欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1447-1454.doi: 10.3724/SP.J.1006.2023.21065

• 综述 •    下一篇

淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用

高欣1(), 郭雷2, 单宝雪1, 肖延军1, 刘秀坤1, 李豪圣1, 刘建军1, 赵振东1,*(), 曹新有1,*()   

  1. 1山东省农业科学院作物研究所/小麦玉米国家工程研究中心/农业农村部黄淮北部小麦生物学与遗传育种重点实验室/山东省小麦技术创新中心, 山东济南 250100
    2西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2022-10-10 接受日期:2022-11-25 出版日期:2023-06-12 网络出版日期:2022-12-01
  • 通讯作者: *赵振东, E-mail: zhaozhendong925@163.com;曹新有, E-mail: caoxinyou@126.com
  • 作者简介:E-mail: bestgaoxin@126.com
  • 基金资助:
    国家自然科学基金项目(31901543);财政部和农业农村部国家现代农业产业技术体系建设专项(小麦, CARS-03-06);山东省泰山产业领军人才项目(LJNY202006);山东省泰山学者工程项目(tsqnz20221161);山东省重点研发计划项目(2020CXGC010805);山东省重点研发计划项目(2021LZGC013);山东省重点研发计划项目(2021LZGC025);山东省农业科学院农业科技创新工程项目(CXGC2022E01)

Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties

GAO Xin1(), GUO Lei2, SHAN Bao-Xue1, XIAO Yan-Jun1, LIU Xiu-Kun1, LI Hao-Sheng1, LIU Jian-Jun1, ZHAO Zhen-Dong1,*(), CAO Xin-You1,*()   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai Rivers Valley, Ministry of Agriculture and Rural Affairs/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, Shandong, China
    2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-10-10 Accepted:2022-11-25 Published:2023-06-12 Published online:2022-12-01
  • Contact: *E-mail: zhaozhendong925@163.com;E-mail: caoxinyou@126.com
  • Supported by:
    National Natural Science Foundation of China(31901543);China Agriculture Research System of MOF and MARA (Wheat, CARS-03-06);Taishan Industrial Experts Programme(LJNY202006);Taishan Scholars Program(tsqnz20221161);Key Research and Development Program of Shandong Province(2020CXGC010805);Key Research and Development Program of Shandong Province(2021LZGC013);Key Research and Development Program of Shandong Province(2021LZGC025);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2022E01)

摘要:

小麦面粉主要由蛋白质和淀粉组成, 面筋蛋白尤其是高分子量麦谷蛋白亚基是影响面团品质的关键因素并受到育种家的广泛关注, 而淀粉的组分及其理化特性对面团品质的贡献往往被育种家忽视。小麦淀粉粒度呈双峰分布, 根据颗粒大小分为直径大于10 μm的A型淀粉颗粒和直径小于等于10 μm的B型淀粉颗粒, 不同类型淀粉颗粒的理化特性存在差异, 因此淀粉的粒度分布会影响小麦总淀粉的理化特性、面筋蛋白的网络结构、面筋与淀粉的相互作用, 进而影响面团的流变学特性和加工特性。本文从淀粉粒度分布的角度出发, 综述A型和B型淀粉颗粒的发育和调控机制、理化特性以及对品质和产量的贡献并提出未来的强筋小麦品质改良策略, 即在育种中重视淀粉特性的选择与提升, 筛选B型淀粉颗粒比例高、面筋与淀粉相互作用强的种质并加以利用, 旨在为优质强筋小麦新品种选育提供参考。

关键词: 小麦淀粉粒度分布, A型和B型淀粉颗粒, 淀粉理化特性, 面筋的网络结构, 面筋与淀粉互作

Abstract:

Wheat flour is mainly composed of protein and starch. Gluten, especially the high-molecular-weight glutenin subunit, is the key factor determining the dough quality which has been widely accepted by breeders. However, the contribution of starch composition and physicochemical properties to dough quality has not been paid enough attention. Wheat starch has a bimodal size distribution and it is composed of A-type starch granules (diameter more than 10 μm) and B-type starch granules (diameter no more than 10 μm) according to the particle size. There are differences in the physicochemical properties of different types of starch granules. Therefore, the particle size distribution of starch affects the physicochemical properties of the total wheat starch, the gluten network structure, and the gluten-starch interaction of gluten, and finally affects the dough rheological properties, and processing characteristics. In summary, from a view of starch particle distribution, this article reviewed the development and regulation mechanism, physicochemical properties of A- and B-type starch granules, and their contribution to quality and yield. Strategies for future wheat breeding were proposed, that is, the starch properties should be selected and improved. The germplasm with high B-type starch granules proportion and strong gluten-starch interaction should be screened for further utilization. The objective of this study is to provide a reference for breeding the new high-quality and strong-gluten wheat varieties.

Key words: particle distribution of wheat starch, A-type and B-type starch granules, starch physicochemical properties, gluten network structure, gluten-starch interaction

[1] Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat quality formation and its regulatory mechanism. Front Plant Sci, 2022, 13: 834654.
doi: 10.3389/fpls.2022.834654
[2] Shevkani K, Singh N, Bajaj R, Kaur A. Wheat starch production, structure, functionality and applications: a review. Int J Food Sci Technol, 2017, 52: 38-58.
doi: 10.1111/ijfs.2017.52.issue-1
[3] 雷振生, 刘丽, 王美芳, 阎俊, 杨攀, 张艳, 何中虎. HMW-GS和LMW-GS组成对小麦加工品质的影响. 作物学报, 2009, 35: 203-210.
doi: 10.3724/SP.J.1006.2009.00203
Lei Z S, Liu L, Wang M F, Yan J, Yang P, Zhang Y, He Z H. Effect of HMW and LMW glutenin subunits on processing quality in common wheat. Acta Agron Sin, 2009, 35: 203-210. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00203
[4] 张平平, 陈东升, 张勇, 夏先春, 何中虎. 春播小麦醇溶蛋白组成及其对品质性状的影响. 作物学报, 2006, 32: 1796-1801.
Zhang P P, Chen D S, Zhang Y, Xia X C, He Z H. Gliadin composition and their effects on quality properties in spring wheat. Acta Agron Sin, 2006, 32: 1796-1801. (in Chinese with English abstract)
[5] Zhang X, Zhang B, Wu H, Lu C, Lyu G, Liu D, Li M, Jiang W, Song G, Gao D. Effect of high-molecular-weight glutenin subunit deletion on soft wheat quality properties and sugar-snap cookie quality estimated through near-isogenic lines. J Integr Agric, 2018, 17: 1066-1073.
doi: 10.1016/S2095-3119(17)61729-5
[6] 曹新有, 程敦公, 刘爱峰, 宋健民, 赵振东, 王利彬, 王灿国, 刘成, 郭军, 翟胜男, 韩冉, 訾妍, 李法计, 李豪圣, 刘建军. 高产优质兼顾的强筋小麦品种选育方法与实践. 麦类作物学报, 2020, 40: 1064-1069.
Cao X Y, Cheng D G, Liu A F, Song J M, Zhao Z D, Wang L B, Wang C G, Liu C, Guo J, Zhai S N, Han R, Zi Y, Li F J, Li S T, Liu J J. Methods and practices in synergistic improvement of yield and quality in strong gluten wheat breeding. J Triticeae Crops, 2020, 40: 1064-1069. (in Chinese with English abstract)
[7] 张勇, 申小勇, 张文祥, 陈新民, 阎俊, 张艳, 王德森, 王忠伟, 刘悦芳, 田宇兵, 夏先春, 何中虎. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012, 38: 1743-1751.
doi: 10.3724/SP.J.1006.2012.01743
Zhang Y, Shen X Y, Zhang W X, Chen X M, Yan J, Zhang Y, Wang D S, Wang Z W, Liu Y F, Tian Y B, Xia X C, He Z H. Marker-assisted selection of HMW-glutenin 1Dx5+1Dy10 gene and 1B/1R translocation for improving industry quality in common wheat. Acta Agron Sin, 2012, 38: 1743-1751. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01743
[8] 王璐, 汪艳坤, 赵檀, 王睿辉, 温树敏, 刘桂茹, 谷俊涛. 河北省小麦品种高分子量谷蛋白亚基组成分析. 河北农业大学学报, 2013, 36(2): 1-6.
Wang L, Wang Y K, Zhao T, Wang R H, Wen S M, Liu G R, Gu J T. Analysis of high molecular weight glutenin subunits composition of bread wheat cultivars released in Hebei province from 1949-2008. J Agric Univ Hebei, 2013, 36(2): 1-6. (in Chinese with English abstract)
[9] 陈泠, 许恒, 佟汉文, 朱展望, 刘易科, 张宇庆, 邹娟, 鲍文杰, 高春保. 审定小麦品种高分子量麦谷蛋白亚基(HMW-GS)组成分析. 湖北农业科学, 2015, 54: 6330-6333.
Chen L, Xu H, Tong H W, Zhu Z W, Liu Y K, Zhang Y Q, Zou J, Bao W J, Gao C B. Analysis on HMW glutenin subunit composition of Chinese wheat varieties. Hubei Agric Sci, 2015, 54: 6330-6333. (in Chinese with English abstract)
[10] 丁明亮, 赵佳佳, 周国雁, 李宏生, 崔永祯, 赵红, 伍少云, 杨木军, 郑军, 李绍祥. 云南省普通小麦育成品种(系)高分子量麦谷蛋白亚基组成分析. 麦类作物学报, 2018, 38: 1309-1319.
Ding M L, Zhao J J, Zhou G Y, Li H S, Cui Y Z, Zhao H, Wu S Y, Yang M J, Zheng J, Li S X. Compositions of high molecular weight glutenin subunits of inbred wheat varieties/lines in Yunnan province. J Triticeae Crops, 2018, 38: 1309-1319. (in Chinese with English abstract)
[11] Li M, Dhital S, Wei Y. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Compr Rev Food Sci Food Saf, 2017, 16: 1042-1055.
doi: 10.1111/crf3.2017.16.issue-5
[12] Cao X, Tong J, Ding M, Wang K, Wang L, Cheng D, Li H, Liu A, Liu J, Zhao Z, Wang Z, Gao X. Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chem, 2019, 297: 125000.
doi: 10.1016/j.foodchem.2019.125000
[13] Zi Y, Shen H, Dai S, Ma X, Ju W, Wang C, Guo J, Liu A, Cheng D, Li H, Liu J, Zhao Z, Zhao S, Song J. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocoll, 2019, 93: 78-86.
doi: 10.1016/j.foodhyd.2019.02.014
[14] Karlsson R, Olered R, Eliasson A C. Changes in starch granule size distribution and starch gelatinization properties during development and maturation of wheat, barley and rye. Starch/ Stärke, 1983, 35: 335-340.
doi: 10.1002/(ISSN)1521-379X
[15] Lindeboom N, Chang P R, Tyler R T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke, 2014, 56: 89-99.
doi: 10.1002/(ISSN)1521-379X
[16] Gao X, Tong J, Guo L, Yu L, Li S, Yang B, Wang L, Liu Y, Li F, Guo J, Zhai S, Liu C, Rehman A, Farahnaky A, Wang P, Wang Z, Cao X. Influence of gluten and starch granules interactions on dough mixing properties in wheat (Triticum aestivum L.). Food Hydrocoll, 2020, 106: 105885.
doi: 10.1016/j.foodhyd.2020.105885
[17] Yu L, Guo L, Liu Y, Ma Y, Zhu J, Yang Y, Min D, Xie Y, Chen M, Tong J, Rehman A, Wang Z, Cao X, Gao X. Novel parameters characterizing size distribution of A and B starch granules in the gluten network: effects on dough stability in bread wheat. Carbohyd Polym, 2021, 257: 117623.
doi: 10.1016/j.carbpol.2021.117623
[18] 张敏, 蔡瑞国, 徐彩龙, 武宝悦, 顾锋. 种植密度对小麦胚乳淀粉粒度分布特征及产量的影响. 麦类作物学报, 2013, 33: 544-548.
Zhang M, Cai R G, Xu C L, Wu B Y, Gu F. Effects of plant density on size distribution of starch granule and yield in wheat. J Triticeae Crops, 2013, 33: 544-548. (in Chinese with English abstract)
[19] Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol, 2020, 164: 3739-3750.
doi: 10.1016/j.ijbiomac.2020.08.192 pmid: 32871126
[20] Wei C, Zhang J, Chen Y, Zhou W, Xu B, Wang Y, Chen J. Physicochemical properties and development of wheat large and small starch granules during endosperm development. Acta Physiol Plant, 2010, 32: 905-916.
doi: 10.1007/s11738-010-0478-x
[21] Langeveld S M J, van Wijk R, Stuurman N, Kijne J W, de Pater S. B-type granule containing protrusions and interconnections between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. J Exp Bot, 2000, 51: 1357-1361.
pmid: 10944148
[22] Stoddard F L, Sarker R. Characterization of starch in Aegilops species. Cereal Chem, 2000, 77: 445-447.
doi: 10.1094/CCHEM.2000.77.4.445
[23] Howard T, Rejab N A, Griffiths S, Leigh F, Leverington-Waite M, Simmonds J, Uauy C, Trafford K. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot, 2011, 62: 2217-2228.
doi: 10.1093/jxb/erq423
[24] Chia T, Adamski N M, Saccomanno B, Greenland A, Nash A, Uauy C, Trafford K. Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content. J Exp Bot, 2017, 68: 5497-5509.
doi: 10.1093/jxb/erx349 pmid: 29099990
[25] Chia T, Chirico M, King R, Ramirez-Gonzalez R, Saccomanno B, Seung D, Simmonds J, Trick M, Uauy C, Verhoeven T, Trafford K. A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. J Exp Bot, 2020, 71: 105-115.
doi: 10.1093/jxb/erz405 pmid: 31633795
[26] Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Barclay J E, Fahy B, Hartley M, Warren F J, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol, 2021, 230: 2371-2386.
doi: 10.1111/nph.17342 pmid: 33714222
[27] Ao Z, Jane J L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. Carbohyd Polym, 2007, 67: 46-55.
doi: 10.1016/j.carbpol.2006.04.013
[28] Li W, Shan Y, Xiao X, Luo Q, Zheng J, Ou-Yang S, Zhang G. Physicochemical properties of A- and B-starch granules isolated from hard red and soft red winter wheat. J Agric Food Chem, 2013, 61: 6477-6484.
doi: 10.1021/jf400943h
[29] Sun X, Sun Z, Saleh A S M, Zhao K, Ge X, Shen H, Zhang Q, Yuan L, Yu X, Li W. Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B-starch granules. Food Hydrocoll, 2021, 121: 107034.
doi: 10.1016/j.foodhyd.2021.107034
[30] Guo L, Wang Q, Chen H, Wu D, Dai C, Chen Y, Ma Y, Wang Z, Li H, Cao X, Gao X. Moderate addition of B-type starch granules improves the rheological properties of wheat dough. Food Res Int, 2022, 160: 111748.
doi: 10.1016/j.foodres.2022.111748
[31] Shang J, Li L, Zhao B, Liu M, Zheng X. Comparative studies on physicochemical properties of total, A- and B-type starch from soft and hard wheat varieties. Int J Biol Macromol, 2020, 154: 714-723.
doi: S0141-8130(19)39727-2 pmid: 32198045
[32] 田益华, 张传辉, 蔡剑, 周琴, 姜东, 戴廷波, 荆奇, 曹卫星. 小麦籽粒A-型和B-型淀粉粒的理化特性. 作物学报, 2009, 35: 1755-1758.
Tian Y H, Zhang C H, Cai J, Zhou Q, Jiang D, Dai T B, Jing Q, Cao W X. Physico-chemical properties of A- and B-type starch granules in wheat. Acta Agron Sin, 2009, 35: 1755-1758. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01755
[33] Zhang B, Li X, Liu J, Xie F, Chen L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocoll, 2013, 31: 68-73.
doi: 10.1016/j.foodhyd.2012.10.006
[34] Liu Q, Gu Z, Donner E, Tetlow I, Emes M. Investigation of digestibility in vitro and physicochemical properties of A- and B-type starch from soft and hard wheat flour. Cereal Chem, 2007, 84: 15-21.
doi: 10.1094/CCHEM-84-1-0015
[35] Zeng J, Li G, Gao H, Ru Z. Comparison of A and B starch granules from three wheat varieties. Molecules, 2011, 16: 10570-10591.
doi: 10.3390/molecules161210570 pmid: 22183883
[36] Li M, Liu C, Zheng X, Hong J, Bian K, Li L. Interaction between A-type/B-type starch granules and gluten in dough during mixing. Food Chem, 2021, 358: 129870.
doi: 10.1016/j.foodchem.2021.129870
[37] Yan H L, Lu Q Y. Effect of A- and B-granules of wheat starch on Chinese noodle quality. J Cereal Sci, 2020, 91: 102860.
doi: 10.1016/j.jcs.2019.102860
[38] Kaur A, Shevkani K, Katyal M, Singh N, Ahlawat A K, Singh A M. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. J Food Sci Technol, 2016, 53: 2127-2138.
doi: 10.1007/s13197-016-2202-3 pmid: 27413243
[39] McCann T H, Homer S H, Øiseth S K, Day L, Newberry M, Regina A, Lundin L. High amylose wheat starch increases the resistance to deformation of wheat flour dough. J Cereal Sci, 2018, 79: 440-448.
doi: 10.1016/j.jcs.2017.12.001
[40] Li H, Ma Y, Pan Y, Yu L, Tian R, Wu D, Xie Y, Wang Z, Chen X, Gao X. Starch other than gluten may make a dominant contribution to wheat dough mixing properties: a case study on two near-isogenic lines. Food Sci Technol, 2021, 152: 112413.
[41] Li Q, Li C, Li E, Gilbert R G, Xu B. A molecular explanation of wheat starch physicochemical properties related to noodle eating quality. Food Hydrocoll, 2020, 108: 106035.
doi: 10.1016/j.foodhyd.2020.106035
[42] Zhang Z, Fan X, Yang X, Li C, Gilbert R G, Li E. Effects of amylose and amylopectin fine structure on sugar-snap cookie dough rheology and cookie quality. Carbohyd Polym, 2020, 241: 116371.
doi: 10.1016/j.carbpol.2020.116371
[43] Li M, Liu C, Hong J, Zheng X, Lu Y, Bian K. Influence of wheat starch on rheological, structural and physico-chemical properties gluten-starch dough during mixing. Int J Food Sci Technol, 2022, 57, 2069-2079.
doi: 10.1111/ijfs.v57.4
[44] Roman L, de la Cal E, Gomez M, Martinez M M. Specific ratio of A- to B-type wheat starch granules improves the quality of gluten-free breads: optimizing dough viscosity and pickering stabilization. Food Hydrocoll, 2018, 82: 510-518.
doi: 10.1016/j.foodhyd.2018.04.034
[45] Yu L, Ma Y, Zhao Y, Rehman A, Guo L, Liu Y, Yang Y, Wang Z, Cao X, Gao X. Interaction of B-type starch with gluten skeleton improves wheat dough mixing properties by stabilizing gluten micro-structure. Food Chem, 2022, 371: 131390.
doi: 10.1016/j.foodchem.2021.131390
[46] Lu H, Wang C, Guo T, Xie Y, Feng W, Li S. Starch composition and its granules distribution in wheat grains in relation to post- anthesis high temperature and drought stress treatments. Starch/ Stärke, 2014, 66, 419-428.
[47] Li W, Yan S, Yin Y, Wang Z. Starch granule size distribution in wheat grain in relation to shading after anthesis. J Agric Sci, 2010, 148, 183-189.
[48] 杨雪峰, 宋维富, 赵丽娟, 刘东军, 宋庆杰, 张春利, 辛文利, 肖志敏, 张宝辉, 王晓楠. wx基因缺失遗传效应在强筋小麦育种中的利用. 麦类作物学报, 2021, 41: 699-703.
Yang X F, Song W F, Zhao L J, Liu D J, Song Q J, Zhang C L, Xin W L, Xiao Z M, Zhang B H, Wang X N. Utilization of wx gene deficiency genetic effect in strong gluten wheat breeding. J Triticeae Crops, 2021, 41: 699-703. (in Chinese with English abstract)
[1] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[2] 宋建民;刘爱峰;刘建军;李豪圣;吴祥云;赵振东;刘广田. 环境与品种对小麦淀粉理化特性和面条品质的影响[J]. 作物学报, 2005, 31(06): 796-799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .