欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 784-794.doi: 10.3724/SP.J.1006.2023.21009

• 耕作栽培·生理生化 • 上一篇    下一篇

微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响

王雪1(), 谷淑波1, 林祥2, 王威雁2, 张保军2, 朱俊科3, 王东2,*()   

  1. 1山东农业大学 / 作物生物学国家重点实验室, 山东泰安 271018
    2西北农林科技大学农学院, 陕西杨凌 712100
    3淄博禾丰种业科技股份有限公司, 山东临淄 255000
  • 收稿日期:2022-01-29 接受日期:2022-06-07 出版日期:2023-03-12 网络出版日期:2022-07-07
  • 通讯作者: 王东
  • 作者简介:E-mail: 1643354122@qq.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202010);陕西省重点研发计划项目(2021ZDLNY01-05)

Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat

WANG Xue1(), GU Shu-Bo1, LIN Xiang2, WANG Wei-Yan2, ZHANG Bao-Jun2, ZHU Jun-Ke3, WANG Dong2,*()   

  1. 1Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    3Zibo Hefeng Seed Technology Co., Ltd., Linzi 255000, Shandong, China
  • Received:2022-01-29 Accepted:2022-06-07 Published:2023-03-12 Published online:2022-07-07
  • Contact: WANG Dong
  • Supported by:
    Key Research & Development Program Project of Shandong Province(LJNY202010);Key Research & Development Program Project of Shaanxi Province(2021ZDLNY01-05)

摘要:

为探明微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响, 于2019—2021年冬小麦生长季进行不同水肥管理模式试验。以山农29为试验材料, 采用裂区设计, 设置畦灌(W1)、微喷补灌(W2)两个主区, 设置拔节期随水追施均匀供氮(T1)和开沟条施局部供氮(T2)两个副区。结果表明, 与W1处理相比, W2处理全生育期灌水量两年度分别减少53.3 mm和45.9 mm, 节约用水35.5%和30.6%。同一灌溉模式下, T2处理施肥行在开花期0~80 cm土层和成熟期0~120 cm土层土壤硝态氮含量均显著高于T1处理。W1模式下, T1处理开花期和成熟期0~30 cm土层土壤硝态氮含量显著高于T2处理非施肥行相应土层, 开花期和成熟期0~100 cm土层根长密度、根表面积密度显著高于T2处理的施肥行和非施肥行, 开花后0~20 cm土层根系活力、开花后氮素同化量和营养器官氮素向籽粒转运量、氮肥偏生产力、氮素利用效率、水分利用效率和籽粒产量与T2处理均无显著差异。W2模式下, T1处理开花期和成熟期0~60 cm土层土壤硝态氮含量显著高于T2处理非施肥行相应土层, 开花期和成熟期0~100 cm土层根长密度和根表面积密度显著高于T2处理的施肥行和非施肥行, 开花后0~20 cm土层根系活力、开花后氮素同化量和营养器官氮素向籽粒转运量、氮素吸收效率、氮素利用效率、氮肥偏生产力、水分利用效率和籽粒产量均显著高于T2处理。以上结果说明, 在传统畦灌条件下, 拔节期随水追肥均匀供氮与开沟条施局部供氮相比, 小麦籽粒产量和水分与氮素利用效率无显著差异; 在微喷补灌节水条件下, 拔节期随水追肥均匀供氮明显优于开沟条施局部供氮; 微喷补灌水肥一体化(微喷补灌+拔节期随水追肥均匀供氮)优化了土壤硝态氮的空间分布, 能够在小麦生育中后期保持较高的供氮水平, 显著提高根系吸收面积和吸收强度, 增加开花后氮素同化量和营养器官向籽粒氮素转运量, 与局部供氮处理相比, 实现了籽粒产量和水分与氮素利用效率的同步提高。

关键词: 冬小麦, 水肥一体化, 硝态氮, 根系, 氮素再分配

Abstract:

In order to explore the effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat, different water and fertilizer management models were tested in winter wheat growing season from 2019 to 2021. Taking Shannong 29 as the experimental material and adopting the split zone design, two main areas of border irrigation (W1) and supplemental irrigation with micro-sprinkling hoses (W2), and two sub areas of uniform nitrogen supply with water during jointing (T1) and local nitrogen supply with furrow and strip application (T2) were set. The results showed that compared with W1 treatment, the irrigation amount during the whole growth period of W2 treatment decreased by 53.3 mm and 45.9 mm, saving water by 35.5% and 30.6% in two years, respectively. Under the same irrigation mode, the content of soil nitrate nitrogen in 0-80 cm soil layer at flowering stage and 0-120 cm soil layer at maturity stage in T2 treatment was significantly higher than that in T1 treatment. In W1 mode, the content of soil nitrate nitrogen in 0-30 cm soil layer of T1 treatment at flowering and maturity stages was significantly higher than that in non-fertilization row of T2 treatment, the root length density and root surface area density in 0-100 cm soil layer at flowering and maturity stages were significantly higher than those in fertilization row and non-fertilization row of T2 treatment, the root activity, nitrogen assimilation, and nitrogen transport from vegetative organs to seeds in 0-20 cm soil layer after flowering. There were no significant differences in nitrogen partial productivity, nitrogen use efficiency, water use efficiency, and grain yield between T2 treatment and T2 treatment. Under W2 mode, the soil nitrate nitrogen content of 0-60 cm soil layer in T1 treatment at flowering and maturity stages was significantly higher than that of non-fertilization row in T2 treatment. The root length density and root surface area density of 0-100 cm soil layer at flowering and maturity stages were significantly higher than that of fertilization row and non-fertilization row in T2 treatment. The root activity, nitrogen assimilation, nitrogen transport from vegetative organs to seeds in 0-20 cm soil layer after flowering, nitrogen uptake efficiency, nitrogen use efficiency, nitrogen partial productivity, water use efficiency, and grain yield were significantly higher than those of T2 treatment. In conclusion, the above results showed that under the condition of traditional border irrigation, there was no significant difference in grain yield, water and nitrogen use efficiency between uniform nitrogen supply with water and topdressing at jointing stage and local nitrogen supply with furrow and strip application. Under the condition of micro spray supplementary irrigation and water saving, the uniform nitrogen supply with water and topdressing at jointing stage was significantly better than the local nitrogen supply of furrow and strip application. The integration of supplemental irrigation with micro-sprinkling hoses and topdressing of fertilizer (supplemental irrigation with micro-sprinkling hoses + uniform topdressing nitrogen with irrigation water at jointing stage) optimized the spatial distribution of soil nitrate nitrogen, which could maintain a high nitrogen supply level in the middle and late growth stage of wheat, significantly improve the absorption area and intensity of roots, and increase the amount of nitrogen assimilation and nitrogen transport from vegetative organs to grains after flowering, thus grain yield, water and nitrogen use efficiency were improved simultaneously.

Key words: winter wheat, water and fertilizer integration, nitrate nitrogen, root, nitrogen redistribution

表1

播前0~20 cm土层土壤养分含量"

年度
Year
有机质
Organic matter
(%)
全氮
Total nitrogen
(g kg-1)
碱解氮
Hydrolysable nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
2019-2020 1.64 1.15 97.80 46.69 182.22
2020-2021 1.83 1.25 98.82 42.06 190.02

表2

冬小麦不同生育阶段降水量"

年份
Year
生育阶段Growth stages
播种期-越冬期S-W 越冬期-拔节期W-J 拔节期-开花期J-A 开花期-成熟期A-M
2019-2020 54.80 66.00 26.60 58.10
2020-2021 70.60 54.00 34.30 16.20

图1

不同处理施肥和取样示意图 灰色散点指示追施氮肥分布区域, 黑色条带代表微喷带, 红色箭头所指示行间为土壤样品和根系样品的取样行。W1: 畦灌; W2: 微喷补灌; T1: 均匀供氮; T2: 局部供氮。"

图2

不同处理对开花期和成熟期0~200 cm土层土壤硝态氮含量的影响 R: 施肥侧; L: 非施肥侧。"

图3

不同处理对开花期和成熟期0~100 cm土层根长密度的影响 R: 施肥侧; L: 非施肥侧。不同的小写字母表示在0.05水平差异显著。"

图4

不同处理对开花期和成熟期0~100 cm土层根表面积密度的影响 R: 施肥侧; L: 非施肥侧。不同的小写字母表示在0.05水平差异显著。"

图5

不同处理对开花后0~20 cm土层根系活力的影响 R: 施肥侧; L: 非施肥侧。"

表3

不同处理对开花后营养器官贮藏氮素再分配的影响"

年度
Year (Y)
处理Treatment
(T)
成熟期籽粒氮素积累量
Accumulation of nitrogen in grain at maturity
(kg hm-2)
开花前营养器官贮藏氮素
Pre-anthesis reserves
花后同化氮素
Post-anthesis assimilates
氮素收获指数Nitrogen harvest index
(%)
向籽粒转运量
Translocated to grain
(kg hm-2)
转运率
Translocation proportion
(%)
对籽粒贡献率
Contribution rate to grain
(%)
输入籽粒量
Allocation to grain
(kg hm-2)
对籽粒贡献率
Contribution rate to grain
(%)
2019-2020
W1T1 226.7 b 164.0 a 70.7 b 72.4 b 62.7 b 27.6 b 76.9 b
W1T2 221.1 b 163.9 a 71.0 ab 74.1 b 57.2 b 25.9 b 76.8 b
W2T1 234.6 a 161.7 a 70.6 b 68.9 c 72.9 a 31.1 a 77.7 a
W2T2 201.0 c 154.4 b 71.6 a 76.8 a 46.6 c 23.2 c 76.6 b
2020-2021
W1T1 240.9 b 175.5 a 70.8 a 72.8 b 65.4 b 27.2 b 76.9 ab
W1T2 235.0 b 174.8 a 71.0 a 74.4 b 60.2 b 25.6 b 76.7 b
W2T1 249.5 a 174.7 a 70.6 a 70.0 c 74.8 a 30.0 a 77.4 a
W2T2 207.7 c 164.7 b 71.2 a 75.6 a 53.0 c 24.4 c 76.6 b
Y * * NS NS * NS NS
W ** ** NS NS NS * NS
T ** ** * ** ** ** **
W×T * * NS * * ** NS

表4

不同处理对冬小麦产量及其构成因素的影响"

年度
Year (Y)
处理
Treatment (T)
穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg hm-2)
2019-2020 W1T1 760 a 31.0 a 44.1 b 9300 a
W1T2 756 a 31.2 a 43.5b 9294 a
W2T1 737 b 30.5 b 45.4 a 9265 a
W2T2 739 b 28.6 c 44.6 b 8547 b
2020-2021 W1T1 630 a 41.2 a 43.4 c 9826 a
W1T2 626 a 41.4 a 43.2 c 9802 a
W2T1 592 b 39.9 b 45.5 a 9787 a
W2T2 596 b 37.3 c 44.2 b 9234 b
Y ** ** NS *
W * ** ** **
T NS ** * **
W×T NS * NS *

表5

不同处理对水氮利用效率的影响"

年度
Year (Y)
处理
Treatment (T)
氮素吸收效率
NUpE
(%)
氮素利用率
NUE
(kg hm-2)
氮肥偏生产力
PFPn
(kg hm-2)
水分利用效率
WUE
(kg hm-2 mm-1)
2019-2020 W1T1 79.9 b 25.2 a 48.4 a 18.8 b
W1T2 78.0 c 25.2 a 48.4 a 18.1 b
W2T1 81.9 a 25.1 a 48.3 a 19.9 a
W2T2 71.1 d 23.2 b 44.5 b 18.2 b
2020-2021 W1T1 83.1 b 26.6 a 51.2 a 18.2 b
W1T2 81.3 c 26.6 a 51.1 a 18.4 b
W2T1 85.5 a 26.5 a 51.0 a 19.0 a
W2T2 75.4 d 25.0 b 48.1 b 17.8 b
Y ** * * NS
W * ** ** NS
T ** * ** NS
W×T * * * *
[1] 郑和祥, 史海滨, 郭克贞, 郝万龙. 不同灌水参数组合时田面坡度对灌水质量的影响研究. 干旱地区农业研究, 2011, 29(6): 43-48.
Zheng H X, Shi H B, Guo K Z, Hao W L. Study on influence of field surface slope on irrigation efficacy in combination with different irrigation parameters. Agric Res Arid Areas, 2011, 29(6): 43-48. (in Chinese with English abstract)
[2] 何昕楠, 林祥, 谷淑波, 王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响. 作物学报, 2019, 45: 879-892.
doi: 10.3724/SP.J.1006.2019.81070
He X N, Lin X, Gu S B, Wang D. Effects of supplemental irrigation with micro-sprinkling hoses on soil physical properties, water and grain yield of water wheat. Acta Agron Sin, 2019, 45: 879-892. (in Chinese with English abstract)
[3] 王东. 黄淮流域冬小麦按需补灌方法及其应用. 水土保持学报, 2017, 31(6): 220-228.
Wang D. A Method of supplement irrigation on-demand for winter wheat and application in the Huang-Huai Plain. J Soil Water Conserv, 2017, 31(6): 220-228. (in Chinese with English abstract)
[4] 徐学欣, 王东, 谷淑波. 微喷带补灌对冬小麦耗水特性和产量的影响. 麦类作物学报, 2016, 36: 472-482.
Xu X X, Wang D, Gu S B. Effect of supplement irrigation with mico-sprinkling hoses on water consumption characteristics and grain yield of winter wheat. J Triticeae Crops, 2016, 36: 472-482. (in Chinese with English abstract)
[5] 徐学欣, 王东. 微喷补灌对冬小麦旗叶衰老和光合特性及产量和水分利用效率的影响. 中国农业科学, 2016, 49: 2675-2686.
Xu X X, Wang D. Effects of supplemental irrigation with micro-sprinkling hoses on flag leaves senescence and photosynthetic characteristics, grain yield and water use efficiency in winter wheat. Sci Agric Sin, 2016, 49: 2675-2686. (in Chinese with English abstract)
[6] Wang D. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crops Res, 2017, 213: 213-220.
doi: 10.1016/j.fcr.2017.08.012
[7] Ma L S, Li Y J, Wu P T, Zhao X N, Chen X L, Gao X D. Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system. Plant Soil, 2019, 439: 1-2.
doi: 10.1007/s11104-019-04154-2
[8] 尹飞, 王俊忠, 孙笑梅, 李洪岐, 付国占, 裴瑞杰, 焦念元. 夏玉米根系与土壤硝态氮空间分布吻合度对水氮处理的响应. 中国农业科学, 2017, 50: 2166-2178.
Yin F, Wang J Z, Sun X M, Li H Q, Fu G Z, Pei R J, Jiao N Y. Response of spatial concordance index between maize root and soil nitrate distribution to water and nitrogen treatments. Sci Agric Sin, 2017, 50: 2166-2178. (in Chinese with English abstract)
[9] Robinson D. Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil, 2001, 232: 41-50.
doi: 10.1023/A:1010377818094
[10] 张嫚, 周苏玫, 杨习文, 周燕, 杨蕊, 张珂珂, 贺德先, 尹钧. 减氮适墒对冬小麦土壤硝态氮分布和氮素吸收利用的影响. 中国农业科学, 2017, 50: 3885-3897.
Zhang M, Zhou S M, Yang X W, Zhou Y, Yang R, Zhang K K, He D X, Yin J. Effects of nitrogen-reducing and suitable soil moisture on nitrate nitrogen distribution in soil, nitrogen absorption and utilization of winter wheat. Sci Agric Sin, 2017, 50: 3885-3897. (in Chinese with English abstract)
[11] 黄玲, 杨文平, 胡喜巧, 陶烨, 姚素梅, 欧行奇. 水氮互作对冬小麦耗水特性和氮素利用的影响. 水土保持学报, 2016, 30(2): 168-174.
Huang L, Yang W P, Hu X Q, Tao Y, Yao S M, Ou X Q. Effects of Irrigation and nitrogen interaction on water consumption characteristic and nitrogen utilization of winter wheat. J Soil Water Conserv, 2016, 30(2): 168-174. (in Chinese with English abstract)
[12] 王东, 苑进. 小麦玉米周年生产变量肥水一体化灌溉系统. 中国专利号: 201410499375.7.2014-09-25.
Wang D, Yuan J. Annual Production of Wheat and Maize Fertilizer Water Integrated Irrigation System. China Patent, No. 201410499375.7.2014-09-25. (in Chinese)
[13] 山东省质量技术监督局. 小麦微喷补灌节水技术规程, DB37/T3174-2018.
Shandong Provincial Bureau of Quality and Technical Supervision. The water-saving technical regulation of supplemental irrigation with mico-sprinkling facilities for wheat. DB37/T3174-2018. (in Chinese)
[14] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46: 423-431.
doi: 10.3724/SP.J.1006.2020.91046
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020, 46: 423-431 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.91046
[15] 栗丽, 洪坚平, 王宏庭, 谢英荷. 水氮互作对冬小麦氮素吸收分配及土壤硝态氮积累的影响. 水土保持学报, 2013, 27(3): 138-142.
Su L, Hong J P, Wang H T, Xie Y H. Effects of nitrogen and irrigation interaction on nitrogen uptake and distribution in winter wheat and nitrate accumulation in soil. J Soil Water Conserv, 2013, 27(3): 138-142. (in Chinese with English abstract)
[16] Van der Werf A, Nagel O W. Carbon allocation to shoots and roots in regulation to nitrogen supply is mediated by cytokinins and sucrose opinion. Plant Soil, 1996, 185: 21-32.
doi: 10.1007/BF02257562
[17] 高翔, 陈磊, 云鹏, 王盛锋, 刘荣乐, 汪洪. 土壤剖面硝态氮非均匀分布条件下小麦根系生长和氮素吸收特征. 麦类作物学报, 2012, 32: 270-279.
Gao X, Chen L, Yun P, Wang S F, Liu R L, Wang H. Effects of nitrogen heterogeneous supply in different soil layers on root growth and plant nitrogen uptake of wheat. J Triticeae Crops, 2012, 32: 270-279. (in Chinese with English abstract)
[18] 王绍辉, 张福墁. 局部施肥对植株生长及根系形态的影响. 土壤通报, 2002, (2): 153-155.
Wang S H, Zhang F M. Effect of localized supply of fertilizer on growth and morphological of crops. Chin J Soil Sci, 2002, (2): 153-155. (in Chinese with English abstract)
[19] Gao K, Chen F J, Yuan L X, Zhang F S, Mi G H. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant Cell Environ, 2015, 38: 740-750.
doi: 10.1111/pce.12439
[20] Zhang H, Rong H L, Pilbeam D. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot, 2007, 58: 2329-2338.
doi: 10.1093/jxb/erm114
[21] 郭曾辉, 雒文鹤, 刘朋召, 师祖姣, 王瑞, 李军. 微喷灌条件下不同水氮处理对冬小麦水氮利用和产量的影响. 麦类作物学报, 2021, 41: 1256-1265.
Guo Z H, Luo W H, Liu P Z, Shi Z J, Wang R, Li J. Effect of different irrigation and nitrogen treatments on water and nitrogen efficiency and yield of winter wheat under micro-sprinkler irrigation. J Triticeae Crops, 2021, 41: 1256-1265. (in Chinese with English abstract)
[22] 张笑培, 周新国, 王和洲, 杨慎骄, 陈金平, 刘安能. 拔节期水氮处理对冬小麦植株生长及氮肥吸收利用的影响. 灌溉排水学报, 2021, 40(10): 64-70.
Zhang X P, Zhou X G, Wang H Z, Yang S J, Chen J P, Liu A N. The combined impact of irrigation and fertigation on nitrogen uptake of winter wheat at jointing stage. J Irrig Drain, 2021, 40(10): 64-70. (in Chinese with English abstract)
[23] 张帆, 周加森, 马阳, 吴敏, 张世卿, 绳莉丽, 王贵霞, 王艳群, 彭正萍. 水氮调控对冬小麦光合特性和产量的影响. 中国土壤与肥料, 2021, (1): 70-74.
Zhang F, Zhou J S, Ma Y, Wu M, Zhang S Q, Sheng L L, Wang G X, Wang Y Q, Peng Z P. Effects of water and nitrogen regulation on photosynthetic characteristics and yield of winter wheat. Soils Fert Sci China, 2021, (1): 70-74 (in Chinese with English abstract).
[24] 郭曾辉, 刘朋召, 雒文鹤, 王瑞, 李军. 限水减氮对关中平原冬小麦氮素利用和氮素表观平衡的影响. 应用生态学报, 2021, 32: 4359-4369.
doi: 10.13287/j.1001-9332.202112.022
Guo Z H, Liu P Z, Luo W H, Wang R, Li J. Effects of water limiting and nitrogen reduction on nitrogen use and apparent balance of winter wheat in the Guanzhong Plain, northwest China. Chin J Appl Ecol, 2021, 32: 4359-4369 (in Chinese with English abstract).
[25] 赵俊晔, 于振文. 不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响. 生态学报, 2006, 26: 815-822.
Zhao J Y, Yu Z W. Effects of nitrogen rate on nitrogen fertilizer use of winter wheat and content of soli nitrate-N under different fertility condition. Acta Ecol Sin, 2006, 26: 815-822. (in Chinese with English abstract)
[26] 杨磊, 夏炎, 韩自强, 王军, 宋贺, 董召荣, 车钊. 氮素调控措施对小麦植株氮素同化过程和产量的影响. 麦类作物学报, 2019, 39: 1195-1201.
Yang L, Xia Y, Han Z Q, Wang J, Song H, Dong Z R, Che Z. Effects of nitrogen regulation on nitrogen assimilation and yield of wheat. J Triticeae Crops, 2019, 39: 1195-1201. (in Chinese with English abstract)
[27] Bushong J T, Mullock J L, Miller E C, Raun W R, Arnall D B. Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using different estimates of yield potential. Precis Agric, 2016, 17: 470-487.
doi: 10.1007/s11119-016-9431-3
[28] Grahmann K, Govaerts B, Fonteyne S, Guzman C, Soto A P G, Buerkert A, Verhulst N. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. Nutr Cycl Agroecosyst, 2016, 106: 185-199.
doi: 10.1007/s10705-016-9798-6
[29] 马伯威, 王红光, 李东晓, 李瑞奇, 李雁鸣. 水氮运筹模式对冬小麦产量和水氮生产效率的影响. 麦类作物学报, 2015, 35: 1141-1147.
Ma B W, Wang H G, Li D X, Li R Q, Li Y M. Influence of water-nitrogen patterns on yield and productive efficiency of water and nitrogen of winter wheat. J Triticeae Crops, 2015, 35: 1141-1147. (in Chinese with English abstract)
[30] 李金鹏, 王志敏, 张琪, 徐学欣, 王云奇, 刘洋, 周顺利, 张英华. 微喷灌和氮肥用量对冬小麦籽粒灌浆和氮素吸收利用的影响. 华北农学报, 2016, 31(增刊1): 1-10.
Li J P, Wang Z M, Zhang Q, Xu X X, Wang Y Q, Liu Y, Zhou S L, Zhang Y H. Effect of micro-sprinkling irrigation and nitrogen application rate on grain. Acta Agric Boreali-Sin, 2016, 31(S1): 1-10. (in Chinese with English abstract)
[1] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[2] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[3] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[4] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[5] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[6] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[7] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[8] 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199.
[9] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[10] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[11] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 尔晨, 林涛, 夏文, 张昊, 徐高羽, 汤秋香. 灌溉定额和施氮量对机采棉田水分运移及硝态氮残留的影响[J]. 作物学报, 2022, 48(2): 497-510.
[14] 田明慧, 杨硕, 杜嘉琪, 张晨曦, 何堂庆, 张学林. 不同氮肥水平下丛枝菌根真菌对玉米籽粒灌浆期磷和钾吸收的影响[J]. 作物学报, 2022, 48(12): 3166-3178.
[15] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .