欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2575-2587.doi: 10.3724/SP.J.1006.2022.14174

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响

孙棋棋(), 郑永美, 于天一, 吴月, 杨吉顺, 吴正锋(), 吴菊香, 李尚霞   

  1. 山东省花生研究所, 山东青岛 266100
  • 收稿日期:2021-10-04 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-03-24
  • 通讯作者: 吴正锋
  • 作者简介:第一作者联系方式: E-mail: sunshine19890707@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD1000906);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);山东省自然科学基金项目(ZR202103030197)

Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization

SUN Qi-Qi(), ZHENG Yong-Mei, YU Tian-Yi, WU Yue, YANG Ji-Shun, WU Zheng-Feng(), WU Ju-Xiang, LI Shang-Xia   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2021-10-04 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-03-24
  • Contact: WU Zheng-Feng
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000906);China Agriculture Research System of MOF and MARA(CARS-13);Natural Science Foundation of Shandong Province(ZR202103030197)

摘要:

施氮对豆科作物土壤固氮菌的影响机理尚不明确。深入研究施氮对花生土壤固氮菌的影响, 对花生田高效施氮和农业可持续发展具有重要意义。本研究以结瘤(花育22)和不结瘤(BL)花生为材料, 设置N0 (不施氮, 0 kg hm-2)、N60 (减量施氮, 60 kg hm-2)、N120 (常量施氮, 120 kg hm-2)和N180 (过量施氮, 180 kg hm-2) 4个施氮水平, 探讨不同施氮水平对不同结瘤特性花生土壤固氮菌的影响。采用实时荧光定量PCR和高通量测序技术, 以nifH基因为标靶, 分析土壤固氮菌丰度、多样性和群落组成。结果表明: (1) 施氮显著提高土壤氮组分含量, N120结瘤花生土壤中微生物量氮和可溶性有机氮显著高于不结瘤花生。不结瘤花生荚果产量随施氮水平呈线性增加, 而结瘤花生产量不受施氮影响。(2) 施氮条件下, 不结瘤花生土壤nifH拷贝数显著降低, 而结瘤花生土壤nifH拷贝数随施氮水平增加先降低后增加。(3) 施氮对不结瘤花生土壤固氮菌多样性先抑制后促进, 而施氮对结瘤花生土壤固氮菌多样性呈先促进后抑制的模式, 并在N120达到最大值。(4) 施氮显著改变不结瘤花生土壤固氮菌群落组成, 不同施氮水平优势属分别为nonrank_Bacteria (N0)、unclassified_Cyanobacteria (N60)、nonrank_Bacteria (N120)和Skermanella (N180), 硝态氮是影响处理间土壤固氮菌群落组成差异的唯一显著因素; 结瘤花生土壤各施氮水平固氮菌群落组成相似, 除N120外, 均以unclassified_ProteobacteriaSkermanella占优。不结瘤与结瘤花生土壤固氮菌对施氮水平截然不同的响应可能是由于二者分别受到不同氮源的影响(肥料氮vs.根瘤固氮)。本研究中120 kg hm-2是对土壤固氮和花生生产最优的施氮水平。

关键词: 花生, 结瘤特性, 固氮菌, 施氮, 根瘤固氮

Abstract:

Influencing mechanism of nitrogen (N) fertilization on soil diazotrophs of legumes remains unclear. Further study on the effect of different nitrogen application rates on soil nitrogen-fixing is of critical importance for high-efficiency nitrogen application of peanut field and agricultural sustainability development. We used the non-nodulating (BL) and nodulating (Huayu 22, HY22) peanuts as experimental materials, with four N application rates arranged, including N0 (without N application, 0 kg hm-2), N60 (N reduced-application, 60 kg hm-2), N120 (N common-fertilization, 120 kg hm-2), and N180 (N over-application, 180 kg hm-2). The qRT-PCR and Illumina high-throughput sequencing of nifH gene were used to analyze soil diazotrophic abundance, diversity, and community composition. Results showed that: (1) N fertilization significantly increased the contents of soil N fraction. Especially at N120, the soil microbial biomass carbon and dissolved organic carbon of nodulating peanut were significantly higher than that of non-nodulating peanut. The podding yields of non-nodulating peanut increased positively and linearly with the increasing N rates, while those of nodulating peanut was unaffected by N fertilization. (2) Under N fertilization, soil nifH copies of non-nodulating peanut were inhibited, while that of nodulating peanut decreased firstly and then increased with N rates increased. (3) N fertilization reduced firstly and then enhanced the soil diazotrophic diversity from non-nodulating peanut with N rates, while N fertilization increased firstly and then decreased that from nodulating peanut, with peak value at N120. (4) Nonrank_Bacteria and Proteobacteria were the predominated phyla. N fertilization altered the soil diazotrophic community composition of non-nodulating peanut, with dominant genera being nonrank_Bacteria (N0), unclassified_Cyanoabcteria (N60), nonrank_Bacteria (N120), and Skermanella (N180), respectively, and NO3-N being the overriding determinative factor, while exerted no effect on that of nodulating peanut (being dominated by unclassified_Proteobacteria and Skermanella except N120). The different responses of soil nitrogen-fixing bacteria to nitrogen application level between non-nodulating peanut and nodulating peanut may be due to the influence of different nitrogen sources (nitrogen fixed by nodules vs. N fertilizer). In conclusion, 120 kg hm-2 was the best for nitrogen-fixation of peanut field and thus agricultural production among the studied N rates.

Key words: peanut, nodulation characteristics, diazotrophs, nitrogen fertilization, nitrogen fixation by nodules

表1

不结瘤(BL)和结瘤(HY22)花生不同施氮水平下的土壤氮组分含量及荚果产量"

品种
Variety
施氮水平
N application rates
全氮
TN (g kg-1)
硝态氮
NO3-N (mg kg-1)
铵态氮
NH4-N (mg kg-1)
可溶性有机氮
DON (mg kg-1)
微生物量氮
MBN (mg kg-1)
产量Yields (kg hm-2)
2019 2020
BL N0 0.68±0.02 Ab 8.71±2.48 Ab 1.04±0.12 Aab 5.27±1.09 Ab 8.62±2.14 Aa 3514.1±36.7 Bb 1578.5±28.3 Bc
N60 0.68±0.00 Ab 7.97±0.45 Ab 0.84±0.07 Ab 9.19±1.32 Aab 10.90±1.21 Aa 3736.3±70.5 Ab 2091.6±154.1 Abc
N120 0.78±0.00 Aa 16.60±2.37 Aab 1.79±0.30 Aa 15.02±3.57 Ba 9.54±0.95 Ba 4236.3±152.8 Aa 2392.3±40.8 Bab
N180 0.68±0.01 Ab 23.15±5.92 Aa 1.77±0.33 Aa 9.59±0.98 Aab 9.39±1.10 Aa 4312.7±0.0 Aa 2817.1±306.4 Ba
HY22 N0 0.68±0.02 Ab 4.28±1.92 Ab 0.84±0.03 Ab 12.97±7.31 Abc 1.79±0.06 Bb 5236.4±160.2 Aa 4052.5±693.7 Aa
N60 0.67±0.01 Ab 6.37±2.60 Aab 0.92±0.03 Ab 8.83±0.31 Ac 2.30±1.80 Bb 5090.6±498.1 Aa 4346.6±855.8 Aa
N120 0.75±0.01 Ba 9.72±1.08 Ba 1.14±0.19 Aa 43.38±12.93 Aa 26.10±5.76 Aa 5375.3±445.6 Aa 4666.9±367.0 Aa
N180 0.70±0.04 Aab 8.71±1.08 Aa 0.87±0.01 Ab 34.17±18.85 Aab 5.05±1.39 Bb 5229.4±271.1 Aa 4810.7±260.7 Aa
显著性Significance (F-value)
品种Variety ns ** ** ** ns ** **
施氮水平N rates ** ** ** ** ** ns ns
品种×施氮水平Variety × N rates ns ns * * ** ns ns

图1

不结瘤花生(BL)和结瘤花生(HY22)荚果产量与施氮水平之间的相关关系 HY22: 花育22。"

图2

不结瘤(BL)和结瘤(HY22)花生不同施氮水平下土壤nifH基因拷贝数 组内不同的小写字母代表不同施氮水平之间差异显著(P < 0.05), 组间不同的大写字母表示花生品种之间差异显著(P < 0.05)。处理同表1。HY22: 花育22。"

图3

不结瘤(BL)和结瘤(HY22)花生不同施氮水平土壤固氮菌稀释曲线(a, b)和韦恩图(c, d) 处理同表1。HY22: 花育22。"

图4

不结瘤(BL)和结瘤(HY22)花生不同施氮水平下固氮菌Chao1丰富度指数(a, b)和Shannon多样性指数(c, d)及其与施氮水平之间的相关关系(e, f) HY22: 花育22。处理同表1。**代表0.01显著水平, *代表0.05显著水平, ns代表差异不显著。"

图5

不结瘤(BL)和结瘤(HY22)花生不同施氮水平下主要土壤固氮菌门(a, b)、纲(c, d)和属(e, f)水平的相对丰度 处理同表1。HY22: 花育22。"

图6

用于判别不结瘤(a. BL)和结瘤花生(b. HY22)土壤固氮菌(红色虚线)与土壤氮组分(黑色箭头)相关关系的冗余分析结果排序图 DON: 可溶性有机氮; MBN: 微生物量氮; NO3-N: 硝态氮; NH4-N: 铵态氮; TN: 全氮。HY22: 花育22。"

[1] Cleveland C C, Townsend A R, Schimel D S, Fisher H, Howarth R W, Hedin L O, Perakis S S, Latty E F, Fischer J C V, Elseroad A. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles, 1999, 13: 623-645.
doi: 10.1029/1999GB900014
[2] Roesch L, Camargo F, Bento F M, Triplett E W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil, 2008, 302: 91-104.
doi: 10.1007/s11104-007-9458-3
[3] Hsu S F, Buckley D H. Evidence for the functional significance of diazotroph community structure in soil. ISME J, 2008, 3: 124-136.
doi: 10.1038/ismej.2008.82
[4] Li Y, Pan F, Yao H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments, 2019, 19: 1948-1958.
doi: 10.1007/s11368-018-2192-z
[5] 郑棉海, 陈浩, 朱晓敏, 毛庆功, 莫江明. 矿质养分输入对森林生物固氮的影响. 生态学报, 2015, 35: 7941-7954.
Zheng M H, Chen H, Zhu X M, Mao Q G, Mo J M. Effect of mineral nutrient input on biological nitrogen fixation in forest. Acta Ecol Sin, 2015, 35: 7941-7954. (in Chinese with English abstract)
[6] Chen L, Li K K, Shi W J, Wang X L, Chen W X. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping. Geoderma, 2021, 393: 114999.
[7] Wang C, Zheng M, Song W, Wen S, Wang B, Zhu C, Shen R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem, 2017, 113: 240-249.
doi: 10.1016/j.soilbio.2017.06.019
[8] Reed R, Marjon D V, Portilho C N, Evódio M, Edilson P, Lucy S. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett, 2010, 279: 15-22.
doi: 10.1111/j.1574-6968.2007.00975.x
[9] Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y G, Chu H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 2019, 7: 143.
[10] Wang J, Li Q, Shen C, Yang F, Wang J, Yuan G. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment. Land Degrad Develop, 2021, 32: 1-10.
doi: 10.1002/ldr.3658
[11] Sun Q, Rui W, Ying W, Du L, Man Z, Xin G, Hu Y, Guo S. Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? Geoderma, 2018, 325: 172-182.
doi: 10.1016/j.geoderma.2018.04.001
[12] Liao H, Li Y, Yao H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J Soils Sediments, 2017, 18: 1076-1086.
doi: 10.1007/s11368-017-1836-8
[13] 陈洁, 骆土寿, 周璋, 许涵, 陈德祥, 李意德. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 2020, 40: 8528-8538.
Chen J, Luo T S, Zhou Z, Xu H, Chen D X, Li Y D. Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecol Sin, 2020, 40: 8528-8538. (in Chinese with English abstract)
[14] Jacot K A, Lüscher A, NöSberger J, Hartwig U A. Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem, 2000, 32: 1043-1052.
doi: 10.1016/S0038-0717(00)00012-2
[15] Rösch C, Mergel A, Hermann Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol, 2002, 68: 3818-3829.
doi: 10.1128/AEM.68.8.3818-3829.2002
[16] Xiao D, Tan Y, Liu X, Yang R, Wang K. Responses of soil diazotrophs to legume species and density in a karst grassland, southwest China. Agric Ecosyst Environ, 2020, 288: 106707.
[17] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X W, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016, 15: 432-439.
doi: 10.1016/S2095-3119(15)61079-6
[18] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213.
Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract)
[19] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
pmid: 30912389
Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201903.019 pmid: 30912389
[20] 左元梅, 刘永秀, 张福锁. NO3-态氮对花生结瘤与固氮作用的影响. 生态学报, 2003, 23: 758-764.
Zuo Y M, Liu Y X, Zhang F S. Effects of the NO3--N on nodule formation and nitrogen fixing of peanut. Acta Ecol Sin, 2003, 23: 758-764. (in Chinese with English abstract)
[21] Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, Yuan J, Chen Z, Ding W. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol Biochem, 2018, 123: 218-228.
doi: 10.1016/j.soilbio.2018.05.018
[22] 吴海宁, 黄志鹏, 唐秀梅, 熊发前, 钟瑞春, 贺梁琼, 韩柱强, 蒋菁, 刘菁, 唐荣华. 氮肥减施对花生根际土壤固氮微生物多样性的影响. 江苏农业科学, 2019, 47(16): 93-97.
Wu H N, Huang Z P, Tang X M, Xiong F M, Zhong R C, He L Q, Han Z Q, Jiang J, Liu J, Tang R H. Effect of nitrogen reduced-fertilization on soil diazotrophic diversity in peanut rhizosphere. Jiangsu Agric Sci, 2019, 47(16): 93-97. (in Chinese with English abstract)
[23] Gorbet D W, Burton J C. A non-nodulating peanut. Crop Sci, 1979, 19: 727-728.
doi: 10.2135/cropsci1979.0011183X001900050045x
[24] 石海, 苗淑杰, 刘居东, 周克琴. 施氮对结瘤和非结瘤近等位基因大豆生长和固氮性状的影响. 大豆科学, 2012, 31: 961-965.
Shi H, Miao S J, Liu J D, Zhou K Q. Effect of nitrogen application on growth and nitrogen fixation in nodulation and non-nodulation soybean isolines. Soybean Sci, 2012, 31: 961-965. (in Chinese with English abstract)
[25] Selamat A, Gardner F P. Nitrogen partitioning and redistribution in nonnodulating peanut related to nitrogen stress. Agron J, 1985, 77: 859-862.
doi: 10.2134/agronj1985.00021962007700060009xa
[26] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31: 2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418
Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017, 31: 2418-2425. (in Chinese with English abstract)
[27] Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci Total Environ, 2017, 619: 1530-1537.
[28] 徐鹏霞, 韩丽丽, 贺纪正, 罗锋, 张丽梅. 非共生生物固氮微生物分子生态学研究进展. 应用生态学报, 2017, 28: 3440-3450.
Xu P X, Han L L, He J Z, Luo F, Zhang L M. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chin J Appl Ecol, 2017, 28: 3440-3450. (in Chinese with English abstract)
[29] Reinhold-Hurek B, Bünger W, Burbano C S, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol, 2015, 53: 403-424.
doi: 10.1146/annurev-phyto-082712-102342 pmid: 26243728
[30] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl, 2010, 20: 30-59.
pmid: 20349829
[31] Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology, 2020, 101: e03053.
[32] Calderoli P A, Collavino M M, Kraemer F B, Morrás H, Aguilar O M. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2-fixing community depending on depth and agriculturaluse of soil. Microbiol Open, 2017, 6: e502.
[33] Wang R, Chang Y L, Zheng W T, Zhang D, Zhang X X, Sui X H, Wang E T, Hu J Q, Zhang L Y, Chen W X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Sys Appl Microbiol, 2013, 36: 101-105.
doi: 10.1016/j.syapm.2012.10.009
[34] Indrasumunar A, Menzies N W, Dart P J. Laboratory prescreening of Bradyrhizobium japonicum for low pH, Al and Mn tolerance can be used to predict their survival in acid soils. Soil Biol Biochem, 2012, 48: 135-141.
doi: 10.1016/j.soilbio.2012.01.019
[35] Duncan N, Menge L, Levin S, Hedin L. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat, 2009, 174: 465-477.
doi: 10.1086/605377
[1] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[4] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[5] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[6] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[9] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[10] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[11] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[12] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[13] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[14] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[15] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[4] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .
[5] 张文静;胡宏标;陈兵林;王友华;周治国. 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J]. 作物学报, 2008, 34(05): 859 -869 .
[6] 王才斌;吴正锋;成波;郑亚萍;万书波;郭峰;陈殿绪. 连作对花生光合特性和活性氧代谢的影响[J]. 作物学报, 2007, 33(08): 1304 -1309 .
[7] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[8] 瞿瑛;刘素红;谢云. 植被覆盖度计算机模拟模型与参数敏感性分析[J]. 作物学报, 2008, 34(11): 1964 -1969 .
[9] 韩湘玲;刘巽浩;孔扬庄. 黄淮海地区—熟与两熟制生产力的研究[J]. 作物学报, 1986, 12(02): 109 -116 .
[10] 翟虎渠;曹树青;唐运来;张荣铣;盛生兰;龚红兵;杨图南. 籼型杂交水稻光合性状的配合力及遗传力分析[J]. 作物学报, 2002, 28(02): 154 -160 .