欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2588-2596.doi: 10.3724/SP.J.1006.2022.13063

• 耕作栽培·生理生化 • 上一篇    下一篇

玉/豆间作产量优势中补偿效应和选择效应的角色

赵建华(), 孙建好, 陈亮之, 李伟绮   

  1. 甘肃省农业科学院土壤肥料与节水农业研究所, 甘肃兰州 730070
  • 收稿日期:2021-11-04 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-04-01
  • 通讯作者: 赵建华
  • 作者简介:第一作者联系方式: E-mail: zhaojianhuatt@163.com
  • 基金资助:
    国家自然科学基金项目(32060261);甘肃省自然科学基金项目(21JR1RA360);甘肃省农业科学院青年基金(2020GAAS45)

Role of complementarity and select effect for yield advantage of maize/legumes intercropping systems

ZHAO Jian-Hua(), SUN Jian-Hao, CHEN Liang-Zhi, LI Wei-Qi   

  1. Institute of Soil Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2021-11-04 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-04-01
  • Contact: ZHAO Jian-Hua
  • Supported by:
    National Natural Science Foundation of China(32060261);Natural Science Foundation of Gansu Province, China(21JR1RA360);Youth Foundation of Gansu Academy Agricultural Sciences(2020GAAS45)

摘要:

竞争和补偿是间作体系产量优势发挥的主要生态学原理之一。于2017—2020年在甘肃张掖开展田间试验, 试验包括3个玉米/豆科间作体系, 即玉米/豌豆(maize/pea, M/P)、玉米/蚕豆(maize/faba bean, M/F)、玉米/大豆(maize/soybean, M/S), 4个单作种植体系, 即单作豌豆(sole pea, SP)、单作蚕豆(sole faba bean, SF)、单作大豆(sole soybean, SS)、单作玉米(sole maize, SM)。通过测定单间作条件下作物产量, 分析间作作物增产率、豆科对玉米竞争力(aggressivity, A)、间作体系土地当量比(land equivalent ratio, LER)、净效应(net effect, NE)、补偿效应(complementarity effect, CE)和选择效应(selection effect, SE), 以明确补偿效应和选择效应在3个间作体系产量优势发挥中的角色。结果表明: 4年平均, M/P、M/F和M/S的LER分别为1.30、1.31和1.13, 大豆偏土地当量比小于0.5, 豌豆和蚕豆偏土地当量比大于0.5, 玉米偏土地当量比均大于0.5; 豌豆、蚕豆和大豆的增产率分别为53.3%、81.4%和-14.9%, 与之间作的玉米增产率分别为13.0%、-5.8%和32.3%; 豌豆和蚕豆相对玉米的竞争力大于0, 大豆相对玉米的竞争力小于0; M/P和M/F的补偿效应显著高于M/S, 而M/S的选择效应显著高于M/P和M/F; LER与补偿效应显著正相关, 与选择效应显著负相关; 豆科作物增产率与补偿效应显著正相关, 与选择效应显著负相关; 玉米增产率与选择效应显著正相关; 综上, M/P和M/F的产量优势主要来源于补偿效应, M/S体系产量优势主要来源于选择效应。

关键词: 玉米豆科间作, 生产力, 补偿效应, 选择效应

Abstract:

Competition and complementarity is one of main ecological principle for productivity advantage of intercropping system. To determine the effect of time niche differentiation on yield of intercropped species and the advantage of intercropping systems, a four-year field experiment was conducted during 2017-2020 in Zhangye city, Gansu province, China. The object of this study is to determine the role of complementarity effect and selection effect for yield advantage of maize/legumes intercropping systems. The experiment included 3 maize/legume intercropping systems of maize/pea (M/P), maize/faba bean (M/F), and maize/soybean (M/S), and 4 sole crops systems of sole pea (SP), sole faba bean (SF), sole soybean (SS), and sole maize (SM). The yield intercropped crops in different plant patterns were investigated, the overyielding of intercropped crops, aggressivity of legume relative to maize, land equivalent ratio (LER), net effect (NE), complementarity effect (CE), and selection effect (SE) were analyzed. The results showed that on average four years, the LER value of M/P, M/F, and M/S were 1.30, 1.31, and 1.13, respectively. The partial land equivalent ratio value of soybean was blow 0.5, the partial land equivalent ratio value of pea and faba bean were above 0.5, and also the partial land equivalent ratio value of maize was above 0.5. The overyielding of pea, faba bean, and soybean were 53.3%, 81.4%, and -14.9%, respectively. The overyielding of maize intercropped with pea, faba bean, and soybean were 13.0%, -5.8%, and 32.3%, respectively. The aggressivity of pea and faba bean relative to maize were above 0, the aggressivity of soybean relative to maize were below 0. The complementarity effect of M/P and M/F were significantly higher than that of M/S, whereas, the selection effect of M/S was greater than those of M/P and M/F. A positive correlation was observed between LER and CE, and a negative correlation was observed between LER and SE. A positive correlation was observed between the overyielding of legumes and SE. In conclusion, yield advantage of M/P and M/F was mainly result from the CE, yield advantage of M/S was mainly result from the SE.

Key words: maize/legumes intercropping, productivity, complementarity effect, selection effect

图1

作物种植示意图"

图2

不同玉/豆间作模式土地当量比和偏土地当量比 M/P、M/F和M/S分别代表玉米/豌豆、玉米/蚕豆和玉米/大豆; PLERm和PLERl分别代表玉米和豆科作物的偏土地当量比。"

表1

不同间作体系作物产量及增产率"

年份
Year
种植模式
Planting
patterns
配对作物
Companion crops (kg hm-2)
玉米
Maize (kg hm-2)
配对作物增产率
Overyielding of companion crops (%)
玉米增产率
Overyielding of maize (%)
间作
Intercropping
单作
Sole
间作
Intercropping
单作
Sole
2017 玉米/豌豆M/P 1662.4 2718.8 11,730.5 a 14,125.4 29.0 ab 32.9 a
玉米/蚕豆M/F 1795.2 2501.1 8832.0 a 14,125.4 70.9 a 17.1 a
玉米/大豆M/S 621.1 1508.0 13,223.0 a 14,125.4 -1.9 b 48.2 a
2018 玉米/豌豆M/P 2652.4 4407.1 9245.6 b 19,151.2 66.8 b -19.6 b
玉米/蚕豆M/F 2695.7 2788.0 8453.0 b 19,151.2 118.3 a -29.1 b
玉米/大豆M/S 673.0 2085.0 13,643.3 a 19,151.2 -23.1 c 22.8 a
2019 玉米/豌豆M/P 1160.2 1826.8 19,336.2 a 24,992.8 58.8 a 28.9 a
玉米/蚕豆M/F 3855.7 6703.0 13,708.5 b 24,992.8 37.0 a -5.4 b
玉米/大豆M/S 1212.1 3745.5 18,297.3 a 24,992.8 -22.9 a 26.2 a
2020 玉米/豌豆M/P 1125.5 1878.8 14,343.4 b 21,760.5 58.8 ab 9.9 b
玉米/蚕豆M/F 2418.5 2888.9 11,919.2 c 21,760.5 99.3 a -5.6 c
玉米/大豆M/S 989.9 2670.7 16,652.2 a 21,760.5 -11.7 b 31.9 a
平均Mean 玉米/豌豆M/P 1657.3 2707.8 13,664.5 b 20,154.4 53.3 b 13.0 b
玉米/蚕豆M/F 2748.9 3821.2 10,873.0 c 20,154.4 81.4 a -5.8 c
玉米/大豆M/S 874.0 2502.2 15,308.8 a 20,154.4 -14.9 c 32.3 a

图3

不同间作体系豆科相对玉米资源竞争力 处理同图2。Alm代表豆科作物相对玉米的资源竞争力; 图柱上方不同小写字母代表同一年份处理间差异显著(P < 0.05)。误差线表示平均值的标准误差(n = 3)。"

图4

不同间作体系净效应、选择效应和补偿效应 处理同图2。图柱上方不同小写字母代表同一年份处理间差异显著(P < 0.05)。误差线表示平均值的标准误差(n = 3)。"

图5

补偿效应、选择效应与间作优势及作物增产率的关系 处理同图2。"

[1] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[2] 柴强, 胡发龙, 陈桂平. 禾豆间作氮素高效利用机理及农艺调控途径研究进展. 中国生态农业学报, 2017, 25: 19-26.
Chai Q, Hu F L, Chen G P. Research advance in mechanism and agronomic regulation approach on high-efficient use of nitrogen in cereal-legume intercropping. Chin J Eco-Agric, 2017, 25: 19-26. (in Chinese with English abstract)
[3] Duchene O, Vian F J, Celette F. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms: a review. Agric Ecosyst Environ, 2017, 240: 148-161.
doi: 10.1016/j.agee.2017.02.019
[4] 任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报, 2019, 27: 860-869.
Ren X L, Teng Y Y, Wang Y F, Yin W, Chai Q. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chin J Eco-Agric, 2019, 27: 860-869. (in Chinese with English abstract)
[5] 梅沛沛, 王平, 李隆, 张轩, 桂林国, 黄建成. 新开垦土壤上构建玉米/蚕豆-根瘤菌高效固氮模式. 中国生态农业学报, 2018, 26: 62-74.
Mei P P, Wang P, Li L, Zhang X, Gui L G, Huang J C. Construction of efficient nitrogen-fixing cropping pattern: maize/faba bean intercrop with rhizobium inoculation in reclaimed low-fertility soils. Chin J Eco-Agric, 2018, 26: 62-74. (in Chinese with English abstract)
[6] 覃潇敏, 潘浩南, 肖靖秀, 汤利, 郑毅. 不同磷水平下玉米-大豆间作系统根系形态变化. 应用生态学报, 2021, 32: 3223-3230.
pmid: 34658208
Qin X M, Pan H N, Xiao J X, Tang L, Zheng Y. Root morphological changes in maize and soybean intercropping system under different phosphorus levels. Chin J Appl Ecol, 2021, 32: 3223-3230. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.202109.023 pmid: 34658208
[7] 柴博, 李隆, 杨思存, 陈英, 王成宝, 姜万礼. 玉米/鹰嘴豆间作条件下不同施磷量对灌耕灰钙土无机磷组分的影响. 干旱地区农业研究, 2015, 33(1): 85-90.
Chai B, Li L, Yang S C, Chen Y, Wang C B, Jiang W L. Effects of different P applications on inorganic-P components in irrigated sierozems under maize/chickpea intercropping. Agric Res Arid Areas, 2015, 33(1): 85-90. (in Chinese with English abstract)
[8] Vandermeer J H. Ecology of Intercropping. UK: Cambridge University Press, 1989. pp 104-110.
[9] Li L, van der Werf W, Zhang F S. Crop diversity and sustainable agriculture: mechanisms, designs and applications. Front Agric Sci Eng, 2021, 8: 359-361.
[10] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47: 929-941.
doi: 10.3724/SP.J.1006.2021.01047
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agron Sin, 2021, 47: 929-941. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01047
[11] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014, 25: 139-146.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Resource competition in maize/soybean intercropping system. Chin J Appl Ecol, 2014, 25: 139-146. (in Chinese with English abstract)
[12] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res, 2001, 71: 173-181.
doi: 10.1016/S0378-4290(01)00157-5
[13] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[14] Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412: 72-76.
doi: 10.1038/35083573
[15] 李春杰. 种内/种间互作调控小麦/蚕豆间作体系作物生长与氮磷吸收的机制. 中国农业大学博士学位论文, 北京, 2018.
Li C J. The Mechanisms of Intra and Interspecific Interaction on Regulating Growth and N/P Acquisition by Intercropped Wheat and Faba bean. PhD Dissertation of China Agricultural University, Beijing, China, 2018. (in Chinese with English abstract)
[16] Li X F, Wang C B, Zhang W P, Wang L H, Tian X L, Yang S C, Jang W L, Ruijven J V, Li L. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant Soil, 2018, 422: 479-493.
doi: 10.1007/s11104-017-3487-3
[17] Zhang R Z, Meng L B, Li Y, Wang X R, Ogundeji A O, Li X R, Sang P, Mu Y, Wu H L, Li S M. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food Energy Secur, 2021, 10: e282.
[18] Cahill J F, McNickle G G, Haag J J, Lamb E G, Nyanumba S M, Clair C C S. Plants integrate information about nutrients and neighbors. Science, 2010, 328: 1657.
[19] Fridley J D. The influence of species diversity on ecosystem productivity: how, where, and why? Oikos, 2001, 93: 514-526.
doi: 10.1034/j.1600-0706.2001.930318.x
[20] Willy R W. Intercropping—Its importance and research needs, Part 2. Agronomy and research approaches. Field Crop Abstr, 1979, 32: 73-85.
[21] Li Q Z, Sun J H, Wei X J, Christie P, Zhang F S, Li L. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant Soil, 2011, 339: 147-161.
doi: 10.1007/s11104-010-0561-5
[22] Li C J, Hoffland E, Kuyper T W, Yu Y, Li H G, Zhang C C, Zhang F S, van der Werf W. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. Eur J Agron, 2020, 113: 125987.
[23] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量. 作物学报, 2021, 47: 2481-2489.
doi: 10.3724/SP.J.1006.2021.01090
Zhang J D, Fan H, Du J Y, Yin W, Fan Z L, Hu F L, Chai Q. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize. Acta Agron Sin, 2021, 47: 2481-2489. (in Chinese with English abstract)
[24] 董楠. 不同作物组合间作优势和时空稳定性的生态机制. 中国农业大学博士学位论文, 北京, 2017.
Dong N. The Ecological Mechanism of Yield Advantage and Spatio-temporal Stability in Different Crop Combination. PhD Dissertation of China Agricultural University, Beijing, China, 2017. (in Chinese with English abstract)
[25] Van der Werf W, Zhang L Z, Li C J, Chen P, Xu Z, Zhang C C, Gu C F, Stomph L T. Comparing performance of crop species mixtures and pure stands. Front Agric Sci Eng, 2021, 8: 481-489.
[26] Willy R W, Rao M R. A competitive ratio for quantifying competition between intercrops. Exp Agric, 1980, 16: 117-125.
doi: 10.1017/S0014479700010802
[27] Bedoussac L, Justes E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: application to durum wheat-winter pea intercrops, Field Crops Res, 2011, 124: 25-36.
doi: 10.1016/j.fcr.2011.05.025
[28] 李小飞. 长期间套作下作物生产力、稳定性和土壤肥力研究. 中国农业大学博士学位论文, 北京, 2017.
Li X F. Effects of Continuous Intercropping on Crop Productivity, Stability and Soil Fertility. PhD Dissertation of China Agricultural University, Beijing, China, 2017. (in Chinese with English abstract)
[29] Maitra S, Palai J B, Manasa P, Prasanna K D. Potential of intercropping system in sustaining crop productivity. Int J Agric Environ Biotechnol, 2019, 12: 39-45.
[30] Mao L L, Zhang L Z, Li W Q, van der Werf W, Sun J H, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res, 2012, 138: 11-20.
doi: 10.1016/j.fcr.2012.09.019
[31] Li C J, Hoffland E, Kuyper T W, Yu Y, Zhang C C, Li H G, Zhang F S, van der Werf W. Syndromes of production in intercropping impact yield gains. Nat Plants, 2020, 6: 653-660.
doi: 10.1038/s41477-020-0680-9
[32] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248: 305-312.
doi: 10.1023/A:1022352229863
[33] Yu Y, Stomph T J, Makowski D, van der Werf W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Res, 2015, 184: 133-144.
doi: 10.1016/j.fcr.2015.09.010
[34] 张德, 龙会英, 金杰, 樊博, 赵秀梅, 韩学琴. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响. 草业学报, 2018, 27(10): 15-22.
Zhang D, Long H Y, Jin J, Fan B, Zhao X M, Han X Q. Effect of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression. Acta Pratac Sin, 2018, 27(10): 15-22. (in Chinese with English abstract)
[35] 殷文, 赵财, 于爱忠, 柴强, 胡发龙, 冯福学. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. 作物学报, 2015, 41: 633-641.
doi: 10.3724/SP.J.1006.2015.00633
Yin W, Zhao C, Yu A Z, Chai Q, Hu F L, Feng F X. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system. Acta Agron Sin, 2015, 41: 633-641. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00633
[36] Wang R, Sun Z, Zhang L, Yang N, Feng L, Bai W, Zhang D, Wang Q, Evers J B, Liu Y. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253: 107819.
[1] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[2] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[3] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[4] 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703.
[5] 梁健,任红茹,夏敏,李晓峰,陈梦云,李军,张洪程,霍中洋. 淮北地区氮肥群体最高生产力水稻钾素吸收利用特征[J]. 作物学报, 2017, 43(04): 558-570.
[6] 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732.
[7] 梁健,李军,李晓峰,舒鹏,张洪程,霍中洋*,戴其根,许轲,魏海燕,郭保卫. 淮北地区水稻品种氮肥群体最高生产力及氮素吸收利用特性[J]. 作物学报, 2016, 42(08): 1188-1200.
[8] 孟天瑶,许俊伟,邵子彬,葛梦婕,张洪程,魏海燕,戴其根,霍中洋,许轲,郭保卫,荆培培. 甬优系列籼粳杂交稻氮肥群体最高生产力的优势及形成特征[J]. 作物学报, 2015, 41(11): 1711-1725.
[9] 许轲,杨海生,张洪程,龚金龙,沈新平,陶小军,戴其根,霍中洋,魏海燕,高辉. 江淮下游地区水稻品种生产力纬向差异及其合理利用[J]. 作物学报, 2014, 40(05): 871-890.
[10] 张洪程,许轲,张军,李国业,董啸波,花劲,周培建,程飞虎,黄大山,陈忠平,陈国梁,方明珍,戴其根,霍中洋,魏海燕,高辉. 双季晚粳生产力及相关生态生理特征[J]. 作物学报, 2014, 40(02): 283-300.
[11] 王惠贞,赵洪亮,冯永祥,姜乐,宁大可,谢立勇,林而达. 北方水稻生育后期剑叶可溶性物质含量及植株生产力对CO2浓度增高的响应[J]. 作物学报, 2014, 40(02): 320-328.
[12] 宋振伟,齐华,张振平,钱春荣,郭金瑞,邓艾兴,张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异[J]. 作物学报, 2012, 38(12): 2267-2277.
[13] 霍中洋,顾海永,马群,杨雄,李敏,李国业,戴其根,许轲,魏海燕,高辉,芦燕,张洪程. 不同氮肥群体最高生产力水稻品种的氮素吸收利用差异[J]. 作物学报, 2012, 38(11): 2061-2068.
[14] 张洪程, 马群, 杨雄, 李敏, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律[J]. 作物学报, 2012, 38(01): 86-98.
[15] 李玲玲, 黄高宝, 张仁陟, 蔡立群, 罗珠珠, 晋小军, 张恩和, BELLOTTI Bill, UNKOVICH Murray. 西部黄土高原苜蓿终止时间对苜蓿-小麦轮作系统生产力及土壤水分的影响[J]. 作物学报, 2011, 37(04): 686-693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[2] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[3] 柳武革;王丰;金素娟;朱小源;李金华;刘振荣;廖亦龙;朱满山;黄慧君;符福鸿;刘宜柏. 利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J]. 作物学报, 2008, 34(07): 1128 -1136 .
[4] 张文静;胡宏标;陈兵林;王友华;周治国. 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J]. 作物学报, 2008, 34(05): 859 -869 .
[5] 何亮;李富华;沙莉娜;付凤玲;李晚忱. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系[J]. 作物学报, 2008, 34(05): 899 -903 .
[6] . 小麦穗和芒表面积的估测[J]. 作物学报, 1985, 11(02): 138 .
[7] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[8] 韩湘玲;刘巽浩;孔扬庄. 黄淮海地区—熟与两熟制生产力的研究[J]. 作物学报, 1986, 12(02): 109 -116 .
[9] 张定一;张永清;杨武德;苗果园. 不同基因型小麦对低氮胁迫的生物学响应[J]. 作物学报, 2006, 32(09): 1349 -1354 .
[10] 翟虎渠;曹树青;唐运来;张荣铣;盛生兰;龚红兵;杨图南. 籼型杂交水稻光合性状的配合力及遗传力分析[J]. 作物学报, 2002, 28(02): 154 -160 .