欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 526-538.doi: 10.3724/SP.J.1006.2023.24050

• 耕作栽培·生理生化 • 上一篇    下一篇

间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响

肖健1(), 韦星璇1, 杨尚东1, 卢文3,*(), 谭宏伟2,*()   

  1. 1广西大学农学院, 广西南宁 530004
    2广西壮族自治区农业科学院 / 广西甘蔗遗传改良重点实验室, 广西南宁 530007
    3广西扶绥县农业科学研究所, 广西扶绥 532199
  • 收稿日期:2022-03-08 接受日期:2022-07-21 出版日期:2022-08-22 网络出版日期:2022-08-22
  • 通讯作者: 卢文,谭宏伟
  • 作者简介:E-mail: 1318513279@qq.com
  • 基金资助:
    国家重点研发计划项目(2020YFD1000600);广西学位与研究生教育改革专项课题(JGY2021013);国家现代农业产业技术体系建设专项(Sugar, CARS170206)

Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes

XIAO Jian1(), WEI Xing-Xuan1, YANG Shang-Dong1, LU Wen3,*(), TAN Hong-Wei2,*()   

  1. 1Agricultural College, Guangxi University, Nanning 530004, Guangxi, China
    2Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
    3Institute of Agricultural Science, Fusui 532199, Guangxi, China
  • Received:2022-03-08 Accepted:2022-07-21 Published:2022-08-22 Published online:2022-08-22
  • Contact: LU Wen,TAN Hong-Wei
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000600);Guangxi Academic Degree and Postgraduate Education Reform Special Project(JGY2021013);China Agriculture Research System(Sugar, CARS170206)

摘要:

分析甘蔗间作西瓜对甘蔗产量、总经济效益、根际土壤生态及理化性质的影响, 旨在探究甘蔗间作西瓜模式的生态效应, 为进一步推广及应用甘蔗间作西瓜模式提供理论依据和技术支撑。基于传统和现代高通量测序技术, 分析间作和单作甘蔗产量、总经济效益、根际土壤理化性质及根际土壤细菌群落结构变化。与甘蔗单作(CK)相比, 甘蔗间作西瓜(TM)具有提高甘蔗产量和总经济效益的效果; 对甘蔗根际土壤有机质、全氮、全磷、全钾、碱解氮、速效磷和速效钾含量无显著影响; 同时, 甘蔗间作西瓜对甘蔗根际土壤细菌多样性和丰富度亦无显著影响。另一方面, 门分类水平, 甘蔗间作西瓜虽然增加了放线菌门(Actinobacteria)和其他(others)门类优势细菌的相对丰度占比, 但亦缺失了浮霉菌门(Planctomycetes)和拟杆菌门(Bacteroidetes)等门类优势细菌的富集; 属分类水平, 热酸菌属(Acidothermus)、慢生根瘤菌属(Bradyrhizobium)、norank_o__SC-I-84Bryobacter、链霉菌属(Streptomyces)、norank_f__ DA111Candidatus_Solibacter、酸杆菌属(Acidibacter)和norank_f__Acidobacteriaceae__Subgroup_1_则是甘蔗单作(CK)模式下甘蔗根际土壤中特有的优势细菌属; 与之相比, 小单孢菌属(Micromonospora)、norank_f__Anaerolineaceaeunclassified_f__Micrococcaceaenorank_o__JG30-KF-CM45norank_f__Elev-16S-1332norank_c__Actinobacteria、卢得曼氏菌属(Luedemannella)、unclassified_f__Intrasporangiaceaenorank_f__Nitrosomonadaceaeunclassified_f__ Nocardioidaceaenorank_c__S085Defluviicoccus则是甘蔗间作西瓜(TM)模式下, 甘蔗根际土壤中特有的优势细菌属。基因功能预测结果显示, 甘蔗间作西瓜并没有显著改变甘蔗植株根际土壤细菌的主体功能。与甘蔗单作相比, 甘蔗间作西瓜具有提高甘蔗产量和总经济效益的效果; 虽然没有显著改变甘蔗根际土壤理化性质, 同时亦没有显著提升甘蔗根际土壤细菌多样性、丰富度以及细菌主体功能, 仅改变了部分甘蔗根际土壤细菌的群落组成, 富集了诸如小单孢菌属(Micromonospora)等特有的优势细菌属。综上所述, 甘蔗间作西瓜有助于提高甘蔗产量和总经济效益, 虽不能显著提升甘蔗根际土壤肥力, 但亦没有造成甘蔗根际土壤细菌生态功能失衡或劣化, 只是改变了部分甘蔗根际土壤细菌群落组成, 但间套作西瓜富集的特有优势细菌属, 诸如小单孢菌属(Micromonospora)属细菌是具有增强甘蔗植株抗性功能的有益细菌属。

关键词: 间作, 甘蔗, 西瓜, 土壤细菌, 高通量测序

Abstract:

To provide theoretical basis for developing sugarcane intercropping cultivation system, cane yields, total economic benefit, soil physicochemical properties and bacterial community structure in rhizospheres of sugarcane intercropping with watermelon were analyzed. Based on traditional and modern high-throughput sequencing techniques, cane yields, total economic benefit, soil physicochemical properties and bacterial community structure in rhizosphere of sugarcanes between monoculture (CK) and sugarcane intercropping with watermelons (TM) were analyzed. Compared with CK, the contents of soil organic matter (SOM), total nitrogen (TN), phosphorus (TP) and potassium (TK), and the contents of available nitrogen (AN), phosphorus (AP) and potassium (AK) were all not significantly altered in sugarcane intercropping with watermelons system. Meanwhile, soil bacterial diversity, richness and soil bacterial functions were also not significantly changed in sugarcane intercropping with watermelons system. In addition, although some soil dominant bacterial phyla, such as Actinobacteria and other could be enriched, but Planctomycetes and Bacteroidetes also lost in rhizospheres of sugarcanes in TM treatments also lost. Meanwhile, Acidothermus, Bradyrhizobium, norank_o__SC-I-84, Bryobacter, Streptomyces, norank_f__DA111, Candidatus_Solibacter, Acidibacter and norank_f__Acidobacteriaceae__Subgroup_1_ were the unique soil dominant bacterial genera in rhizospheres of sugarcanes in CK. By contrast, Micromonospora, norank_f__Anaerolineaceae, unclassified_f__Micrococcaceae, norank_o__JG30-KF-CM45, norank_f__Elev-16S-1332, norank_c__Actinobacteria, Luedemannella, unclassified_f__Intrasporangiaceae, norank_f__ Nitrosomonadaceae, unclassified_f__Nocardioidaceae, norank_c__S085 and Defluviicoccus were the specific soil dominant bacterial genera in rhizospheres sugarcanes in TM treatment. Moreover, there were no significantly different in the functions of soil bacteria in rhizospheres of sugarcanes between TM and CK treatments, suggesting that soil bacterial functions in rhizospheres of sugarcanes did not significantly alter by intercropping with watermelons. In comparison with sugarcane monoculture, cane yields and total economic benefit all could be improved. In addition, soil physicochemical properties and soil bacterial diversity, richness and functions in rhizospheres of sugarcanes could not be significantly improved by intercropping with watermelons. However, the compositions of soil bacterial communities were altered, such as Micromonospora, enriched as the unique soil dominant bacterial genera in rhizospheres of sugarcanes intercropping with watermelons. All the above results showed that not only cane yields and total economic benefit could be improved but also soil physicochemical properties were not decreased. Furthermore, soil bacterial functions also were not significantly deteriorated, just the compositions of soil bacterial communities were partly altered by intercropping with watermelons. The stress resistance properties of sugarcanes could be improved by intercropping with watermelons for some benefit bacteria, such as Micromonospora enriched in rhizospheres of sugarcanes under sugarcane/watermelon intercropping systems.

Key words: intercropping, sugarcane, watermelon, soil bacteria, high-throughput sequencing

表1

甘蔗间作西瓜模式下甘蔗和西瓜产量及总经济效益"

年份
Year
处理
Treatment
甘蔗产量
Yield of sugarcane
(t hm-2)
西瓜产量
Yield of watermelon
(t hm-2)
总经济效益
Total economic benefit
(Yuan hm-2)
2016 TM 80.33±0.75 a 13.30±0.44 53,366.67±765.40 a
CK 80.63±1.29 a 40,316.67±642.91 a
2017 TM 80.83±0.81 a 13.57±0.32 53,983.33±728.58 a
CK 80.33±0.75 a 40,166.67±375.28 a
2018 TM 81.13±0.93 a 13.50±0.36 54,066.67±579.51 a
CK 80.60±0.75 a 40,300.00±377.49 a

表2

甘蔗间作西瓜模式下甘蔗根际土壤理化性质"

处理
Treat-
ment
pH 土壤有机质
SOM
(g kg-1)
全氮
TN
(g kg-1)
全磷
TP
(g kg-1)
全钾
TK
(g kg-1)
碱解氮
AN
(mg kg-1)
速效磷
AP
(mg kg-1)
速效钾
AK
(mg kg-1)
TM 4.93±0.06 a 20.23±0.15 a 0.42±0.01 a 0.45±0.01 a 9.10±0.10 a 39.00±1.00 a 15.33±1.53 a 80.00±1.00 a
CK 4.93±0.15 a 20.07±0.25 a 0.39±0.01 a 0.44±0.01 a 9.07±0.06 a 36.00±1.00 a 12.00±1.00 a 76.33±1.53 a

表3

甘蔗间作西瓜模式下甘蔗根际土壤细菌Alpha多样性"

处理
Treatment
香农指数
Shannon index
辛普森指数
Simpson index
Ace指数
Ace index
Chao1指数
Chao1 index
TM 6.10±0.16 a 0.0064±0.0031 a 2014.77±248.17 a 2084.61±259.09 a
CK 6.14±0.12 a 0.0061±0.0007 a 2049.02±152.34 a 2089.24±156.58 a

图1

甘蔗间作西瓜模式下甘蔗根际土壤细菌门分类水平组成 TM: 甘蔗间作西瓜; CK: 甘蔗单作。"

图2

甘蔗间作西瓜模式下甘蔗根际土壤细菌属分类水平细菌组成 TM: 甘蔗间作西瓜; CK: 甘蔗单作。"

图3

甘蔗间作西瓜模式下甘蔗根际土壤细菌的LEfSe分析结果(LDA阈值为3.5) TM: 甘蔗间作西瓜; CK: 甘蔗单作。"

图4

甘蔗间作西瓜模式下甘蔗根际土壤细菌属分类水平Venn图 TM: 甘蔗间作西瓜; CK: 甘蔗单作。"

图5

细菌BugBase表型预测 TM: 甘蔗间作西瓜; CK: 甘蔗单作。*表示在0.05水平差异显著。"

图6

间作和单作甘蔗根际土壤细菌一级(A)和二级功能层(B)预测功能基因的相对丰度 TM: 甘蔗间作西瓜; CK: 甘蔗单作。"

图7

丰度前10个土壤细菌门和土壤理化性质相关性热图 TK: 全钾; pH: pH值; TP: 全磷; SOM: 有机质; TN: 全氮; AP: 速效磷; AN: 碱解氮; AK: 速效钾; TM: 甘蔗间作西瓜; CK: 甘蔗单作。X轴和Y轴分别为环境因子和门, 通过计算获得相关性r值和P值。r值在图中以不同颜色展示, 右侧图例是不同r值的颜色区间; *、**、***分别表示在0.05、0.01、0.001水平差异显著。"

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 甘蔗间作不同豆科作物对甘蔗植株内生细菌多样性的影响. 热带作物学报, 2021, 42: 3188-3198.
Xiao J, Chen S Y, Sun Y, Yang S D, Tan H W. Effect of intercropping with different legume crops on endophytic bacterial diversity of sugarcanes. Chin J Trop Crops, 2021, 42: 3188-3198. (in Chinese with English abstract)
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征. 作物学报, 2022, 48: 1222-1234.
doi: 10.3724/SP.J.1006.2022.14060
Xiao J, Chen S Y, Sun Y, Yang S D, Tan H W. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications. Acta Agron Sin, 2022, 48: 1222-1234. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14060
[3] 唐秀梅, 蒙秀珍, 蒋菁, 黄志鹏, 吴海宁, 刘菁, 贺梁琼, 熊发前, 钟瑞春, 韩柱强, 何龙飞, 唐荣华. 甘蔗间作花生对不同耕层土壤微生态的影响. 中国油料作物学报, 2020, 42: 713-722.
Tang X M, Meng X Z, Jiang J, Huang Z P, Wu H N, Liu J, He L Q, Xiong F Q, Zhong R C, Han Z Q, He L F, Tang H R. Effects of sugarcane/peanut intercropping on soil microenvironment in different plough layer. Chin J Oil Crop Sci, 2020, 42: 713-722. (in Chinese with English abstract)
[4] 彭东海, 杨建波, 李健, 邢永秀, 覃刘东, 杨丽涛, 李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响. 植物生态学报, 2014, 38: 959-969.
doi: 10.3724/SP.J.1258.2014.00090
Peng D H, Yang J B, Li J, Xing Y X, Qin L D, Yang L T, Li Y R. Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane. Chin J Plant Ecol, 2014, 38: 959-969. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00090
[5] 李志贤, 冯远娇, 杨文亭, 王建武. 甘蔗间作种植研究进展. 中国生态农业学报, 2010, 18: 884-888.
Li Z X, Feng Y J, Yang W T, Wang J W. The progress of research on sugarcane intercropping. Chin J Eco-Agric, 2010, 18: 884-888. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00884
[6] 车江旅, 吴建明, 宋焕忠. 甘蔗间套种大豆研究进展. 南方农业学报, 2011, 42: 898-900.
Che J L, Wu J M, Song H Z. A review on the researches on sugarcane-soybean intercropping system. J South Agric, 2011, 42: 898-900. (in Chinese with English abstract)
[7] Branco R B F, de Moraes C C, Calori A H, Rós A B, Purquerio L F V. Watermelon cultivation in regeneration areas of a sugarcane field under different soil managements. Pesqui Agropecu Bras, 2019, 54: e00039.
doi: 10.1590/s1678-3921.pab2019.v54.00039
[8] 陈燕丽, 苏天明, 苏利荣, 李琴, 秦芳, 何铁光. 甘蔗套种西瓜、大豆的效益. 江苏农业科学, 2017, 45(7): 133-135.
Chen Y L, Su T M, Su L R, Li Q, Qin F, He T G. Benefit of interplanting sugarcane with watermelon and soybean. Jiangsu Agric Sci, 2017, 45(7): 133-135. (in Chinese with English abstract)
[9] 朱秋珍, 刘晓燕. 甘蔗套种春西瓜的效益及其配套栽培技术. 中国糖料, 2012, (4): 40-42.
Zhu Q Z, Liu X Y. Benefit of sugarcane interplanting spring watermelon cultivation technology. Sugar Crops China, 2012, (4): 40-42. (in Chinese with English abstract)
[10] 李锦莲. 扶绥县甘蔗间种西瓜生产发展策略探讨. 广西农业科学, 2010, 41: 1022-1024.
Li J L. Development strategies for sugarcane interplanting watermelon in Fusui county. Guangxi Agric Sci, 2010, 41: 1022-1024. (in Chinese with English abstract)
[11] 区惠平, 周柳强, 黄金生, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响. 中国农业科学, 2018, 51: 1931-1939.
Qu H P, Zhou L Q, Huang J S, Zeng Y, Zhu X H, Xie R L, Tan H W, Huang B Y. Effects of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrition loss. Sci Agric Sin, 2018, 51: 1931-1939. (in Chinese with English abstract)
[12] 李停锋, 李雯, 郭君钰, 顾欣. 土壤调理剂配施菌剂对连作压砂田土壤养分及西瓜生长、产量的影响. 核农学报, 2021, 35: 1923-1930.
doi: 10.11869/j.issn.100-8551.2021.08.1923
Li T F, Li W, Guo J Y, Gu X. Effects of soil conditioners combined with microbial agent on soil nutrient and Citrullus lanatus growth and yield in continuous cropping gravel mulch field. J Nucl Agric Sci, 2021, 35: 1923-1930. (in Chinese with English abstract)
[13] Yang S D, Xiao J, Liang T, Liang T, He W Z, Tan H W. Response of soil biological properties and bacterial diversity to different levels of nitrogen application in sugarcane fields. AMB Express, 2021, 11: 172.
doi: 10.1186/s13568-021-01331-4 pmid: 34919198
[14] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 146-195.
Lu R K. Soil Agrochemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 2000. pp 146-195. (in Chinese)
[15] Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del R T G, Edgar R C, Eickhorst T, Ley R E, Hugenholtz P, Tringe S G, Dangl J L. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488: 86-90.
doi: 10.1038/nature11237
[16] Bulgarelli D, Garrido-Oter R, Münch P C, Weiman A, Dröge J, Pan Y, McHardy A C, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe, 2015, 17: 392-403.
doi: S1931-3128(15)00031-1 pmid: 25732064
[17] Grice E A, Kong H H, Conlan S, Deming C B, Davis J, Young A C, Bouffard G G, Blakesley R W, Murray P R, Green E D, Turner M L, Segre J A. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324: 1190-1192.
doi: 10.1126/science.1171700 pmid: 19478181
[18] Simpson E H. The measurement of diversity. Nature, 1949, 163: 688.
doi: 10.1038/163688a0
[19] Chao A, Wang W H, Chen Y C, Kuo C Y. Estimating the number of shared species in two communities. Statist Sin, 2000, 10: 227-246.
[20] 肖健, 孙妍, 陈思宇, 任奎瑜, 杨尚东, 唐小付. 南方果园蚁巢土壤微生物群落结构特征分析. 南方农业学报, 2021, 52: 1604-1614.
Xiao J, Sun Y, Chen S Y, Ren K Y, Yang S D, Tang X F. Characteristics of soil microbial community structure in ant nests in orchards in southern China. J South Agric, 2021, 52: 1604-1614. (in Chinese with English abstract)
[21] van der Heijden M G A, Wagg C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil, 2013, 363: 1-5.
doi: 10.1007/s11104-012-1545-4
[22] 肖健, 黄小丹, 林刚云, 吴银秀, 杨尚东, 屈达才. 青枯病易感和钝感桑树根际土壤生物学性状及细菌群落结构比较. 蚕业科学, 2021, 47(2): 138-146.
Xiao J, Huang X D, Lin G Y, Wu Y X, Yang S D, Qu D C. Comparison on soil biological properties and bacterial community structures in rhizospheres between sensitive and insensitive mulberry varieties to bacterial wilt. Sci Seric, 2021, 47(2): 138-146. (in Chinese with English abstract)
[23] 肖健, 吴银秀, 杨尚东, 屈达才. 秸秆覆盖还田对桑园土壤真菌群落结构组成的影响. 西南农业学报, 2021, 34: 2707-2713.
Xiao J, Wu Y X, Yang S D, Qu D C. Effects of straw mulching on soil fungal community structure in mulberry plantation. Southwest China J Agric Sci, 2021, 34: 2707-2713. (in Chinese with English abstract)
[24] 杨尚东, 郭霜, 任奎喻, 庞师婵, 张传进, 王帅帅, 谭宏伟. 甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征. 植物营养与肥料学报, 2019, 25: 910-916.
Yang S D, Guo S, Ren K Y, Pang S C, Zhang C J, Wang S S, Tan H W. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease. J Plant Nutr Fert, 2019, 25: 910-916. (in Chinese with English abstract)
[25] Wang Y, Marschner P, Zhang F. Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant Soil, 2012, 354: 283-298.
doi: 10.1007/s11104-011-1065-7
[26] Yang S D, Xiao J, Huang Z Y, Qin R L, He W Z, Liu L M, Liu H J, Li A M, Tan H W. Comparison of soil biological properties and bacterial diversity in sugarcane, soybean, mung bean and peanut intercropping systems. J Agric Sci, 2021, 13: 54-68.
[27] 刘丽, 范娅, 冯海洋, 杜衎, 高德民. 生长时间和栽培模式对柴胡根际微生物群落结构的影响. 西南农业学报, 2022, 35: 50-57.
Liu L, Fan Y, Feng H Y, Du K, Gao D M. Effects of growing time and cultivation pattern on microbial community structure in rhizosphere of Bupleurum chinense DC. Southwest China J Agric Sci, 2022, 35: 50-57. (in Chinese with English abstract)
[28] 毛莲英, 李海碧, 桂意云, 张荣华, 杨荣仲, 周会, 韦金菊, 刘昔辉. 基于高通量测序分析间作猫豆对甘蔗根际土壤微生物的影响. 南方农业学报, 2021, 52: 332-340.
Mao L Y, Li H B, Gui Y Y, Zhang R H, Yang R Z, Zhou H, Wei J J, Liu X H. Effects of intercropping with Mucuna pruriens var. utilis on sugarcane rhizosphere microbe based on high throughput sequencing. J South Agric, 2021, 52: 332-340. (in Chinese with English abstract)
[29] Barberan A, Bates S T, Casamayor E O, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J, 2012, 6: 343-351.
doi: 10.1038/ismej.2011.119 pmid: 21900968
[30] Davis K E R, Sangwan P, Janssen P H. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environ Microbiol, 2011, 13: 798-805.
doi: 10.1111/j.1462-2920.2010.02384.x pmid: 21108723
[31] Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol, 2006, 72: 1719-1728.
doi: 10.1128/AEM.72.3.1719-1728.2006
[32] Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16s rRNA genes. Appl Environ Microbiol, 2010, 76: 6751-6759.
doi: 10.1128/AEM.01063-10
[33] Fierer N, Lauber C L, Ramirez K S, Zaneveld J, Bradford M A, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J, 2012, 6: 1007-1017.
doi: 10.1038/ismej.2011.159 pmid: 22134642
[34] Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma, 2018, 319: 156-166.
doi: 10.1016/j.geoderma.2018.01.010
[35] 钟菊新, 唐红琴, 李忠义, 董文斌, 韦彩会, 李强, 何铁光. 绿肥配施化肥对岩溶区水稻土壤细菌群落结构的影响. 植物营养与肥料学报, 2021, 27: 1746-1756.
Zhong J X, Tang H Q, Li Z Y, Dong W B, Wei C H, Li Q, He T G. Effects of combining green manure with chemical fertilizer on the bacterial community structure in karst paddy soil. J Plant Nutr Fert, 2021, 27: 1746-1756 (in Chinese with English abstract).
[36] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响. 作物学报, 2020, 46: 596-613.
doi: 10.3724/SP.J.1006.2020.94102
Luo J, Lin Z L, Li S Y, Que Y X, Zhang C F, Yang Z Q, Yao K C, Feng J F, Chen J F, Zhang H. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field. Acta Agron Sin, 2020, 46: 596-613. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94102
[37] 杨星鹏, 张志斌, 朱笃. 小单胞菌属次级代谢产物及其生物活性研究进展. 天然产物研究与开发, 2019, 31: 908-915.
Yang X P, Zhang Z B, Zhu D. Review on secondary metabolites and its biological activities from genus Micromonospora. Nat Prod Res Dev, 2019, 31: 908-915 (in Chinese with English abstract).
[38] Han S, Luo X S, Liao H, Nie H L, Chen W L, Huang Q Y. Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial. Sci Total Environ, 2017, 599/600: 135-144.
doi: 10.1016/j.scitotenv.2017.04.086
[39] Daims H, Wagner M. Nitrospira. Trends Microbiol, 2018, 26: 462-463.
doi: S0966-842X(18)30024-6 pmid: 29501479
[40] Daims H, Lebedeva E V, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard R H, Von Bergen M, Rattei T, Bendinger B, Nielsen P H, Wagner M. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528: 504-509.
doi: 10.1038/nature16461
[41] 庞党伟, 陈金, 唐玉海, 尹燕枰, 杨东清, 崔正勇, 郑孟静, 李勇, 王振林. 玉米秸秆还田方式和氮肥处理对土壤理化性质及冬小麦产量的影响. 作物学报, 2016, 42: 1689-1699.
Pang D W, Chen J, Tang Y H, Yin Y P, Yang D Q, Cui Z Y, Zheng M J, Li Y, Wang Z L. Effect of returning methods of maize straw and nitrogen treatments on soil physicochemical property and yield of winter wheat. Acta Agron Sin, 2016, 42: 1689-1699. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01689
[1] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[2] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[3] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[4] 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365.
[5] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[6] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[7] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[10] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[11] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[12] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[13] 张富粮, 陈冰洁, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 丛枝菌根真菌对玉米籽粒氮素吸收和土壤细菌群落组成的影响[J]. 作物学报, 2022, 48(12): 3215-3224.
[14] 刘淑娴, 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染[J]. 作物学报, 2022, 48(12): 3080-3090.
[15] 赵建华, 孙建好, 陈亮之, 李伟绮. 玉/豆间作产量优势中补偿效应和选择效应的角色[J]. 作物学报, 2022, 48(10): 2588-2596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!