欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 772-783.doi: 10.3724/SP.J.1006.2023.24061

• 耕作栽培·生理生化 • 上一篇    下一篇

氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异

方娅婷(), 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍()   

  1. 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室 / 华中农业大学微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2022-03-19 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-16
  • 通讯作者: 鲁剑巍
  • 作者简介:E-mail: fangyating@webmail.hzau.edu.cn
  • 基金资助:
    国家自然科学基金项目(32172678);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);中央高校基本科研业务费专项基金项目(2662020ZHPY005)

Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations

FANG Ya-Ting(), REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei()   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-03-19 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-16
  • Contact: LU Jian-Wei
  • Supported by:
    National Natural Science Foundation of China(32172678);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662020ZHPY005)

摘要:

氮磷钾肥施用是农业生产中的重要增产措施, 旱-旱和水-旱周年复种轮作是我国长江流域冬油菜的主要种植模式。为探究氮磷钾养分对不同轮作油菜产量和养分吸收利用的影响及其差异, 于2017—2020年在湖北省沙洋县连续3年开展田间定位试验, 采用旱地油菜(玉米-油菜)和水田油菜(水稻-油菜)2种轮作模式, 各轮作分别设置氮磷钾(NPK)、不施氮(-N)、不施磷(-P)和不施钾(-K) 4个处理, 分析了油菜籽产量、产量构成和养分吸收情况, 并对肥料利用率和土壤养分供应能力进行了评估。3年试验的平均结果表明, 与NPK处理相比, -N、-P和-K处理的旱地油菜分别减产68.4%、89.6%和7.0%; 水田油菜分别减产71.0%、84.7%和6.4%。对产量构成因子进一步分析发现, 无论是旱地油菜还是水田油菜, 施肥对角果数影响最大, 其次是每角粒数, 对千粒重影响最小。与NPK处理相比, 旱地和水田油菜的角果数因缺氮、缺磷和缺钾分别减少61.6%和52.0%、82.0%和67.8%、16.2%和19.7%。相同施肥处理的旱地和水田油菜产量及养分吸收均存在显著差异, 在-N、-K和NPK处理, 旱地油菜产量均高于水田油菜, 分别高27.2%、15.9%和16.7%, 而-P处理的旱地油菜产量比水田油菜低20.8%; 养分积累量趋势与产量相似, 除-P处理外, 其余3个处理的旱地油菜地上部养分积累量均高于水田, NPK处理的旱地油菜地上部氮、磷和钾积累量分别比水田油菜高20.4%、37.3%和4.2%。旱地油菜季的年均土壤本底氮和钾供应量分别比水田高15.0%和20.9%, 而磷供应量比水田低39.2%。旱地油菜季氮肥和磷肥回收利用率均高于水田, 而钾肥回收利用率低于水田。综上, 养分的配合施用显著提高油菜产量和养分利用效率, 旱-旱轮作和水-旱轮作油菜产量存在显著差异并受养分种类的影响。与旱地油菜相比, 水田油菜种植需格外注重氮肥和钾肥的施用, 而旱地油菜较水田油菜则需适当增施磷肥, 以针对性地补充土壤缺乏养分和实现油菜高产高效生产。

关键词: 玉米-油菜轮作, 水稻-油菜轮作, 氮, 磷, 钾, 油菜籽产量

Abstract:

The application of nitrogen (N), phosphorus (P), and potassium (K) fertilizers is an important measure to increase yield in agricultural production. Continuous upland and paddy-upland anniversary multiple cropping rotation is the main planting mode of winter oilseed rape in the Yangtze River basin in China. In order to explore the effects and differences of N, P, and K on the yield and nutrient absorption and utilization of rapeseed in different rotations, a field experiment was carried out in Shayang County, Hubei Province for 3 years from 2017 to 2020. Two rotation modes of upland-oilseed rape (maize-rape) and paddy-oilseed rape (rice-rape) were adopted, and four treatments of nitrogen, phosphorus and potassium combined application (NPK), no nitrogen (-N), no phosphorus (-P), and no potassium (-K) applications on the basis of NPK were set in each rotation. The yield, yield components, and nutrient uptake of rapeseed were analyzed, the fertilizer use efficiency and soil indigenous nutrient supply were evaluated. The average results of the three-year trials showed that, compared with the NPK treatments, the -N, -P, and -K treatments in upland reduced rapeseed yields by 68.4%, 89.6%, and 7.0%, and by 71.0%, 84.7%, and 6.4% in paddy fields, respectively. Among the yield components, whether it was upland or paddy, fertilization had the greatest impact on the number of siliques, followed by the number of grains per silique, and had the least impact on the thousand-grain weight. Compared with NPK treatment, the number of siliques in upland and paddy fields was decreased by 61.6% and 52.0%, 82.0% and 67.8%, 16.2% and 19.7% due to N, P, and K deficiency, respectively. There were significant differences in the yield and nutrient absorption of rapeseed in upland and paddy field under different fertilization treatments. The yield of rapeseed in upland was about 27.2%, 15.2%, and 16.7% higher than that in paddy field in the -N, -K, and NPK treatments, while the yield of paddy rapeseed under -P treatment was 20.8% higher than that of upland. Nutrient accumulation trends were similar to the yield, except for -P treatment, the accumulation of N, P, and K in the upland oilseed rape under NPK treatment was 20.4%, 37.3%, and 4.2% higher than paddy oilseed rape, respectively. The soil indigenous N and K supply in upland was 15.0% and 20.9% higher than that in paddy field, while the supply of P in upland was 39.2% lower than that in paddy field. The recovery efficiency of N and P in upland were higher than that of paddy field, while K recovery efficiency was lower than that of paddy field. In summary, the combined application of nutrients could improve rapeseed yield and nutrient use efficiency. The significant differences in rapeseed yield and nutrient utilization among different crop rotations were affected by nutrient types. Compared with the upland, to supplement the nutrients deficiency in the soil and achieve high-yield and high-efficiency production of rapeseed, rapeseed in paddy fields needs to pay more attention to the application of N and K fertilizers, while rapeseed in upland needs to be appropriately increased in P fertilizers compared with paddy fields.

Key words: maize-oil seed rape rotation, rice-oil seed rape rotation, nitrogen, phosphorus, potassium, rapeseed yield

图1

2017-2020年油菜生长季平均气温和月降雨量"

表1

不同施肥条件下的旱地和水田油菜产量"

处理
Treatment
旱地-油菜Upland-oilseed rape 水田-油菜Paddy-oilseed rape t检验
t-test
2017/2018 2018/2019 2019/2020 平均Average 2017/2018 2018/2019 2019/2020 平均Average
-N 361±24 b 717±36 b 1000±88 b 692 310±84 c 168±29 c 1156±214 b 544 0.553 ns
-P 258±43 b 92±3 c 334±160 c 228 317±57 c 141±36 c 405±6 c 288 0.011*
-K 1577±361 a 1377±245 a 3156±499 a 2036 1316±26 b 1011±125 b 2944±206 a 1757 0.025*
NPK 1690±269 a 1407±354 a 3471±162 a 2189 1668±139 a 1297±128 a 2665±78 a 1877 0.080 ns
平均Average 971 898 1990 1287 903 654 1792 1116
方差分析ANOVA FF-value F F-value
处理Treatment 452.2*** 146.7***
年份Year 323.6*** 76.6***
处理×年份Treatment×Year 33.9*** 14.2***

表2

不同施肥条件下旱地和水田油菜产量构成因子"

产量构成
Yield components
处理
Treatment
旱地-油菜Upland-oilseed rape 水田-油菜Paddy-oilseed rape t检验
t-test
2018/2019 2019/2020 平均Average 2018/2019 2019/2020 平均Average
单株角果数
Number of pods
-N 106.7±6.7 d 147.3±24.5 b 127.0 26.9±4.7 c 214.7±45.3 b 120.8 0.867ns
-P 28.7±1.7 c 90.2±30.2 b 59.4 31.2±4.3 c 130.8±23.8 c 81.0 0.240 ns
-K 249.9±16.9 b 304.0±76.9 a 277.0 172.0±26.5 b 231.8±39.1 b 201.9 0.004**
NPK 310.5±5.5 a 350.1±12.5 a 330.3 201.4±10.2a 301.6±33.7 a 251.5 0.003**
平均Average 173.9 222.9 198.4 107.9 219.7 147.3
每角粒数
Seed number
-N 20.4±2.4 a 21.2±1.5 ab 20.8 18.0±4.0 a 20.2±0.8 a 19.1 0.316 ns
-P 12.6±2.5 b 18.7±2.4 b 15.7 18.8±1.0 a 19.2±1.5 a 19.0 0.103 ns
-K 20.4±0.3 a 21.9±1.0 ab 21.1 20.8±4.5 a 20.9±1.3 a 20.8 0.810 ns
NPK 23.5±1.2 a 22.5±2.1 a 23.0 18.8±2.6 a 21.4±0.5 a 20.1 0.062 ns
平均Average 19.3 21.1 20.2 19.1 20.4 19.8
千粒重
1000-seed weight
(g)
-N 3.01±0.03 b 3.77±0.14 a 3.39 3.51±0.03 a 3.98±0.02 a 3.74 0.005**
-P 2.71±0.01 c 3.16±0.05 c 2.94 2.91±0.10 c 3.64±0.02 b 3.27 0.004**
-K 3.11±0.08 a 3.52±0.18 b 3.32 3.24±0.01 b 3.71±0.09 b 3.47 0.050*
NPK 3.15±0.02 a 3.60±0.03 ab 3.38 3.43±0.03 a 3.66±0.04 b 3.54 0.030*
平均Average 2.99 3.52 3.25 3.27 3.75 3.51

图2

不同施肥条件下旱地和水田油菜地上部各部位养分吸收和分配(3年平均) “UO”和“PO”分别指“旱地-油菜”和“水田-油菜”。标以不同小写字母的值表示地上部总养分累积在相同年份的不同施肥处理间差异达0.05显著水平。“*”表示总养分累积在不同轮作之间的t检验差异, *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001, ns表示无显著差异。处理同表1。"

表3

旱地和水田油菜氮、磷和钾的肥料利用率"

肥料利用率
Fertilizer use efficiency
年份
Year
氮Nitrogen 磷Phosphorus 钾Potassium
旱地-油菜
UO
水田-油菜
PO
旱地-油菜
UO
水田-油菜
PO
旱地-油菜
UO
水田-油菜
PO
肥料贡献率
Fertilizer contribution
rate (%)
2017/2018 78.7 81.4 84.7 81.0 6.7 21.1
2018/2019 49.0 87.0 93.5 89.1 2.1 22.1
2019/2020 71.2 56.6 90.4 84.8 9.1 -10.5
平均Average 66.3 75.0 89.5 85.0 6.0 10.9
农学利用率
Agronomic efficiency
(kg kg-1)
2017/2018 7.4 7.5 23.9 22.5 1.5 4.7
2018/2019 3.8 6.3 21.9 19.3 0.4 3.8
2019/2020 13.7 8.4 52.3 37.7 4.2 -3.7
平均Average 8.3 7.4 32.7 26.5 2.0 1.6
回收利用率
Recovery efficiency
(%)
2017/2018 26.3 28.6 27.7 19.2 0.0 20.8
2018/2019 14.8 20.2 20.7 17.3 0.0 33.6
2019/2020 61.5 42.9 94.4 63.7 47.3 66.9
平均Average 34.2 30.5 47.6 33.4 15.7 40.4

图3

不同施肥条件下旱地和水田油菜季养分表观平衡(3年平均) 标以不同小写字母的值表示同一轮作下不同施肥处理间差异达0.05显著水平。“*”表示总养分累积在不同轮作之间的t检验差异, *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001, ns表示无显著差异。处理同表1。"

表4

旱地和水田油菜季土壤养分供应量及灰色线性预测模型"

土壤养分供应
Soil indigenous supply
年份
Year
旱地-油菜
Upland-oilseed rape
水田-油菜
Paddy-oilseed rape
土壤氮供应
Soil indigenous N supply
(kg N hm-2)
2017/2018 12.2±2.9ns 9.4±2.7
2018/2019 23.3±0.6*** 5.4±1.2
2019/2020 39.3±7.8ns 35.9±2.5
预测模型Prediction model Y = 31.3 T-21.8, R² = 0.9788 Y = 20.6 T-16.3, R² = 0.8455
土壤磷供应
Soil indigenous P supply
(kg P2O5 hm-2)
2017/2018 1.68±0.33ns 2.02±0.15
2018/2019 0.61±0.07* 0.88±0.12
2019/2020 3.03±1.39 ns 3.27±0.70
预测模型Prediction model Y = 1.82 T-0.54, R² = 0.8714 Y = 2.08 T-0.45, R² = 0.9002
土壤钾供应
Soil indigenous K supply
(kg K2O hm-2)
2017/2018 63.3±12.8ns 44.5±1.3
2018/2019 77.1±13.7* 42.5±5.2
2019/2020 137.6±20.9ns 122.7±32.9
预测模型Prediction model Y = 107.3 T-54.1, R² = 0.9742 Y = 82.6 T-51.5, R² = 0.9272
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1-8. (in Chinese with English abstract)
[3] Fageria N K, Baligar V C, Li Y C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr, 2008, 31: 1121-1157.
doi: 10.1080/01904160802116068
[4] Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[5] 刘秋霞. 氮肥施用调控直播冬油菜产量构成因子的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2020.
Liu Q X. Study on the Mechanism of Yield Components of Direct-sown Oilseed Rape (Brassica napus L.) under Regulation of Nitrogen Fertilizer. PhD Dissertation of Huazhong Agriculture University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[6] Duan X J, Jin K M, Ding G D, Wang C, Cai H M, Wang S L, White P J, Xu F S, Shi L. The impact of different morphological and biochemical root traits on phosphorus acquisition and seed yield of Brassica napus. Field Crops Res, 2020, 258: 107960.
doi: 10.1016/j.fcr.2020.107960
[7] 刘婷婷, 蒯婕, 孙盈盈, 杨阳, 吴莲蓉, 吴江生, 周广生. 氮、磷、钾肥用量对油菜角果抗裂性相关性状的影响. 作物学报, 2015, 41: 1416-1425.
doi: 10.3724/SP.J.1006.2015.01416
Liu T T, Kuai J, Sun Y Y, Yang Y, Wu L R, Wu J S, Zhou G S. Effects of N, P, and K fertilizers on silique shatter resistance and related traits of rapeseed. Acta Agron Sin, 2015, 4: 1416-1425. (in Chinese with English abstract)
[8] 李静, 闫金垚, 胡文诗, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响. 作物学报, 2019, 45: 941-948.
doi: 10.3724/SP.J.1006.2019.84146
Li J, Yan J Y, Hu W S, Li X K, Cong R H, Ren T, Lu J W. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2019, 45: 941-948. (in Chinese with English abstract)
[9] 任涛, 鲁剑巍. 中国冬油菜氮素养分管理策略. 中国农业科学, 2016, 49: 3506-3521.
Ren T, Lu J W. Integrated nitrogen management strategy for winter oilseed rape (Brassica napus L.) in China. Sci Agric Sin, 2016, 49: 3506-3521. (in Chinese with English abstract)
[10] 史校艳, 王志强, 谷庆昊, 常明娟, 胡俊杰, 任永哲, 辛泽毓, 林同保. 施氮量对不同茬口冬小麦产量及氮肥利用率的影响. 生态学杂志, 2019, 38: 2041-2048.
Shi X Y, Wang Z Q, Gu Q H, Chang M J, Hu J J, Ren Y Z, Xin Z S, Lin T B. Effects of nitrogen application on yield and nitrogen use efficiency of winter wheat with different former crops. Chin J Ecol, 2019, 38: 2041-2048. (in Chinese with English abstract)
[11] 张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响. 中国农业科学, 2020, 53: 2852-2858.
Zhang S T, Lu J W, Cong R H, Ren T, Li X K, Liao S P, Zhang Y Q, Guo S W, Zhou M H, Huang Y G, Cheng H. Effect of rapeseed rotation on the yield of next-stubble crops. Sci Agric Sin, 2020, 53: 2852-2858. (in Chinese with English abstract)
[12] Jeong Y, Park H, Jeon B, Seo B, Baek N, Yang H I, Kwak J, Lee S, Choi W. Land use types with different fertilization management affected isotope ratios of bulk and water-extractable C and N of soils in an intensive agricultural area. J Soil Sediment, 2021, 22: 429-442.
doi: 10.1007/s11368-021-03097-5
[13] 尹晓雷, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同轮作模式下土壤细菌群落特征及其对土壤全碳、全氮与温室气体释放潜力影响. 环境科学学报, 2021, 41(12): 1-13.
Yin X L, Li X D, Lin S Y, Yang X, Wang W Q, Zhang Y X. Effects of soil bacteria community characteristics on total carbon and total nitrogen contents and greenhouse gas emission potential under different rotation patterns. Acta Sci Circum, 2021, 41(12): 1-13. (in Chinese with English abstract)
[14] 陈明亮, 吕国安. 水旱轮作对土壤物理性质的影响. 华中农业大学学报, 1988, 7: 359-363.
Chen M L, Lyu G A. The influence of paddy rice and dryland crops rotation on soil physical properties. J Huazhong Agric Univ, 1988, 7: 359-363. (in Chinese with English abstract)
[15] 程传鹏, 万开元, 陶勇, 汤雷雷, 潘俊峰, 陈防. 不同轮作制度下施肥对冬小麦田间杂草群落及小麦生长的影响. 生态环境学报, 2013, 22: 370-378.
Cheng C P, Wan K Y, Tao Y, Tang L L, Pan J F, Chen F. The effects of fertilization on weed communities and wheat growth in winter wheat (Triticum aestivum L.) field under different cropping rotations. Ecol Environ Sci, 2013, 22: 370-378. (in Chinese with English abstract)
[16] Kukal S S, Rehana-Rasool, Benbi D K. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice-wheat and maize-wheat systems. Soil Tillage Res, 2009, 102: 87-92.
doi: 10.1016/j.still.2008.07.017
[17] 刘桢. 不同花生品种在水旱轮作地和红壤旱地的生长发育和产量差异. 湖南农业大学硕士学位论文, 湖南长沙, 2014.
Liu Z. Growth and Development and Yield of Different Peanut Cultivars Grown in Paddy-upland Crops Rotation and Upland Red Earth Soil. MS Thesis of Hunan Agriculture University, Changsha, Hunan, China, 2014. (in Chinese with English abstract)
[18] 杨宇虹, 赵正雄, 李春俭, 华水金. 不同氮形态和氮水平对水田与旱地烤烟烟叶糖含量及相关酶活性的影响. 植物营养与肥料学报, 2009, 15: 1386-1394.
Yang Y H, Zhao Z X, Li C J, Hua S J. Effects of nitrogen fertilization on carbohydrate content and related metabolic enzymes of flue-cured tobacco in paddy field and highland. Plant Nutr Fert Sci, 2009, 15: 1386-1394. (in Chinese with English abstract)
[19] Liu X L, He Y Q, Zhang H L, Schroder J K, Li C L, Zhou J, Zhang Z Y. Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients. Pedosphere, 2010, 20: 666-673.
doi: 10.1016/S1002-0160(10)60056-2
[20] 元晋川, 王威雁, 赵德强, 侯玉婷, 吴伟, 刘杨, 温晓霞. 不同作物茬口对冬油菜养分积累和产量的影响. 中国油料作物学报, 2021, 43: 260-270.
Yuan J C, Wang W Y, Zhao D Q, Hou Y T, Wu W, Liu Y, Wen X X. Effect of different preceding cover crops on yield and nutrient accumulation of winter oilseed rape. Chin J Oil Crop Sci, 2021, 43: 260-270. (in Chinese with English abstract)
[21] 孙义, 史娟娟, 张建学. 不同作物茬口种植冬油菜对比试验. 基层农技推广, 2019, 7(1): 20-22.
Sun Y, Shi J J, Zhang J X. Comparison experiment of winter rapeseed planting at different stubble crops. Prim Agric Technol Extens, 2019, 7(1): 20-22. (in Chinese)
[22] 张福锁, 陈新平, 陈清. 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009. pp 68-72.
Zhang F S, Chen X P, Chen Q. Fertilizer Recommendations for Major Crops in China. Beijing: China Agricultural University Press, 2009. pp 68-72. (in Chinese)
[23] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114. (in Chinese)
[24] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[25] 邹娟, 鲁剑巍, 陈防, 李银水. 长江流域油菜氮磷钾肥料利用率现状研究. 作物学报, 2011, 37: 729-734.
Zou J, Lu J W, Chen F, Li Y S. Status of nutrient use efficiencies of rapeseed in the Yangtze River Basin. Acta Agron Sin, 2011, 37: 729-734. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00729
[26] 刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用(第7版). 北京: 科学出版社, 2018. pp 238-252.
Liu S F, Yang Y J, Wu L F. The Theory of Grey Systems and Its Application, 7th edn. Beijing: Science Press, 2018. pp 238-252. (in Chinese)
[27] 宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170-176.
doi: 10.3724/SP.J.1006.2010.00170
Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170-176 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00170
[28] Macholdt J, Piepho H, Honermeier B. Mineral NPK and manure fertilization affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur J Agron, 2019, 102: 14-22.
doi: 10.1016/j.eja.2018.10.007
[29] Ren T, Li H, Lu J W, Bu R Y, Li X K, Cong R H, Lu M X. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). Crop J, 2015, 3: 396-404.
doi: 10.1016/j.cj.2015.04.007
[30] 卜容燕. 稻油和棉油轮作模式下油菜季土壤氮素供应差异及其机制研究. 华中农业大学博士学位论文, 湖北武汉, 2017.
Bu R Y. Difference and Mechanism of Soil Nitrogen Supply in Oilseed Rape Planting Season under Different Rotation Systems. PhD Dissertation of Huazhong Agriculture University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[31] 杨丞, 吴耀卿, 李著纲, 张永毅, 龚元成, 李文品, 张万洋, 肖能武. 鄂西北旱地和水田油菜缓释专用肥施用效果比较. 中国农技推广, 2019, 35(增刊1): 108-110.
Yang C, Wu Y Q, Li Z G, Zhang Y Y, Gong Y C, Li W P, Zhang W Y, Xiao N W. Comparison of oilseed rape special fertilizer in upland and paddy fields in northwest Hubei. China Agric Technol Extens, 2019, 35(S1): 108-110. (in Chinese)
[32] 陈明霞, 黄见良, 崔克辉, 聂立孝, 彭少兵. 不同氮效率基因型水稻植株氨挥发速率及其与氮效率的关系. 作物学报, 2010, 36: 879-884.
doi: 10.3724/SP.J.1006.2010.00879
Chen M X, Huang J L, Cui K H, Nie L X, Peng S B. Genotypic variation in ammonia volatilization rate of rice shoots and its relationship with nitrogen use efficiency. Acta Agron Sin, 2010, 36: 879-884. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00879
[33] 顾芹芹. 磷钾镁肥对不同茬口油菜物质生产及氮磷钾分配的影响. 扬州大学硕士学位论文, 江苏扬州, 2006.
Gu Q Q. Effects of P, K and Mg Fertilizers Application on Growth and NPK Distribution under Different Rotation Systems in Rapeseed. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2006. (in Chinese with English abstract)
[34] Briat J F, Gojon A, Plassard C, Rouached H, Lemaire G. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur J Agron, 2020, 116: 126069.
doi: 10.1016/j.eja.2020.126069
[35] 王景. 厌氧和好气条件下作物秸秆的腐解特征研究. 安徽农业大学硕士学位论文, 安徽合肥, 2015.
Wang J. Study on the Decomposition of Crop Straw under Anaerobic and Aerobic Condition. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015. (in Chinese with English abstract)
[36] Fuhrmann I, He Y, Lehndorff E, Brüggemann N, Amelung W, Wassmann R, Siemens J. Nitrogen fertilizer fate after introducing maize and upland-rice into continuous paddy rice cropping systems. Agric Ecosyst Environ, 2018, 258: 162-171.
doi: 10.1016/j.agee.2018.02.021
[37] Zhang Z, Peng X H. Bio-tillage: a new perspective for sustainable agriculture. Soil Tillage Res, 2021, 206: 104844.
doi: 10.1016/j.still.2020.104844
[38] 黄东迈, 朱培立, 高家骅. 有机、无机态肥料氮在水田和旱地的残留效应. 中国科学, 1982, 1(10): 907-912.
Huang D M, Zhu P L, Gao J H. Residual effect of organic and inorganic fertilizer nitrogen in paddy fields and dry lands. Chin Sci, 1982, 1(10): 907-912. (in Chinese)
[39] 薛欣欣. 水稻钾素营养特性及钾肥高效施用技术研究. 华中农业大学博士学位论文, 湖北武汉, 2016.
Xue X X. Study on the Characteristics of Potassium Nutrition and High-efficient Application Technologies of Potassium Fertilizer in Rice. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[40] 张水清, 黄绍敏, 聂胜伟, 郭斗斗, 林杉. 长期定位施肥对夏玉米钾素吸收及土壤钾素动态变化的影响. 植物营养与肥料学报, 2014, 20: 56-63.
Zhang S Q, Huang S M, Nie S W, Guo D D, Lin S. Effects of long-term fertilization on potassium uptake of summer maize and potassium dynamics of fluvo-aquic soil. J Plant Nutr Fert, 2014, 20: 56-63. (in Chinese with English abstract)
[41] Nishiyama S, Okazaki M, Baba M, Quevedo M A. Quantification of Cs, K, and Rb in rice (Oryza sativa) cultivated under paddy and upland conditions. Microchem J, 2016, 127: 22-29.
doi: 10.1016/j.microc.2016.01.019
[42] 肖作义, 马飞, 柳开楼, 赵学强, 郑春丽, 张昊青, 王嘉林, 沈仁芳. 红壤区旱地和水田土壤磷素状况及其流失风险. 中国土壤与肥料, 2021, (1): 282-288.
Xiao Z Y, Ma F, Liu K L, Zhao X Q, Zheng C L, Zhang H Q, Wang J L, Shen R F. Current phosphorus status of red soil in drylands and paddy fields and its loss risks. Chin Soil Fert, 2021, (1): 282-288. (in Chinese with English abstract)
[43] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X, Wang Y, Li J, Wang Y, Xia H Y, Mei P, Wang X E, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L, Callaway R M, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943-950.
doi: 10.1038/s41893-021-00767-7
[44] Wei L, Ge T, Zhu Z, Ye R Z, Peñuelas J, Li Y H, Lynn T M, Jones D L, Wu J S, Kuzyakov Y. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers. Agric Ecosyst Environ, 2022, 326: 107798.
doi: 10.1016/j.agee.2021.107798
[45] De Long J R, Fry E L, Veen G F, Kardol P. Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct Ecol, 2018, 33: 118-128.
doi: 10.1111/1365-2435.13232
[1] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[2] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[3] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[4] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[5] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[6] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[7] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[8] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[9] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[10] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[11] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[12] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[13] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[14] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[15] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .