欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 511-525.doi: 10.3724/SP.J.1006.2023.22010

• 耕作栽培·生理生化 • 上一篇    下一篇

长江中下游地区不同穗型中籼杂交稻高产群体农艺特征

陶士宝1(), 柯健1, 孙杰1, 尹传俊1, 朱铁忠1, 陈婷婷1, 何海兵1, 尤翠翠1, 郭爽爽2, 武立权1,3,*()   

  1. 1安徽农业大学, 安徽合肥 230036
    2中联智慧农业股份有限公司, 安徽芜湖 241000
    3江苏省现代作物生产协同创新中心, 江苏南京 210095
  • 收稿日期:2022-02-21 接受日期:2022-06-07 出版日期:2022-07-07 网络出版日期:2022-07-07
  • 通讯作者: 武立权
  • 作者简介:E-mail: 1103689375@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0300904);安徽省自然科学基金项目(2008085QC119);安徽省教育厅基金重点项目(KJ2019A0176);智慧芜湖大米专家系统及农业管家的研发与应用项目(2020dx09)

High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River

TAO Shi-Bao1(), KE Jian1, SUN Jie1, YIN Chuan-Jun1, ZHU Tie-Zhong1, CHEN Ting-Ting1, HE Hai-Bing1, YOU Cui-Cui1, GUO Shuang-Shuang2, WU Li-Quan1,3,*()   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Zoomlion Intelligent Agriculture Co. Ltd., Wuhu 241000, Anhui, China
    3Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
  • Received:2022-02-21 Accepted:2022-06-07 Published:2022-07-07 Published online:2022-07-07
  • Contact: WU Li-Quan
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300904);National Natural Science Foundation of Anhui(2008085QC119);Key Research Fund of the Education Department of Anhui Province(KJ2019A0176);Development and Application of Wisdom Wuhu Rice Expert System and Agricultural Steward(2020dx09)

摘要:

探明长江中下游地区不同穗型中籼杂交稻产量成因及高产品种群体共性特征。以120个中籼杂交稻为材料, 于2019—2020年在安徽舒城农科所开展品种评比试验, 并根据每穗粒数排序将供试品种均分为大穗型(193~270)、中穗型(167~191)和小穗型(108~166) 3类, 比较不同穗型中籼杂交稻的产量及构成、生育进程、日产量、叶面积指数、生物量和穗型结构的差异。结果表明, 各穗型下水稻产量变幅均较大, 通过聚类分析可进一步分别分为高产、中产和低产3种类型。高日产量是不同穗型品种高产共性指标, 其中大穗型与增加叶面积指数有关, 而中、小穗型可能与促进光能转化效率有关。除日产量外, 不同穗型品种高产形成极具差异。从产量构成来看, 大穗型品种主要依靠有效穗数、每穗粒数和千粒重来增产; 中穗型品种为有效穗数和结实率; 而小穗型品种为有效穗数、每穗粒数和结实率, 这种穗型间的差异与分类方法和大穗型水稻灌浆障碍有关。从物质积累来看, 与小穗型高产品种较高的收获指数不同, 大、中穗型水稻要依靠生物量增加来提高产量。各穗型下不同产量水平的穗位枝梗分布与穗长均无显著差异。主成分分析发现, 大穗型高产品种主要表现为日产量高、生物量大、穗多粒重、叶面积指数高; 中穗型高产品种表现为日产量高、穗数多、生物量大; 而小穗型高产品种则为日产量高、收获指数大、穗粒兼顾、结实率高。总的来说, 大穗型高产品种的共性指标为: 日产量107.0 kg hm-2 d-1、生物量20.2 t hm-2、有效穗数229.8 m-2、叶面积指数6.1; 中穗型高产品种为: 日产量95.3 kg hm-2 d-1、有效穗数253.9 m-2、生物量19.5 t hm-2; 小穗型高产品种: 日产量79.6 kg hm-2 d-1、收获指数61.0%、有效穗数239.0 m-2、结实率84.6%。此外, 应该根据品种穗型大小针对性进行高产氮肥管理。

关键词: 长江中下游地区, 高产中籼杂交稻, 穗型大小, 产量形成, 群体指标

Abstract:

To clarify the mechanism of yield and common characteristics of high-yielding cultivars of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River, the field experiments were conducted in 2019 and 2020 at Shucheng Agricultural Science Institute, Anhui province. 120 middle-season indica hybrid rice cultivars were classified into three panicle types by spikelets per panicle [large panicle size (LPS, 193-270), middle panicle size (MPS, 167-191), small panicle size (SPS, 108-166)], and their yield and yield components, growth period, daily yield, leaf area index, biomass, and panicle structure were compared. The results showed that rice yield varied across the cultivar types, irrespective of the panicle type. Cluster analysis revealed that it could be further divided into three yield types (high-yield, middle-yield, and low-yield). High daily yield was a common indicator of high yield among different panicle cultivars, LPS was associated with the increasing leaf area index, while MPS and SPS might be associated with the promoting light energy conversion efficiency. There were extremely different ways of producing high yields among panicle types, except daily yield. In yield components, the yield increasing of LPS mainly relied on the effective panicles, the spikelets per panicle, and 1000-grain weight; MPS was the effective panicle and the grain filling rate; and SPS was the effective panicle, the spikelets per panicle and the grain filling rate. This difference of panicle types was related to the classification method and the grain filling disorders of large panicle size rice. In terms of biomass, LPS and MPS cultivars were dependent on increased biomass to improve yield, but SPS high-yielding cultivars were dependent on the higher harvest index. There were no significant differences in the distribution of branches and panicle length among different yield types under each panicle type. Principal component analysis revealed that LPS high-yield cultivars were mainly characterized by higher daily yield, higher biomass, higher grain weight, more panicles, and higher leaf area index; MPS high-yield cultivars exhibited higher daily yield, more panicles, and higher biomass. However, SPS high-yield cultivars had higher daily yield, higher harvest index, more balance between panicle and spikelets, and higher grain filling rate. In general, the common indicators of LPS high-yield cultivars were daily yield 107.0 kg hm-2 d-1, biomass 20.2 t hm-2, effective panicle 229.8 m-2, leaf area index 6.1; MPS high-yield cultivars were daily yield 95.3 kg hm-2 d-1, effective panicle 253.9 m-2, biomass 19.5 t hm-2; and SPS high-yield cultivars were daily yield 79.6 kg hm-2 d-1, harvest index 61.0%, effective panicle 239.0 m-2, grain filling rate 84.6%. In addition, high-yield nitrogen fertilizer management should be targeted according to the different panicle size cultivars.

Key words: the middle and lower reaches of Yangtze River, high-yield middle-season indica hybrid rice, panicle size, yield composition, population indicators

图1

2019年和2020年水稻生长季气象数据"

表1

不同产量类型水稻信息"

编号
No.
大穗型水稻
Large panicle size rice
编号
No.
中穗型水稻
Middle panicle size rice
编号
No.
小穗型水稻
Small panicle size rice
4 春优590
Chunyou 590
12 深两优276
Shenliangyou 276
22 云两优247
Yunliangyou 247
6 春优584
Chunyou 584
14 紫两优1392
Ziliangyou 1392
53 两优002
Liangyou 002
9 宿两优918
Suliangyou 918
20 Y两优372
Yliangyou 372
54 徽两优韵丝苗
Huiliangyouyunsimiao
31 望两优029
Wangliangyou 029
48 喜两优晶占
Xiliangyoujingzhan
59 巨两优60
Juliangyou 60
34 红两优1566
Hongliangyou 1566
55 N两优018
N liangyou 018
63 G两优345
Gliangyou 345
39 中浙优H7
Zhongzheyou H7
58 徽两优丝苗
Huiliangyousimiao
73 荃两优2118
Quanliangyou 2118
43 尤两优月牙丝苗
Youliangyouyueyasimiao
76 徽两优918
Huiliangyou 918
88 强两优6166
Qiangliangyou 6166
56 两优566
Liangyou 566
79 E两优171
E liangyou 171
136 徽两优106
Huiliangyou 106
57 喜两优丝苗
Xilaingyousimiao
87 农香优2381
Nongxiangyou 2381
137 瑞两优1578
Ruiliangyou 1578
62 未两优10号
Weiliangyou 10
90 C两优丝苗
C liangyousimiao
140 徽两优982
Huiliangyou 982
68 徽两优280
Huiliangyou 280
96 吨两优900
Dunliangyou 900
151 韵农丝苗
Yunnongsimiao
71 乾两优8号
Qianliangyou 8
101 Q两优5号
Q liangyou 5
18 两优2420
Liangyou 2420
72 创两优965
Chuangliangyou 965
109 黔丰优877
Qianfengyou 877
36 两优005
Liangyou 005
75 晶两优1686
Jingliangyou 1686
110 泷两优713
Longliangyou 713
40 兆优5455
Zhaoyou 5455
91 深两优686
Shenliangyou 686
115 恒丰优粤禾丝苗
Hengfengyouyuehesimiao
50 云两优520
Yunliangyou 520
103 晶两优8612
Jingliangyou 8612
117 晶两优1212
Jingliangyou 1212
80 荃优123
Quanyou 123
118 Q两优851
Q liangyou 851
119 冈8优316
Gang 8 you 316
97 深两优8012
Shenliangyou 8012
129 隆两优1307
Longliangyou 1307
122 荃优禾广丝苗
Quanyouheguangsimiao
98 深两优475
Shenliangyou 475
154 荃优607
Quanyou 607
125 Q两优丝苗
Q liangyousimiao
114 徽两优898
Huiliangyou 898
23 荃优153
Quanyou 153
128 荃两优069
Quanliangyou 069
120 荃优粤农丝苗
Quanyouyuenongsimiao
29 扬两优228
Yangliangyou 228
141 两优57华占
Liangyou 57 huazhan
152 绿银占
Lyuyinzhan
32 智两优5336
Zhiliangyou 5336
1 C两优粤禾丝苗
C liangyouyuehesimiao
153 两优887
Liangyou 887
45 泰两优217
Tailiangyou 217
17 深两优600
Shenliangyou 600
5 徽两优882
Huiliangyou 882
51 华中优1号
Huazhongyou 1
19 深两优868
Shenlinagyou 868
8 荃优822
Quanyou 822
67 诺两优6号
Nuoliangyou 6
25 巧两优丝苗
Qiaoliangyousimiao
13 深两优2688
Shenliangyou 2688
146 剑两优新华粘
Jianliangyouxinhuazhan
33 绿两优9871
Lyuliangyou 9871
15 两优1266
Liangyou 1266
160 荃优727
Quanyou 727
44 黄华占
Huanghuazhan
27 川优1728
Chuanyou 1728
2 Y两优900
Y liangyou 900
49 丰两优406
Fengliangyou 406
35 源两优8000
Yuanliangyou 8000
7 荃优801
Quanyou 801
69 黔丰优877
Qianfengyou 877
47 欣两优2172
Xinliangyou 2172
21 两优801
Liangyou 801
132 两优3108
Liangyou 3108
70 惠两优2919
Huiliangyou 2919
24 N两优1998
N liangyou 1998
145 垦两优801
Kenliangyou 801
74 F两优1252
F liangyou 1252
60 Y两优886
Y liangyou 886
148 春优590
Chunyou 590
93 荃9优801
Quan 9 you 801
64 徽两优鄂丰丝苗
Huiliangyouefengsimiao
16 徽两优985
Huiliangyou 985
105 E两优1453
E liangyou 1453
65 全两优鄂丰丝苗
Quanliangyouefengsimiao
30 两优391
Liangyou 391
116 徽两优1133
Huiliangyou 1133
66 徽两优香丝苗
Huiliangyouxiangsimiao
37 C两优0861
C liangyou 0861
124 徽两优粤农丝苗
Huiliangyouyuenongsimiao
83 和两优1177
Heliangyou 1177
42 星两优丝苗
Xingliangyousimiao
130 宇两优丝占
Yuliangyousizhan
85 悦两优2646
Yueliangyou 2646
82 萍两优晶丝苗
Pingliangyoujingsimiao
131 N两优012
N liangyou 012
86 荃优523
Quanyou 523
95 强两优698
Qiangliangyou 698
135 两优106
Liangyou 106
89 T两优1号
T liangyou 1
138 泓两优503
Hongliangyou 503
149 中两优538
Zhongliangyou 538
156 泰优6365
Taiyou 6365
157 C两优银华占
C liangyouyinhuazhan
161 鄂丰丝苗
Efengsimiao

表2

品种和年份对水稻产量影响的方差分析"

变异来源
Source
自由度
DF
平方和
Sum of square
均方
Mean square
F
F-value
P
P-value
年份Year (Y) 1 36.00 19.43 86.62 0
品种 Cultivar (C) 119 2312.06 36.00 160.51 0
年份×品种 Y×C 119 15.83 0.13 0.59 1.00

图2

不同穗型水稻品种的产量 箱型图中的箱体部分代表50% (25%~75%)样本的分布区域, 为四分位区间(IQR)。箱体内实线为中位线, “●”表示产量。图中不同小写字母表示不同穗型水稻在0.05水平下差异显著。"

图3

不同穗型水稻品种产量聚类图 水稻品种编号同表1。"

图4

不同穗型与产量类型水稻产量 图柱上的不同小写字母表示同一穗型间不同产量水平差异显著(P < 0.05)。"

表3

不同穗型与产量类型水稻产量构成因素"

穗型
Panicle size
产量类型
Yield type
有效穗数
Panicle
(m-2)
每穗粒数
Spikelets per
panicle
总颖花量
Total spikelets
(×103 m-2)
结实率
Grain filling rate
(%)
千粒重
1000-grain weight
(g)
大穗
Large-panicle
高产High-yield 229.8±29.4 a 220.9±21.3 ab 50.4±5.1 a 84.2±7.7 a 27.5±2.2 a
中产Middle-yield 199.3±27.7 b 235.5±22.5 a 46.5±3.9 a 82.4±5.5 a 25.9±2.1 ab
低产Low-yield 200.6±25.5 b 208.8±14.0 b 41.7±5.1 b 79.2±9.4 a 24.5±1.6 b
中穗
Middle-panicle
高产High-yield 253.9±22.4 a 178.7±7.7 a 45.3±4.2 a 88.9±2.8 a 25.2±1.3 a
中产Middle-yield 232.3±30.5 a 176.4±7.5 a 40.9±4.8 b 84.7±6.5 ab 25.0±1.9 a
低产Low-yield 207.6±26.9 b 176.1±7.1 a 36.5±4.8 c 81.8±8.2 b 25.4±2.1 a
小穗
Small-panicle
高产High-yield 239.0±37.6 a 155.1±8.4 a 36.8±4.4 a 84.6±6.8 a 26.1±1.7 a
中产Middle-yield 222.3±34.8 b 144.6±17.1 a 31.8±4.3 b 80.6±7.0 a 25.3±2.4 a
低产Low-yield 220.9±22.1 b 131.5±18.9 b 29.0±4.6 b 72.1±8.1 b 24.9±2.1 a

表4

不同穗型与产量类型水稻生育期和日产量"

穗型
Panicle size
产量类型
Yield type
移栽-抽穗期
TP-HD
(d)
抽穗-成熟期
HD-MS
(d)
本田期
Growth duration
(d)
日产量
Daily yield
(kg hm-2 d-1)
大穗
Large-panicle
高产High-yield 72.9±3.4 a 34.6±1.2 a 107.5±3.3 a 107.0±5.5 a
中产Middle-yield 73.5±3.7 a 32.4±2.7 a 105.8±2.6 a 92.7±5.3 b
低产Low-yield 72.5±3.9 a 33.0±3.2 a 105.5±2.3 a 75.4±8.1 c
中穗
Middle-panicle
高产High-yield 71.5±3.6 a 35.1±1.6 a 106.5±3.7 a 95.3±7.4 a
中产Middle-yield 72.1±3.6 a 34.1±2.0 ab 106.2±3.5 a 80.7±3.1 b
低产Low-yield 72.7±3.2 a 33.3±1.8 b 106.0±3.1 a 70.2±7.4 c
小穗
Small-panicle
高产High-yield 69.8±8.6 a 34.7±2.8 a 104.5±8.6 a 79.6±13.2 a
中产Middle-yield 72.1±3.4 a 33.0±2.8 a 105.1±3.7 a 60.8±4.3 b
低产Low-yield 72.3±4.8 a 32.8±2.6 a 105.1±5.7 a 48.0±4.4 c

图5

不同穗型与产量类型水稻成熟期生物量 图柱上的不同小写字母表示同一穗型间不同产量水平差异显著(P < 0.05)。"

图6

不同穗型与产量类型水稻收获指数 图柱上的不同小写字母表示同一穗型间不同产量水平差异显著(P < 0.05)。"

表5

不同穗型与产量类型水稻株高和叶面积指数"

穗型
Panicle size
产量类型
Yield type
株高
Plant height
(cm)
叶面积指数 Leaf area index
倒一叶
Top first leaf
倒二叶
Top second leaf
倒三叶
Top third leaf
倒四叶
Top fourth leaf
合计
Total
大穗
Large-panicle
高产High-yield 126.2±5.1 a 1.4±0.3 a 1.7±0.3 a 1.4±0.2 a 1.7±0.3 a 6.1±0.8 a
中产Middle-yield 127.0±7.2 a 1.1±0.2 a 1.3±0.2 a 1.1±0.1 b 1.4±0.2 b 5.0±0.7 b
低产Low-yield 123.7±7.9 a 1.2±0.4 a 1.5±0.5 a 1.2±0.4 ab 1.4±0.3 ab 5.3±1.5 ab
中穗
Middle-panicle
高产High-yield 117.6±7.3 a 1.3±0.2 a 1.6±0.2 a 1.3±0.2 a 1.5±0.2 a 5.7±0.6 a
中产Middle-yield 117.6±8.0 a 1.3±0.2 a 1.5±0.3 a 1.3±0.1 a 1.5±0.1 ab 5.6±0.6 a
低产Low-yield 120.5±8.2 a 1.2±0.4 a 1.4±0.4 a 1.2±0.3 a 1.3±0.2 b 5.1±1.2 a
小穗
Small-panicle
高产High-yield 113.6±11.6 a 1.3±0.4 a 1.4±0.4 a 1.3±0.3 a 1.4±0.3 a 5.4±1.3 a
中产Middle-yield 116.8±10.0 a 1.2±0.3 a 1.4±0.4 a 1.2±0.3 a 1.3±0.2 a 5.0±1.1 a
低产Low-yield 114.9±10.7 a 1.1±0.2 a 1.5±0.6 a 1.2±0.5 a 1.2±0.2 a 5.0±1.2 a

表6

不同穗型与产量类型水稻一次枝梗数分布"

穗型
Panicle size
产量类型
Yield type
穗长
Panicle length (cm)
总一次枝梗
Total number of
primary branch
上部一次枝梗数
Number of upper
primary branch
中部一次枝梗数
Number of middle
primary branch
下部一次枝梗数
Number of lower
primary branch
大穗
Large-panicle
高产High-yield 28.6±2.6 a 12.5±2.0 a 4.0±0.6 a 4.4±0.7 a 4.0±0.6 a
中产Middle-yield 26.9±2.5 a 12.9±2.0 a 4.3±0.7 a 4.4±0.7 a 4.3±0.7 a
低产Low-yield 28.2±2.9 a 12.8±1.6 a 4.1±0.6 a 4.4±0.5 a 4.2±0.6 a
中穗
Middle-panicle
高产High-yield 26.0±0.8 a 11.1±1.0 a 3.6±0.4 a 3.9±0.3 a 3.6±0.4 a
中产Middle-yield 26.4±1.4 a 11.6±0.7 a 3.7±0.2 a 4.0±0.3 a 3.8±0.4 a
低产Low-yield 27.0±1.5 a 11.9±1.4 a 3.9±0.5 a 4.2±0.5 a 3.9±0.5 a
小穗
Small-panicle
高产High-yield 26.4±2.4 a 11.0±0.9 a 3.5±0.4 a 4.0±0.3 ab 3.5±0.4 a
中产Middle-yield 26.6±1.9 a 11.3±1.3 a 3.6±0.4 a 4.1±0.5 a 3.6±0.5 a
低产Low-yield 25.4±2.6 a 10.9±1.0 a 3.5±0.3 a 3.7±0.4 b 3.5±0.3 a

表7

不同穗型与产量类型水稻二次枝梗数分布"

穗型
Panicle size
产量类型
Yield type
总二次枝梗数
Total number of secondary branch
上部二次枝梗数
Number of the upper secondary branch
中部二次枝梗数
Number of the middle secondary branch
下部二次枝梗数
Number of the lower secondary branch
大穗
Large-panicle
高产High-yield 45.1±6.4 a 13.7±2.1 a 17.6±2.2 a 13.8±2.7 a
中产Middle-yield 46.5±5.1 a 15.0±1.9 a 17.6±2.0 a 13.9±3.0 a
低产Low-yield 43.3±7.3 a 14.3±3.8 a 17.0±2.3 a 12.0±2.5 a
中穗
Middle-panicle
高产High-yield 36.2±5.6 a 11.3±1.6 a 14.2±2.0 a 10.7±2.6 a
中产Middle-yield 37.4±7.0 a 11.8±2.2 a 14.5±2.4 a 11.1±3.1 a
低产Low-yield 37.9±6.0 a 12.0±2.2 a 15.2±2.5 a 10.7±2.4 a
小穗
Small-panicle
高产High-yield 33.0±5.6 a 10.5±1.9 a 13.4±2.5 a 9.0±2.6 a
中产Middle-yield 32.4±6.8 a 10.5±1.9 a 13.2±2.9 a 8.7±2.6 a
低产Low-yield 28.9±5.0 a 9.4±1.2 a 11.7±2.3 a 7.9±1.9 a

表8

主要农艺性状特征值及贡献率"

类别
Variance
主成分Principal
1 2 3 4 5 6 7 8 9 10 11 12
大穗Large panicle
特征值Eigenvectors 3.3 2.7 1.9 1.4 0.8 0.7 0.5 0.4 0.2 0.0 0.0 0.0
贡献率Contribution rate (%) 27.3 22.6 16.1 11.9 7.0 5.8 3.9 3.4 1.6 0.1 0.0 0.0
累计贡献率Cumulative contribution rate (%) 27.3 50.0 66.1 77.9 84.9 90.7 94.6 98.1 99.7 100.0 100.0 100.0
中穗Middle panicle
特征值Eigenvectors 3.3 2.7 1.9 1.4 0.8 0.7 0.5 0.4 0.2 0.0 0.0 0.0
贡献率Contribution rate (%) 28.9 22.8 12.6 10.5 8.5 6.1 5.0 3.0 1.9 0.5 0.2 0.0
累计贡献率Cumulative contribution rate (%) 28.9 51.7 64.3 74.7 83.2 89.3 94.3 97.3 99.2 99.8 100.0 100.0
小穗Small panicle
特征值Eigenvectors 3.3 2.7 1.9 1.4 0.8 0.7 0.5 0.4 0.2 0.0 0.0 0.0
贡献率Contribution rate (%) 27.4 21.7 16.3 10.4 9.7 8.0 3.3 1.7 1.0 0.2 0.1 0.0
累计贡献率Cumulative contribution rate (%) 27.4 49.2 65.5 75.9 85.6 93.6 96.9 98.6 99.6 99.9 100.0 100.0

图7

不同穗型品种主成分1与主成分2因子载荷图"

图8

安徽省近30年温度变化"

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2020. (in Chinese)
[2] 梅方权, 吴宪章, 姚长溪, 李路平, 王磊, 陈秋云. 中国水稻种植区划. 中国水稻科学, 1988, 2: 97-110.
Mei F Q, Wu X Z, Yao C X, Li L P, Wang L, Chen Q Y. Rice cropping regionalization in China. Chin J Rice Sci, 1988, 2: 97-110. (in Chinese with English abstract)
[3] 许信旺, 孙满英, 方宇媛, 何小青, 薛芳, 付伟, 毛敏. 安徽省气候变化对水稻生产的影响及应对. 农业环境科学学报, 2011, 30: 1755-1763.
Xu X W, Sun M Y, Fang Y Y, He X Q, Xue F, Fu W, Mao M. Impact of climatic change on rice production and response strategies in Anhui province. J Agro-Environ Sci, 2011, 30: 1755-1763. (in Chinese with English abstract)
[4] 邹禹, 占新春, 程从新, 钱宝云, 郑乐娅, 张培江. 安徽省粳稻生产与育种现状及发展对策. 安徽农业科学, 2019, 47(9): 26-28.
Zou Y, Zhan X C, Cheng C X, Qian B Y, Zheng L Y, Zhang P J. Current situation and development strategy of japonica rice production and breeding in Anhui Province. J Anhui Agric Sci, 2019, 47(9): 26-28. (in Chinese with English abstract)
[5] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J, Dai Q G, Huo Z Y, Xu K, Guo B W. Different characteristics of high yield formation between inbred japonica super rice and inter-sub- specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
doi: 10.1016/j.fcr.2016.09.009
[6] Wang D Y, Li X Y, Ye C, Xu C M, Chen S, Chu G, Zhang Y B, Zhang X F. Geographic variation in the yield formation of single-season high-yielding hybrid rice in southern China. J Integr Agric, 2021, 20: 438-449.
doi: 10.1016/S2095-3119(20)63360-3
[7] Yin M, Liu S W, Zheng X, Chu G, Xu C M, Zhang X F, Wang D Y, Chen S. Solar radiation-use characteristics of indica/japonica hybrid rice (Oryza sativa L.) in the late season in southeast China. Crop J, 2021, 9: 427-439.
doi: 10.1016/j.cj.2020.06.010
[8] 殷敏, 刘少文, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020, 53: 890-903.
Yin M, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F, Chen S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Sci Agric Sin, 2020, 53: 890-903. (in Chinese with English abstract)
[9] Li R H, Li M J, Ashraf U, Liu S W, Zhang J E. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front Plant Sci, 2019, 10: 543.
doi: 10.3389/fpls.2019.00543 pmid: 31134107
[10] Meng T Y, Zhang X B, Ge J L, Chen X, Zhu G L, Chen Y L, Zhou G S, Wei H H, Dai Q G. Improvements in grain yield and nutrient utilization efficiency of japonica inbred rice released since the 1980s in eastern China. Field Crops Res, 2022, 277: 108427.
doi: 10.1016/j.fcr.2021.108427
[11] 周开达, 汪旭东, 李仕贵, 李平, 黎汉云, 黄国寿, 刘太清, 沈茂松. 亚种间重穗型杂交稻研究. 中国农业科学, 1997, 30(5): 91-93.
Zhou K D, Wang X D, Li S G, Li P, Li H Y, Huang G S, Liu T Q, Shen M S. Transportation characteristics of assimilate and physiologic mechanisms in subspecific heavy ear hybrid rice (Oryza sativa L.). Sci Agric Sin, 1997, 30(5): 91-93. (in Chinese with English abstract)
[12] 马均, 马文波, 明东风, 杨世民, 朱庆森. 重穗型水稻株型特性研究. 中国农业科学, 2006, 39: 679-685.
Ma J, Ma W B, Ming D F, Yang S M, Zhu Q S. Studies on the characteristics of rice plant with heavy panicle. Sci Agric Sin, 2006, 39: 679-685. (in Chinese with English abstract)
[13] Li G H, Xue L H, Gu W, Yang C D, Wang S, Ling Q H, Qin X, Ding Y F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Res, 2009, 112: 214-221.
doi: 10.1016/j.fcr.2009.03.005
[14] Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9-18.
doi: 10.1016/j.fcr.2013.06.002
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征. 作物学报, 2022, 48: 1005-1016.
doi: 10.3724/SP.J.1006.2022.12006
Ke J, Chen T T, Wu Z, Zhu T Z, Sun J, He H B, You C C, Zhu D Q, Wu L Q. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River. Acta Agron Sin, 2022, 48: 1005-1016. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12006
[16] Xu L, Zhan X W, Yu T T, Nie L X, Huang J L, Cui K H, Wang F, Li Y, Peng S B. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Res, 2018, 227: 49-55.
doi: 10.1016/j.fcr.2018.08.002
[17] 陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明, 李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20: 1319-1328.
Chen H F, Feng Y, Cai H M, Xu F S, Zhou W, Liu F, Pang Z M, Li D R. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields. Plant Nutr Fert Sci, 2014, 20: 1319-1328. (in Chinese with English abstract)
[18] 田青兰, 刘波, 钟晓媛, 赵敏, 孙红, 任万军. 不同播栽方式下杂交籼稻非结构性碳水化合物与枝梗和颖花形成及产量性状的关系. 中国农业科学, 2016, 49: 35-53.
Tian Q L, Liu B, Zhong X Y, Zhao M, Sun H, Ren W J. Relationship of NSC with the formation of branches and spikelets and the yield traits of indica hybrid rice in different planting methods. Sci Agric Sin, 2016, 49: 35-53. (in Chinese with English abstract)
[19] Qiao J, Yang L Z, Yan T M, Xue F, Zhao D. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. Eur J Agron, 2013, 49: 93-103.
doi: 10.1016/j.eja.2013.03.008
[20] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2021.
[21] Wickham H. Ggplot2:Elegant Graphics for Data Analysis. Springer-Verlag, New York, 2016.
[22] 戴力, 黄凤林, 赵杨, 匡炜, 方宝华. 长江中下游地区籼型超级稻品种分型及方法研究. 南方农业学报, 2021, 52: 2671-2679.
Dai L, Huang F L, Zhao Y, Kuang W, Fang B H. Types and methods of indica super rice varieties in the middle and lower reaches of Yangtze River. J Southern Agric, 2021, 52: 2671-2679. (in Chinese with English abstract)
[23] 吴文革, 张洪程, 吴桂成, 翟超群, 钱银飞, 陈烨, 徐军, 戴其根, 许珂. 超级稻群体籽粒库容特征的初步研究. 中国农业科学, 2007, 40: 250-257.
Wu W G, Zhang H C, Wu G C, Zhai C Q, Qian Y F, Chen Y, Xu J, Dai Q G, Xu K. Preliminary study on super rice population sink characters. Sci Agric Sin, 2007, 40: 250-257. (in Chinese with English abstract)
[24] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43: 730-740.
doi: 10.3724/SP.J.1006.2017.00730
Wei H Y, Li H L, Cheng J Q, Zhang H C, Dai Q G, Huo Z Y, Xu K, Guo B W, Hu Y J, Cui P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle. Acta Agron Sin, 2017, 43: 730-740. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00730
[25] 罗玉坤, 朱智伟, 金连登, 闵捷, 陈能, 许立, 陈铭学, 章林平. 从普查结果看我国水稻品种品质的现状. 中国稻米, 2002, 8(1): 5-9.
Luo Y K, Zhu Z W, Jin L D, Min J, Chen N, Xu L, Chen M X, Zhang L P. The current situation of rice variety quality in China from the census results. China Rice, 2002, 8(1): 5-9. (in Chinese)
[26] 徐正进, 陈温福, 张树林, 张文忠, 马殿荣, 刘丽霞, 周淑清. 辽宁水稻穗型指数品种间差异及其与产量和品质的关系. 中国农业科学, 2005, 38: 1926-1930.
Xu Z J, Chen W F, Zhang S L, Zhang W Z, Ma D R, Liu L X, Zhou S Q. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Sci Agric Sin, 2005, 38: 1926-1930. (in Chinese with English abstract)
[27] 朱铁忠, 柯健, 姚波, 陈婷婷, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区机插早稻的超高产群体特征. 中国农业科学, 2021, 54: 1553-1564.
Zhu T Z, Ke J, Yao B, Chen T T, He H B, You C C, Zhu D Q, Wu L Q. Super-high yield characteristics of mechanically transplanting double-cropping early rice in the northern margin area of Yangtze River. Sci Agric Sin, 2021, 54: 1553-1564. (in Chinese with English abstract)
[28] 何海兵, 杨茹, 吴汉, 尤翠翠, 朱德泉, 时强强, 武立权. 干湿交替灌溉下氮素形态对水稻花期光合及产量形成的影响. 西北植物学报, 2017, 37: 2230-2237.
He H B, Yang R, Wu H, You C C, Zhu D Q, Shi Q Q, Wu L Q. Effects of N forms on photosynthesis at flowering and yield formation in wetting-drying alternation irrigation. Acta Bot Boreali-Occident Sin, 2017, 37: 2230-2237. (in Chinese with English abstract)
[29] Jiang P, Xie X B, Huang M, Zhou X F, Zhang R, Chen J N, Wu D D, Xia B, Xiong H, Xu F X, Zou Y B. Potential yield increase of hybrid rice at five locations in southern China. Rice, 2016, 9: 11.
doi: 10.1186/s12284-016-0085-6 pmid: 26984118
[30] Tseng M C, Roel Á, Macedo I, Marella M, Terra J, Zorrilla G, Pittelkow C M. Field-level factors for closing yield gaps in high-yielding rice systems of Uruguay. Field Crops Res, 2021, 264: 108097.
doi: 10.1016/j.fcr.2021.108097
[31] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响. 作物学报, 2021, 47: 1372-1382.
doi: 10.3724/SP.J.1006.2021.02055
Ke J, Chen T T, Xu H C, Zhu T Z, Wu H, He H B, You C C, Zhu D Q, Wu L Q. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted. Acta Agron Sin, 2021, 47: 1372-1382. (in Chinese with English abstract)
[32] 吕伟生, 肖国滨, 叶川, 李亚贞, 陈明, 肖小军, 赖诗盛, 郑伟, 吴艳, 黄天宝. 油-稻-稻三熟制下双季稻高产品种特征研究. 中国农业科学, 2018, 51: 37-48.
Lyu W S, Xiao G B, Ye C, Li Y Z, Chen M, Xiao X J, Lai S S, Zheng W, Wu Y, Huang T B. Characteristics of high-yield double rice varieties in rice-rice-rapeseed cropping system. Sci Agric Sin, 2018, 51: 37-48. (in Chinese with English abstract)
[33] 何连华, 陈多, 张驰, 田青兰, 吴振元, 李秋萍, 钟晓媛, 邓飞, 胡剑锋, 凌俊英, 任万军. 机插栽培籼杂交稻的日产量及与株型的关系. 中国农业科学, 2019, 52: 981-996.
He L H, Chen D, Zhang C, Tian Q L, Wu Z Y, Li Q P, Zhong X Y, Deng F, Hu J F, Ling J Y, Ren W J. The daily yield of medium hybrid rice in machine transplanting and its relationship with plant type. Sci Agric Sin, 2019, 52: 981-996. (in Chinese with English abstract)
[34] Huang L Y, Sun F, Yuan S, Peng S B, Wang F. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Res, 2018, 216: 150-157.
doi: 10.1016/j.fcr.2017.11.019
[35] 剧成欣, 陶进, 钱希旸, 顾骏飞, 赵步洪, 杨凯鹏, 王志琴, 杨建昌. 不同年代中籼水稻品种的产量与氮肥利用效率. 作物学报, 2015, 41: 422-431.
doi: 10.3724/SP.J.1006.2015.00422
Ju C X, Tao J, Qian X Y, Gu J F, Zhao B H, Yang K P, Wang Z Q, Yang J C. Grain yield and nitrogen use efficiency of mid-season indica rice cultivars applied at different decades. Acta Agron Sin, 2015, 41: 422-431. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00422
[36] 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32: 949-955.
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agron Sin, 2006, 32: 949-955 (in Chinese with English abstract)
[37] Li W J, Tang H J, Qin Z H, You F, Wang X F, Chen C L, Ji J H, Liu X M. Climate change impact and its contribution share to paddy rice production in Jiangxi, China. J Integr Agric, 2014, 13: 1565-1574.
doi: 10.1016/S2095-3119(14)60811-X
[38] Bueno C S, Lafarge T. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 1. Hybrids accumulate more biomass during each phenological phase. Field Crops Res, 2009, 112: 229-237.
doi: 10.1016/j.fcr.2009.03.006
[39] 潘圣刚, 黄胜奇, 张帆, 汪金平, 蔡明历, 曹凑贵, 唐湘如, 黎国喜. 超高产栽培杂交中籼稻的生长发育特性. 作物学报, 2011, 37: 537-544.
Pan S G, Huang S Q, Zhang F, Wang J P, Cai M L, Cao C G, Tang X R, Li G X. Growth and development characteristics of super-high-yielding mid-season indica hybrid rice. Acta Agron Sin, 2011, 37: 537-544. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00537
[40] Yang J C, Peng S B, Zhang Z J, Wang Z Q, Visperas R M, Zhu Q S. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Sci, 2002, 42: 766-772.
doi: 10.2135/cropsci2002.7660
[41] 尤娟. 水稻每穗颖花数的形成与氮素穗肥的调控机理. 南京农业大学博士学位论文, 江苏南京, 2011.
You J. Formation of Rice Spikelet Number per Panicle and Regulatory Mechanisms of Nitrogen Top-Dressing. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011. (in Chinese with English abstract)
[42] 张国, 崔克辉. 水稻茎鞘非结构性碳水化合物积累与转运研究进展. 植物生理学报, 2020, 56: 1127-1136.
Zhang G, Cui K H. Research advances on accumulation and translocation of stem non-structural carbohydrates in rice. Plant Physiol J, 2020, 56: 1127-1136 (in Chinese with English abstract).
[43] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170-182.
doi: 10.1016/j.fcr.2011.05.015
[1] 韦还和,孟天瑶,李超,张洪程,史天宇,马荣荣,王晓燕,杨筠文,戴其根,霍中洋,许轲,魏海燕,郭保卫. 施硅量对甬优系列籼粳交超级稻产量及相关形态生理性状的影响[J]. 作物学报, 2016, 42(03): 437-445.
[2] 王康君,熊溢伟,葛立立,张耗,王志琴,杨建昌,刘立军*. 籽粒蛋白质含量不同的转基因水稻株系产量形成特点[J]. 作物学报, 2013, 39(07): 1266-1275.
[3] 曾勇军;石庆华;潘晓华;韩涛. 施氮量对高产早稻氮素利用特征及产量形成的影响[J]. 作物学报, 2008, 34(08): 1409-1416.
[4] 冯跃华;邹应斌;Roland J Buresh;许桂玲;敖和军;王淑红. 免耕直播对一季晚稻田土壤特性和杂交水稻生长及产量形成的影响[J]. 作物学报, 2006, 32(11): 1728-1726.
[5] 潘洁;朱艳;曹卫星. 基于顶端发育的小麦产量结构形成模型[J]. 作物学报, 2005, 31(03): 316-322.
[6] 梁康迳;林文雄;王雪仁;章清杞;陈志雄;梁义元;郭玉春;陈芳育. 籼型三系杂交水稻单茎茎鞘干物质重的发育遗传研究[J]. 作物学报, 2003, 29(02): 274-279.
[7] 张旺锋;王振林;余松烈;李少昆;曹连莆;王登伟. 氮肥对新疆高产棉花群体光合性能和产量形成的影响[J]. 作物学报, 2002, 28(06): 789-796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!