鉴定出131个候选基因, 其中1号染色体PZE-101039301 标记下游70 kb存在调控叶夹角的已知基因DRL1, 其他候选基因均尚未验证其调控玉米叶夹角的功能。本研究采用GWAS策略所挖掘玉米叶夹角遗传位点和候选基因有助于揭示叶夹角的遗传机制, 并为今后克隆玉米叶夹角调控基因提供理论指导, 所鉴定优异等位变异和种质资源有助于利用分子标记辅助选择改良叶夹角性状和提高玉米产量。

关键词: 玉米, 叶夹角, 全基因组关联分析, 候选基因, 优异等位变异

Abstract:

Leaf angle (LA) is one of the important components of the canopy structure in maize, which can directly affect the distribution of light and CO2 in the canopy and the light capture efficiency of the population, thus affecting the yield of maize. In order to analysis the genetic basis of maize LA traits, an association panel including 854 maize inbred lines was used to analyze the first (ULA1), second (ULA2), and third (ULA3) upper leaf angle of ears in five environments, and then 2795 single nucleotide polymorphic (SNP) markers distributed on 10 chromosomes of maize genome were used for genome-wide association analysis (GWAS) of LA traits based on FarmCPU (fixed and random model circulating probability unification) model. Eighty-one significant SNP associations were identified, among which 26, 27, and 28 significant SNPs associated with ULA1, ULA2, and ULA3, and phenotypic variation explained (PVE) for each SNP was 0.03%-9.68%, 0.06%-9.30%, and 0.01%-8.23%, respectively. We further identified 17 heigh-confidence SNPs repeatedly detected for specific trait, among which three loci were firstly reported in this study, 14 loci located within the intervals that had been previously mapped, and nine SNPs were associated with more than one LA trait. Seven SNPs with PVE > 5% were classified as major SNPs, and thus nine germplasms combining the seven elite alleles with small LAs were isolated. Through searching the candidate regions of the 17 high-confidence SNPs, a total of 131 candidate genes were predicated, and a key gene DRL1 known to regulate LA of maize that located 70 kb downstream of PZE-101039301 on chromosome 1 was also identified as one of candidate genes. In summary, the genetic loci and candidate genes identified by this study will be useful for revealing the genetic mechanism of maize LA traits, and provide clues for cloning LA correlated genes. The identified elite alleles and germplasm resources can be used to increase maize yield by molecular marker-assisted selection of LA traits.

Key words: maize, leaf angle, genome-wide association study, candidate gene, elite allele

附图1

玉米叶夹角表型数据直方图 ULA1、ULA2和ULA3分别代表穗上第1、第2和第3叶夹角; 19BJ、20BJ和21BJ分别代表2019年北京、2020年北京和2021年北京; 20ZC和21ZC分别代表 2020年诸城和2021年诸城。"

表1

玉米不同节位叶夹角性状的统计分析"

性状
Trait
环境
Environment
均值
Mean (°)
标准差
Standard
deviation
方差
Variance
偏度
Skewness
峰度
Kurtosis
变异系数
Variation
coefficient (%)
变异范围
Rang of
variations (°)
遗传力
h2 (%)
穗上第1叶夹角
ULA1
19BJ 23.79 8.741 76.40 1.13 3.18 36.74 5.60-97.85 88.8
20BJ 16.93 8.673 75.22 1.10 3.37 51.23 0.05-83.85
20ZC 17.00 8.333 69.44 0.97 3.43 49.02 0.10-80.10
21BJ 18.21 8.453 71.46 0.75 1.21 46.43 0.25-59.80
21ZC 19.08 8.177 66.86 0.71 1.02 42.85 0.05-62.30
穗上第2叶夹角
ULA2
19BJ 21.40 8.881 78.87 1.25 3.59 41.49 5.50-96.85 90.4
20BJ 15.23 8.646 74.75 1.21 3.42 56.78 0.05-82.93
20ZC 16.57 8.997 80.94 1.04 2.86 54.29 0.00-81.90
21BJ 16.65 8.972 80.50 1.07 2.48 53.87 0.00-81.10
21ZC 15.55 8.030 64.48 0.97 1.76 51.63 0.05-55.30
穗上第3叶夹角
ULA3
19BJ 20.98 9.502 90.29 1.35 3.40 45.29 5.30-90.75 90.7
20BJ 14.41 9.057 82.03 1.29 3.80 62.86 0.00-81.65
20ZC 15.93 9.972 99.44 1.30 4.44 62.62 0.00-97.90
21BJ 16.64 9.686 93.81 1.42 5.57 58.22 0.05-107.95
21ZC 14.61 8.591 73.80 1.49 4.73 58.80 0.00-76.85

图1

叶夹角性状相关性分析 A、B和C分别为不同环境间ULA1、ULA2和ULA3性状的相关性分析; D为不同节位叶夹角性状间的相关性分析。处理缩写同表1。"

附图2

关联群体聚类分析 G1至G11代表类群1~11。"

图2

玉米叶夹角全基因组关联分析的曼哈顿图和QQ图 A、C和E分别为ULA1、ULA2和ULA3性状关联分析曼哈顿图; B、D和F分别为ULA1、ULA2和ULA3性状关联分析QQ图。BLUP表示最佳线性无偏估计值。其他处理缩写同表1。"

附表1

与不同节位叶夹角性状显著关联SNP汇总"

性状
Trait
标记名称
Marker name
染色体
Chromosome
位置
Position (bp)
P
P-value
表型变异率
PVE (%)
环境/BLUP
Environment/BLUP
ULA1 PZB02058.1 1 28,614,062 2.11E-06 3.67 BLUP
PZE-101063113 1 46,668,336 1.34E-05 5.28 21ZC
PZE-101073494 1 56,920,858 5.31E-06 2.65 21BJ
PZE-101256077 1 305,013,865 5.41E-08 2.58 20BJ/21BJ/BLUP
PZE-102000560 2 837,383 1.57E-09 0.84 20BJ/BLUP
SYN2580a 2 31,809,511 3.22E-06 1.54 21BJ
PZE-102079155 2 63,417,366 1.96E-06 3.64 21ZC
PZE-102142045 2 194,956,148 1.23E-06 7.09 19BJ
PZE-103016432 3 8,535,602 1.41E-10 4.61 19BJ
PZE-103049573 3 53,869,130 3.25E-06 7.18 BLUP
PZE-104023748 4 28,367,320 3.04E-07 6.31 20BJ/BLUP
PZE-104062792 4 127,297,691 8.02E-06 0.11 21BJ
SYN11091 4 172,531,224 1.83E-07 1.26 19BJ/20ZC/BLUP
PZE-104119909 4 201,188,940 6.31E-07 5.57 19BJ
PZE-104123484 4 204,948,076 5.48E-06 4.44 20ZC
PZE-104144719 4 238,721,563 2.85E-06 1.13 21ZC
PZE-105039536 5 25,111,571 3.56E-06 6.80 20BJ/21BJ/BLUP
SYN23915 6 121,768,114 1.84E-06 0.97 20BJ
PZE-107010573 7 7,544,684 3.53E-06 0.17 20BJ/20ZC
PZE-107010578c 7 7,546,222 5.29E-06 0.10 19BJ
PZE-107060629 7 119,797,398 2.65E-06 0.10 20BJ
PZE-108002532 8 2,930,186 8.55E-06 0.03 20ZC
PZE-108052985 8 96,363,878 8.70E-09 1.37 20BJ/20ZC
PZE-109031124 9 37,396,449 5.35E-06 0.17 19BJ/21BJ/BLUP
PZE-109086476 9 137,669,212 4.74E-06 9.68 19BJ/20BJ/20ZC/21ZC/BLUP
SYN23715 10 126,322,856 1.61E-05 3.48 20ZC/21ZC
ULA2 PZE-101039301 1 26,700,206 1.24E-07 4.30 21BJ/BLUP
PZE-101075097 1 59,163,811 1.13E-06 2.99 21BJ
PZE-101256077 1 305,013,865 1.48E-05 2.52 21BJ
PZE-102006385 2 3408,488 1.00E-05 3.67 20BJ
SYN2580a 2 31,809,511 1.46E-07 1.97 21BJ
PZE-102079155 2 63,417,366 3.66E-07 4.21 20ZC/21ZC
PZE-102142045 2 194,956,148 1.33E-05 7.65 19BJ/20BJ
PZE-102191957b 2 241,700,492 7.97E-07 0.06 21ZC
PZE-103016432 3 8,535,602 1.07E-05 5.65 19BJ/20BJ/20ZC/21ZC/BLUP
PZE-104023748 4 28,367,320 5.63E-07 6.90 19BJ/20ZC
PZE-104068824 4 140,064,999 1.35E-05 0.93 19BJ
SYN11091 4 172,531,224 3.58E-06 0.54 19BJ/21BJ
PZE-104123484 4 204,948,076 2.90E-07 6.49 20BJ/20ZC
PZE-104126415 4 208,894,785 8.65E-06 7.13 21ZC
PZE-105042765 5 31,030,693 4.17E-06 1.03 19BJ
PZE-107010573 7 7,544,684 4.73E-06 0.10 19BJ/20BJ
PZE-107010578c 7 7,546,222 8.28E-06 0.11 20ZC
PZE-108052985 8 96,363,878 2.60E-07 1.45 20ZC/21BJ/BLUP
PZE-108091532 8 153,166,307 1.08E-06 6.11 20ZC
PZE-109031124 9 37,396,449 1.16E-09 0.41 19BJ/20BJ/21BJ/BLUP
PZE-109038841 9 72,089,497 1.13E-05 2.47 20ZC
PZE-109041138 9 65,843,923 4.94E-06 0.96 21ZC
PZE-109042223 9 62,588,395 7.38E-06 3.05 21ZC
PZE-109086476 9 137,669,212 6.54E-06 9.30 20BJ/20ZC/21BJ/21ZC
PZE-110036140d 10 68,224,892 2.21E-07 0.22 19BJ
PZE-110064304 10 121,007,535 1.12E-08 0.11 21ZC
SYN15051e 10 125,014,193 1.62E-07 2.19 21ZC
ULA3 PZE-101039301 1 26,700,206 4.81E-07 4.15 21BJ
PZE-101061168 1 45,273,264 7.12E-06 3.98 21BJ/BLUP
PZE-101101518 1 101,087,313 6.86E-07 2.71 21BJ
PZE-101256077 1 305,013,865 3.19E-06 3.34 21ZC
PZE-102079155 2 63,417,366 2.87E-06 3.80 21BJ/21ZC
PZE-102191957b 2 241,700,492 1.47E-05 0.01 21ZC
PZE-103016432 3 8,535,602 2.96E-07 7.46 19BJ/20BJ/20ZC/21ZC/BLUP
PZE-103087199 3 145,604,315 9.49E-06 7.82 21BJ
PZE-103118170 3 179,372,004 1.52E-05 4.25 21ZC
PZE-104023748 4 28,367,320 1.36E-06 5.13 21BJ
SYN11091 4 172,531,224 4.11E-06 0.35 21BJ
PZE-105042690 5 30,864,455 5.59E-07 2.52 21BJ
PZE-105077135 5 88,521,036 3.23E-06 5.73 20BJ
PZE-105157980 5 211,658,642 1.69E-05 5.00 21BJ
ZM013489-0395 5 217,943,859 5.55E-06 0.15 19BJ
PZE-106000325 6 713,929 7.45E-06 0.17 21BJ
PZE-106036880 6 87,796,537 1.97E-06 0.02 19BJ
PZE-107010573 7 7,544,684 4.02E-06 0.13 20BJ/21ZC/BLUP
PZE-107047280 7 99,863,965 2.07E-07 0.03 21BJ
SYN15862 8 2,200,273 1.58E-07 0.01 20BJ
PZE-108052985 8 96,363,878 1.11E-05 1.09 20BJ
PZE-108091532 8 153,166,307 1.15E-07 7.13 20ZC/21BJ/BLUP
PZE-109031124 9 37,396,449 7.79E-06 0.72 19BJ/20BJ/21BJ
PZE-109039325 9 70,992,241 4.68E-06 5.15 21BJ
PZE-109086476 9 137,669,212 5.43E-06 8.23 BLUP
PZE-110036140d 10 68,224,892 1.23E-05 0.18 19BJ
SYN15051e 10 125,014,193 4.40E-07 2.21 21ZC
SYN23715 10 126,322,856 6.89E-06 4.11 21BJ/BLUP

表2

重复检测的叶夹角显著SNP位点及其候选基因."

图3

叶夹角性状主效SNP等位变异效应分析 ***和****分别表示P < 0.001和P < 0.0001显著水平。处理缩写同表1。"

表3

玉米优异种质材料在不同环境间的叶夹角表型"

自交系
Inbred line
ULA1 (°) ULA2 (°) ULA3 (°)
19BJ 20BJ 20ZC 21BJ 21ZC 19BJ 20BJ 20ZC 21BJ 21ZC 19BJ 20BJ 20ZC 21BJ 21ZC
B241 14.43 6.35 6.65 7.54 7.18 9.40 2.09 5.55 4.46 5.27 10.57 4.35 5.16 5.24 6.71
B292 9.48 4.57 2.56 5.70 5.41 8.78 1.66 1.62 5.65 3.26 8.57 3.33 2.34 2.68 2.87
B630 13.15 3.57 2.73 5.97 7.51 9.61 6.08 6.38 5.61 4.52 10.46 2.24 3.99 7.17 5.07
B631 14.71 4.22 6.16 10.17 9.38 11.63 4.00 6.60 4.46 4.58 9.86 2.47 2.81 4.95 5.51
B634 12.65 4.47 4.86 5.56 10.35 10.43 2.77 5.71 5.08 3.76 10.37 1.63 2.80 4.21 2.97
B635 9.68 2.15 2.71 6.08 4.60 7.84 4.12 5.31 4.83 5.93 7.80 2.81 2.82 6.36 5.51
B638 11.15 2.20 3.40 2.58 9.48 7.42 2.76 4.96 5.17 4.10 7.10 1.92 2.53 2.20 4.60
B640 13.85 5.00 4.97 4.72 11.23 11.55 4.12 6.52 6.96 5.20 10.52 3.74 2.46 5.66 4.60
B709 12.20 6.46 6.04 9.26 9.18 11.38 4.68 6.76 2.88 5.11 10.02 3.94 4.35 6.08 4.97
[1] 赵久然, 王帅, 李明, 吕慧颖, 王道文, 葛毅强, 魏珣, 杨维才. 玉米育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 435-446.
Zhao J R, Wang S, Li M, Lyu H Y, Wang D W, Ge Y Q, Wei X, Yang W C. Current status and perspective of maize breeding. J Plant Genet Res, 2018, 19: 435-446. (in Chinese with English abstract)
[2] Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron, 2005, 86: 83-145.
[3] Ma D L, Xie R Z, Niu X K, Li S K, Long H L, Liu Y E. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. Eur J Agron, 2014, 58: 1-10.
doi: 10.1016/j.eja.2014.04.001
[4] Wang T Y, Ma X L, Li Y, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y C, Carlone M, Bubeck D, Bhardwaj H, Jones E, Wright K, Stephen S.Changes in yield and yield components of single-cross maize hybrids released in china between 1964 and 2001. Crop Sci, 2011, 51: 512-525.
doi: 10.2135/cropsci2010.06.0383
[5] Mock J J, Pearce R B. An ideotype of maize. Euphytica, 1975, 24: 613-623.
doi: 10.1007/BF00132898
[6] 赵久然, 孙世贤. 对超级玉米育种目标及技术路线的再思考. 玉米科学, 2007, 15(1): 21-23.
Zhao J R, Sun S X. Re-thinking on breeding objective and technical route of super maize. J Maize Sci, 2007, 15(1): 21-23. (in Chinese with English abstract)
[7] 王元东, 段民孝, 邢锦丰, 王继东, 张春原, 张雪原, 赵久然. 玉米理想株型育种的研究进展与展望. 玉米科学, 2008, 16(3): 47-50.
Wang Y D, Duan M X, Xing J F, Wang J D, Zhang C Y, Zhang X Y, Zhao J R. Progress and prospect in ideal plant type breeding in maize. J Maize Sci, 2008, 16(3): 47-50. (in Chinese with English abstract)
[8] Pendleton J W, Smith G E, Winter S R, Johnston T J. Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agron J, 1968, 60: 422-424.
doi: 10.2134/agronj1968.00021962006000040027x
[9] Lambert R J, Johnson R R. Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci, 1978, 18: 499-502.
doi: 10.2135/cropsci1978.0011183X001800030037x
[10] Pepper G E, Pearce R B, Mock J J. Leaf orientation and yield of maize. Crop Sci, 1977, 17: 883-886.
doi: 10.2135/cropsci1977.0011183X001700060017x
[11] Austin R B. Genetic variation in photosynthesis. J Agric Sci, 1989, 112: 287-294.
doi: 10.1017/S0021859600085737
[12] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[13] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34: 447-455.
doi: 10.3724/SP.J.1006.2008.00447
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin, 2008, 34: 447-455. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00447
[14] 蔡一林, 王久光, 孙海燕, 王国强. 玉米几个株型性状的遗传模型及其与穗粒性状的典型相关分析. 作物学报, 2002, 28: 829-834.
Cai Y L, Wang J G, Sun H Y, Wang G Q. Genetic model of several plant-type characters and their canonical correlation with ear-kernel characters in maize. Acta Agron Sin, 2002, 28: 829-834. (in Chinese with English abstract)
[15] 温海霞, 蔡一林, 王久光, 孙海燕. 9个玉米自交系主要株型性状的配合力分析. 西南农业大学学报, 2002, 24: 223-225.
Wen H X, Cai Y L, Wang J G, Sun H Y. Combining ability of main plant-type-related characters in 9 maize inbred lines. J Southwest Agric Univ, 2002, 24: 223-225. (in Chinese with English abstract)
[16] Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Hollad J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162.
doi: 10.1038/ng.746
[17] Zhang J, Ku L X, Han Z P, Guo S L, Liu H J, Zhang Z Z, Cao L R, Cui X J, Chen Y H. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). J Exp Bot, 2014, 65: 5063-5076.
doi: 10.1093/jxb/eru271 pmid: 24987012
[18] Dou D D, Han S B, Cao L R, Ku L X, Liu H F, Su H H, Ren Z Z, Zhang D L, Zeng H X, Dong Y H, Liu Z X, Zhu F F, Zhao Q N, Xie J R, Liu Y J, Cheng H Y, Chen Y H. CLA 4 regulates leaf angle through multiple hormones signaling pathways in maize. J Exp Bot, 2021, 72: 1782-1794.
doi: 10.1093/jxb/eraa565
[19] Ku L X, Zhao W M, Zhang J, Wu L C, Wang P A, Zhang W Q, Chen Y H. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet, 2010, 121: 951-959.
doi: 10.1007/s00122-010-1364-z pmid: 20526576
[20] Ku L X, Wei X M, Zhang S F, Zhang J, Guo S L, Chen Y H. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One, 2011, 6: e20621.
doi: 10.1371/journal.pone.0020621
[21] Lu S, Zhang M, Zhang Z, Wang Z H, Wu N, Song Y, Wang P W. Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines. PLoS One, 2018, 13: e0208386.
[22] Monir M M, Zhu J. Dominance and epistasis interactions revealed as important variants for leaf traits of maize NAM population. Front Plant Sci, 2018, 9: 627.
doi: 10.3389/fpls.2018.00627 pmid: 29967625
[23] Wang H W, Liang Q J, Li K, Hu X J, Wu Y J, Wang H, Liu Z F, Huang C L. QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. Crop J, 2017, 5: 387-395.
doi: 10.1016/j.cj.2017.05.001
[24] Ma L L, Guan Z R, Zhang Z T, Zhang X X, Zhang Y L, Zou C Y, Peng H W, Pan G T, Lee M, Shen Y O, Lubberstedt T. Identification of quantitative trait loci for leaf-related traits in an IBM Syn10 DH maize population across three environments. Plant Breed, 2017, 137: 127-138.
doi: 10.1111/pbr.12566
[25] Wassom J J. Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L.) B73 × Mo17 population. Maydica, 2013, 58: 318-321.
[26] Ku L X, Ren Z Z, Chen X, Shi Y, Qi J S, Su H H, Wang Z Y, Li G H, Wang X B, Zhu Y G, Zhou J L, Zhang X, Chen Y H. Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Mol Breed, 2016, 36: 1-16.
doi: 10.1007/s11032-015-0425-z
[27] Chen X N, Xu D, Liu Z, Yu T T, Mei X P, Cai Y L. Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays L.). Euphytica, 2015, 204: 395-405.
doi: 10.1007/s10681-015-1351-1
[28] 常立国, 何坤辉, 刘建超, 薛吉全. 不同环境条件下玉米叶夹角的QTL定位. 玉米科学, 2016, 24(4): 49-55.
Chang L G, He K H, Liu J C, Xue J Q. Mapping of QTLs for leaf angle in maize under different environments. J Maize Sci, 2016, 24(4): 49-55. (in Chinese with English abstract)
[29] Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x
[30] Armstrong R A. When to use the Bonferroni correction. Ophthalmic Physiol Opt, 2014, 34: 502-508.
doi: 10.1111/opo.12131
[31] Pandis N. Linear regression. Am J Orthod Dentofacial Orthop, 2016, 149: 431-434.
doi: 10.1016/j.ajodo.2015.11.019
[32] 王艳青, 李春花, 卢文洁, 孙道旺, 尹桂芳, 陆平, 王莉花. 135份国外藜麦种质主要农艺性状的遗传多样性分析. 植物遗传资源学报, 2018, 19: 887-894.
Wang Y Q, Li C H, Lu W J, Sun D W, Lu P, Wang L H. Genetic diversity analysis of major agronomic traits in 135 foreign quinoa germplasm accessions. J Plant Genet Res, 2018, 19: 887-894. (in Chinese with English abstract)
[33] 王秀全, 陈光明, 刘昌明, 何丹, 余先驹. 玉米株型育种亲本选配的遗传规律研究. 西南农业学报, 2000, 13(1): 50-54.
Wang X Q, Chen G M, Liu C M, He D, Yu X X. Studies on the genetic law of parent selection of plant type breeding in maize. Southwest China J Agric Sci, 2000, 13(1): 50-54. (in Chinese with English abstract)
[34] Strable J, Wallace J G, Unger-Wallace E, Briggs S, Bradbury P J, Buckler E S, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017, 29: 1622-1641.
doi: 10.1105/tpc.16.00477
[35] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701
[36] 潘延云, 朱正歌, 孙大业. 植物磷脂酶C及其参与的信号途径. 植物生理学通讯, 2005, 41: 229-234.
Pan Y Y, Zhu Z G, Sun D Y. Plant phospholipase C and its involved in signal transduction. Plant Physiol Commun, 2005, 41: 229-234. (in Chinese with English abstract)
[37] Martin F, Lindsey A H, Allison E C, Nicholas R S, David E F, Elizabeth V V. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta, 2003, 216: 366-376.
doi: 10.1007/s00425-002-0881-7
[38] 陈志娜.光信号调控水稻叶片直立性的机制研究. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Chen Z N. Mechanism Research of the Regulation of Rice Leaf Erectness by Light Signaling. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[39] Asahina M, Tamaki Y, Sakamoto T, Shibata K, Nomura T, Yokota T. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry, 2014, 104: 21-29.
doi: 10.1016/j.phytochem.2014.04.017
[40] 赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法: I. 全基因组关联分析概述. 植物学报, 2020, 55: 715-732.
Zhao Y H, Li X X, Chen Z, Lu H W, Liu Y C, Zhang Z F, Liang C Z. An overview of genome-wide association studies in plants. Chin Bull Bot, 2020, 55: 715-732 (in Chinese with English abstract).
[41] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33: 523-530.
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007, 33: 523-530. (in Chinese with English abstract)
[42] Yi Q, Hou X B, Liu Y H, Zhang X G, Zhang J J, Liu H M, Hu Y F, Yu G W, Li Y P, Huang Y B. QTL analysis for plant architecture-related traits in maize under two different plant density conditions. Euphytica, 2019, 215: 1-5.
doi: 10.1007/s10681-018-2319-8
[43] 张君. 玉米叶夹角基因ZmCLA4的图位克隆与功能分析. 河南农业大学博士学位论文, 河南郑州, 2014.
Zhang J. Map-based Cloning and Functional Analysis of Gene ZmCLA4 Controlling Leaf Angle in Mzize (Zea mays L.). PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2014. (in Chinese with English abstract)
[44] 路明, 周芳, 谢传晓, 李明顺, 徐云碧, Warburton M, 张世煌. 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析. 遗传, 2007, 29: 1131-1138.
Lu M, Zhou F, Xie C X, Li M S, Xu Y B, Warburton M, Zhang S H. Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas (Beijing), 2007, 29: 1131-1138. (in Chinese with English abstract)
[45] Hou X B, Liu Y H, Xiao Q L, Wei B, Zhang X G, Gu Y, Wang Y B, Chen J, Hu Y F, Liu H M, Zhang J J, Huang Y B. Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments. Euphytica, 2015, 205: 421-440.
doi: 10.1007/s10681-015-1401-8
[46] Zhang N, Huang X Q. Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS One, 2021, 16: e0245129.
[47] 王会涛, 柳华峰, 郑耀刚, 赵帅帅, 刘浩浩, 库丽霞, 陈彦惠. 玉米叶型相关性状QTL定位及上位性效应分析. 分子植物育种, 2018, 16: 4955-4963.
Wang H T, Liu H F, Zheng Y G, Zhao S S, Liu H H, Ku L X, Chen Y H. QTL location and epistatic effect analysis of related traits of leaf type in maize. Mol Plant Breed, 2018, 16: 4955-4963. (in Chinese with English abstract)
[48] 刘鹏飞, 蒋峰, 王汉宁, 王晓明. 玉米叶夹角和叶向值的QTL定位. 核农学报, 2012, 26: 231-237.
doi: 10.11869/hnxb.2012.02.0231
Liu P F, Jiang F, Wang H N, Wang X M. QTL mapping for leaf angle and leaf orientation in corn. J Nucl Agric Sci, 2012, 26: 231-237. (in Chinese with English abstract)
[49] Pan Q C, Xu Y C, Li K, Peng Y, Zhan W, Li W Q, Li L, Yan J B. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol, 2017, 175: 858-873.
doi: 10.1104/pp.17.00709
[50] Ding J Q, Zhang L Y, Chen J F, Li X T, Li Y M, Cheng H L, Huang R R, Zhou B, Li Z M, Wang J K, Wu J Y. Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS One, 2015, 10: e0141619.
[51] 孙娇, 赵美爱, 潘顺祥, 裴玉贺, 郭新梅, 宋希云. 玉米叶夹角的全基因组关联分析. 华北农学报, 2018, 33(1): 60-64.
Sun J, Zhao M A, Pan S X, Pei Y H, Guo X M, Song X Y. Correlation analysis of maize leaf angle with genome-wide association analysis. Acta Agric Boreali-Sin, 2018, 33(1): 60-64. (in Chinese with English abstract)
[52] Wang B B, Lin Z C, Li X, Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang H, Xie Y R, Li Q Q, Song G S, Kong D X, Zheng Z G, Wei H B, Shen R X, Wu H, Chen C X, Meng Z D, Wang T Y, Li Y, Li X H, Chen Y H, Lai J S, Hufford M B, Ross-Ibarra J, He H, Wang H Y. Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet, 2020, 52: 565-571.
doi: 10.1038/s41588-020-0616-3
[53] Maldonado C, Mora F, Scapim C A, Coan M. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS One, 2019, 14: e0212925.
[54] 秦文萱, 刘鑫, 龙艳, 董振营, 万向元. 玉米叶夹角形成的遗传基础与分子机制解析. 中国生物工程杂志, 2021, 41(12): 74-87.
Qin W X, Liu X, Long Y, Dong Z Y, Wan X Y. Progress on genetic analysis and molecular dissection on maize leaf angle traits. China Biotechnol, 2021, 41(12): 74-87. (in Chinese with English abstract)
[55] Perera I Y, Heilmann I, Boss W F. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA, 1999, 96: 5838-5843.
doi: 10.1073/pnas.96.10.5838
[56] Perera I Y, Heilmann I, Chang S C, Boss W F, Kaufman P B. A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol, 2001, 125: 1499-1507.
pmid: 11244128
[57] Zhang Z B, Li X L, Zhang C, Zou H W, Wu Z Y. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families. Biochem Biophys Res Commun, 2016, 478: 752-758.
doi: 10.1016/j.bbrc.2016.08.020
[58] Mei X P, Nan J, Zhao Z K, Yao S, Wang W Q, Yang Y, Bai Y, Dong E F, Liu C X, Cai Y L. Maize transcription factor ZmNF-YC13 regulates plant architecture. J Exp Bot, 2021, 72: 4757-4772.
doi: 10.1093/jxb/erab157
[59] 张兰军, 张保才, 周奕华. 植物细胞壁多糖乙酰化修饰与生物学功能. 植物生理学报, 2018, 545: 1272-1278.
Zhang L J, Zhang B C, Zhou Y H. Progress on polysaccharide acetylation in plant cell wall. Plant Physiol J, 2018, 545: 1272-1278. (in Chinese with English abstract)
[60] Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible W R. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol, 2010, 153: 590-602.
doi: 10.1104/pp.110.153320 pmid: 20388664
[61] Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011, 23: 4334-4347.
doi: 10.1105/tpc.111.093419
[62] Tian J G, Wang C L, Xia J L, Wu L S, Xu G H, Wu W H, Li D, Qin W C, Han X, Chen Q Y, Jin W W, Tian F. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019, 365: 658-664.
doi: 10.1126/science.aax5482
[63] 武晶, 黎裕. 基于作物种质资源的优异等位基因挖掘: 进展与展望. 植物遗传资源学报, 2019, 20: 1380-1389.
Wu J, Li Y. Mining superior alleles in crop germplasm resources: advances and perspectives. J Plant Genet Res, 2019, 20: 1380-1389. (in Chinese with English abstract)
[64] Kumar G R, Sakthivel K, Sundaram R M, Neeraja C N, Balachandran S M, Rani N S, Viraktamath B C, Madhav M S. Allele mining in crops: prospects and potentials. Biotechnol Adv, 2010, 28: 451-461.
doi: 10.1016/j.biotechadv.2010.02.007 pmid: 20188810
[65] 乐素菊, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米bt2基因SNP位点的分析及分子标记辅助筛选. 西北农林科技大学学报: 自然科学版, 2012, 40(11): 73-78.
Le S J, Liu P H, Zeng M H, Wang W Q, Wang X M.Protomer region of super sweet corn bt2 gene and development of molecular marker-assisted selection. J Northwest A&F Univ (Nat Sci Edn), 2012, 40(11): 73-78. (in Chinese with English abstract)
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[3] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[4] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[5] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[6] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[7] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[8] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[9] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[10] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[11] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[12] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[13] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[14] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[15] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[4] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[5] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[6] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[7] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[8] 柳武革;王丰;金素娟;朱小源;李金华;刘振荣;廖亦龙;朱满山;黄慧君;符福鸿;刘宜柏. 利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J]. 作物学报, 2008, 34(07): 1128 -1136 .
[9] 张文静;胡宏标;陈兵林;王友华;周治国. 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J]. 作物学报, 2008, 34(05): 859 -869 .
[10] 张鹏;张海洋;郭旺珍;郑永战;魏利斌;张天真. 以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性[J]. 作物学报, 2007, 33(10): 1696 -1702 .