作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1184-1196.doi: 10.3724/SP.J.1006.2023.21006
刘佳(), 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林(), 伍碧华()
LIU Jia(), GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin(), and WU Bi-Hua()
摘要:
野生二粒小麦(Triticum turgidum ssp. dicoccoides)是普通小麦的四倍体祖先种, 具有广泛的基因型变异, 是改良普通小麦的重要种质资源。本研究对不同年份和地点四个环境下的161份野生二粒小麦渗入系材料的株高、分蘖数、小穗数、抽穗期、开花期和千粒重进行表型鉴定, 并利用覆盖全基因组的13,116个DArT标记对各农艺性状进行全基因组关联分析, 以期发掘性状显著关联标记及相关候选基因。本研究共检测到147个与6个农艺性状相关的稳定标记。其中, 一些关联标记与抽穗期和开花期同时相关, 并且在2B染色体上聚集成簇。在野生二粒小麦渗入系群体中共推定了21个与农艺性状相关的候选基因, 其中位于7A染色体与千粒重显著相关的候选基因与细胞周期蛋白有关。这些标记和候选基因可为克隆优异农艺性状相关基因提供重要信息, 从而为野生二粒小麦在普通小麦背景中的遗传改良综合利用提供依据与指导。
[1] | 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, 34(4): 1-7. |
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, 34(4): 1-7. (in Chinese with English abstract) | |
[2] |
International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788.
doi: 10.1126/science.1251788 |
[3] |
Jones J M, Pena R J, Korczak R, Braun H J. Carbohydrates, grains, and wheat in nutrition and health: an overview Part II. Grain terminology and nutritional contributions.Cereal Foods World, 2015, 60: 260-271.
doi: 10.1094/CFW-60-6-0260 |
[4] |
Joppa L R, Cantrell R G. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci, 1990, 30: 1059-1064.
doi: 10.2135/cropsci1990.0011183X003000050021x |
[5] | Jaradat A A. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (‘Triticum dicoccoides’ korn ex Asch. and Graebn.) Thell. Aust J Crop Sci, 2011, 5: 1072. |
[6] |
Van Silfhout C H, Gerechter-Amitai Z K. Adult-plant resistance to yellow rust in wild emmer wheat. Netherlands J Plant Pathol, 1988, 94: 267-272.
doi: 10.1007/BF01977317 |
[7] |
Nevo E. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Isr J Plant Sci, 2001, 49: 77-92.
doi: 10.1092/XJQN-9T4H-VTL3-CDXU |
[8] |
Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol, 2007, 24: 1506-1517.
doi: 10.1093/molbev/msm077 pmid: 17443011 |
[9] |
Kushnir U, Halloran G M. Transfer of high kernel weight and high protein from wild tetraploid wheat (Triticum turgidum dicoccoides) to bread wheat (T. aestivum) using homologous and homoeologous recombination. Euphytica, 1984, 33: 249-255.
doi: 10.1007/BF00022773 |
[10] | 储诚艮, 冯祎高, 陈佩度. 将野生二粒小麦的大粒和籽粒高蛋白含量性状向普通小麦的转移. 南京农业大学学报, 2001, 24(2): 16-19. |
Chu C G, Feng Y G, Chen P D. The transference of the traits large kernel and high seed protein content from T. dicoccoides into common wheat. J Nanjing Agric Univ, 2001, 24: 16-19. (in Chinese with English abstract) | |
[11] | 胡喜贵. 关切小麦加工和营养品质的1Ay和NAM位点的种质资源鉴定及利用研究. 四川农业大学博士学位论文, 四川成都, 2013. |
Hu X G. Characterization and Utilization of 1Ay and NAM Loci Associated with Wheat Processing and Nutritional Quality in Triticum and Its Related Species. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2013. (in Chinese with English abstract) | |
[12] |
Jiang Z L, Wu B H, Wang Z Z, Hu J L, Yuan J, Chen H L, Liu J, Zheng Y L, Liu D C. Enriching novel Glu-Ax alleles and significantly strengthening gluten properties of common wheat through wide hybridization with wild emmer. J Cereal Sci, 2017, 76: 271-279.
doi: 10.1016/j.jcs.2017.04.018 |
[13] |
Wang Z Z, Huang L, Wu B H, Hu J L, Jiang Z L, Qi P F, Zheng Y L, Liu D C. Characterization of an integrated active Glu-1Ay allele in common wheat from wild emmer and its potential role in flour improvement. Int J Mol Sci, 2018, 19: 923.
doi: 10.3390/ijms19040923 |
[14] |
Liu J, Huang L, Wang C Q, Liu Y X, Yan Z H, Wang Z Z, Xiang L, Zhong X Y, Gong F Y, Zheng Y L, Liu D C, Wu B H. Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front Plant Sci, 2019, 10: 464-464.
doi: 10.3389/fpls.2019.00464 pmid: 31057576 |
[15] |
Gong F Y, Qi T G, Zhang T, Lu Y S, Liu J, Zhong X Y, He J S, Li Y F, Zheng Y L, Liu D C, Huang L, Wu B H. Comparison of the agronomic, cytological, grain protein characteristics, as well as transcriptomic profile of two wheat lines derived from wild emmer. Front Genet, 2022, 12: 804481.
doi: 10.3389/fgene.2021.804481 |
[16] |
Gong F Y, Huang L, Qi T G, Tang G, Liu J, Xiang L, He J S, Zheng Y L, Liu D C, Wu B H. Comparative analysis of developing grain transcriptome reveals candidate genes and pathways improving GPC in wheat lines derived from wild emmer. J Appl Genet, 2021, 62: 17-25.
doi: 10.1007/s13353-020-00588-y pmid: 33063291 |
[17] | 伍碧华, 路洁霏, 李平, 胡喜贵, 郑有良. 野生二粒小麦籽粒蛋白质含量和库容性状的遗传多样性与可利用性研究. 四川农业大学学报, 2008, 26: 221-225. |
Wu B H, Lu J F, Li P, Hu X G, Zheng Y L. Genetic diversity and potential utilization of grain protein content and sink traits in Triticum dicoccoides. J Sichuan Agric Univ, 2008, 26: 221-225. (in Chinese with English abstract) | |
[18] | 国家粮食局. 谷物与豆类千粒重的测定, GB T 5519-2008, 2008. |
State Administration of Grain. Cereals and Pulses-Determination of the Mass of 1000-grain, GB T 5519-2008, 2008 (in Chinese) | |
[19] |
Liu Y X, Lin Y, Gao S, Li Z Y, Ma J, Deng M, Chen G Y, Wei Y M, Zheng Y L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861-873.
doi: 10.1111/tpj.2017.91.issue-5 |
[20] |
Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181.
doi: 10.1086/302959 pmid: 10827107 |
[21] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[22] | Alvarado G, López M, Vargas M, Pacheco Á, Rodríguez F, Burgueño J, Crossa J. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04. Mexico, International Maize and Wheat Improvement Center, 2015 [2022-02-17]. https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201. |
[23] |
Alomari D Z, Eggert K, Von Wirén N, Alqudah A M, Polley A, Plieske J, Ganal M W, Pillen K, Röder M S. Identifying candidate genes for enhancing grain Zn concentration in wheat. Front Plant Sci, 2018, 9: 1313.
doi: 10.3389/fpls.2018.01313 pmid: 30271416 |
[24] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2004, 21: 263-265.
doi: 10.1093/bioinformatics/bth457 |
[25] | 段国辉, 高海涛, 张学品, 吴少辉, 杨洪强, 王艳芳. 冬小麦水旱条件下株高构成与产量性状及抗旱指数相关分析. 陕西农业科学, 2006, (4): 1-3. |
Duan G H, Gao H T, Zhang X P, Wu S H, Yang H Q, Wang Y F. Correlation analysis of plant height composition, yield characters and drought resistance index of winter wheat under flood and drought conditions. Shaanxi J Agric Sci, 2006, (4): 1-3. (in Chinese) | |
[26] | 贾继增. 小麦粒重与植株性状相关因素的统计分析. 作物学报, 1984, 10: 201-205. |
Jia J Z. The statistical analysis for correlation factors in kernel weight and plant characters in wheat (T. aestivum L.). Acta Agron Sin, 1984, 10: 201-205. (in Chinese with English abstract) | |
[27] |
Austin R B, Bingham J, Blackwell R D, Evans L T, Ford M A, Morgan C L, Taylor M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J Agric Sci, 1980, 94: 675-689.
doi: 10.1017/S0021859600028665 |
[28] | 高士杰. 作物株型改良的增产效用. 吉林农业科学, 1999, 24(2): 23-24. |
Gao S J. Yield-increasing effect of crop plant type improvement. J Jilin Agric Sci, 1999, 24(2): 23-24. (in Chinese) | |
[29] | 盛承师. 小麦冠层形态结构与籽粒产量的关系(三): 理想株型的设计. 国外农学: 麦类作物, 1987, (1): 35-38. |
Sheng C S. Relationship between wheat canopy morphology and grain yield: 3. Design for ideal plant type. Agron Abroad: Wheat Barley Triticale etc., 1987, (1): 35-38. (in Chinese) | |
[30] | 张智猛. 华北地区小麦生育进程、灌浆特性与库容对粒重相对重要性的研究. 河北农业大学学报, 1998, (2): 22-27. |
Zhang Z M. Studies on the contribution of growing process, filling properties, storage capacity to grain weight for wheat in North China. J Agric Univ Hebei, 1998, (2): 22-27. (in Chinese with English abstract) | |
[31] | 李俊周, 刘艳阳, 何宁, 崔党群. 小麦DH群体数量性状的遗传分析. 麦类作物学报, 2005, 25(3): 16-19. |
Li J Z, Liu Y Y, He N, Cui D Q. Genetics analysis of several quantitative traits of doubled haploid population in wheat. J Triticeae Crops, 2005, 25(3): 16-19. (in Chinese with English abstract) | |
[32] | 李战怡. 西南小麦地方品种农艺性状评价及关联分析. 四川农业大学硕士学位论文, 四川成都, 2015. |
Li Z Y. Agronomic Traits Evaluation and Association Analysis of Wheat Landraces in Southwest China. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract) | |
[33] |
Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome, 2000, 43: 487-494.
pmid: 10902713 |
[34] |
Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766.
doi: 10.1007/s00122-006-0346-7 pmid: 16838135 |
[35] |
Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1 pmid: 12582918 |
[36] |
Campbell K G, Bergman C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher R G, Sorrells M E, Finney P L. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci, 1999, 39: 1184-1195.
doi: 10.2135/cropsci1999.0011183X003900040039x |
[37] |
Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu M D, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S, Ranjekar P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102: 726-732.
doi: 10.1007/s001220051703 |
[38] | 郑有良, 颜济杨俊良. 小麦粒重基因定位研究. 作物学报, 1993, 19: 304-308. |
Zheng Y L, Yan J, Yang J L. Localization of genes for grain weight in common wheat. Acta Agron Sin, 1993, 19: 304-308. (in Chinese) | |
[39] | 刘振华, 于延冲, 向凤宁. 生长素响应因子与植物的生长发育. 遗传, 2011, 33: 1335-1346. |
Liu Z H, Yu Y C, Xiang F N. Auxin response factors and plant growth and development. Hereditas (Beijing), 2011, 33: 1335-1346. (in Chinese with English abstract) | |
[40] | 李春喜, 赵广才. 小麦分蘖变化动态与内源激素关系的研究. 作物学报, 2000, 26: 963-968. |
Li C X, Zhao G C. Research on the relationship between wheat tillering dynamics and endogenous hormone. Acta Agron Sin, 2000, 26: 963-968. (in Chinese with English abstract) | |
[41] | 黄祥富, 黄上志, 傅家瑞. 植物热激蛋白的功能及其基因表达的调控. 植物学报, 1999, 16: 530-536. |
Huang X F, Huang S Z, Fu J R. Regulation of expression and functions of the heat shock proteins of plant. Chin Bull Bot, 1999, 16: 530-536. (in Chinese with English abstract) | |
[42] |
许克恒, 张云彤, 张莹, 王彬, 王法微, 李海燕. 植物F-box基因家族的研究进展. 生物技术通报, 2018, 34(1): 26-32.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0636 |
Xu K H, Zhang Y T, Zhang Y, Wang B, Wang F W, Li H Y. Research advances on the f-box gene family in plants. Biotechnol Bull, 2018, 34(1): 26-32. (in Chinese with English abstract) | |
[43] | 李元元, 王鲁, 苏振刚, 王元英. MADS-box基因控制植物成花的分子机理. 基因组学与应用生物学, 2010, 29: 1122-1132. |
Li Y Y, Wang L, Su Z G, Wang Y Y. The molecular mechanism of MADS-box genes regulates floral formation and flowering in plant. Genom Appl Biol, 2010, 29: 1122-1132. (in Chinese with English abstract) | |
[44] |
Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012, 22: 1666.
doi: 10.1038/cr.2012.151 |
[1] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[2] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
[3] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[4] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[5] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[6] | 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391. |
[7] | 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560. |
[8] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[9] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[10] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[11] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[12] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[13] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 李晓瑜, 方小梅, 伍浩天, 王莹倩, 刘洋, 唐恬, 王于栋, 吴银环, 岳林清, 张瑞丰, 崔静斌, 张建, 易泽林. 苦荞种质资源主要农艺性状SSR标记关联分析[J]. 作物学报, 2022, 48(12): 3091-3107. |
|