欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1699-1707.doi: 10.3724/SP.J.1006.2023.22028

• 研究简报 • 上一篇    下一篇

水稻籽粒伸长突变体lgdp的鉴定与基因定位

林孝欣(), 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰*(), 陈锐*()   

  1. 西南大学水稻研究所/西南大学农业科学研究院/转基因植物与安全控制重庆市重点实验室, 重庆 400715
  • 收稿日期:2022-05-09 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-11-17
  • 通讯作者: *陈锐, E-mail: chenruin998@gmail.com;李云峰, E-mail: liyf1980@swu.edu.cn
  • 作者简介:E-mail: 2393551889@qq.com
  • 基金资助:
    国家自然科学基金项目(32172044)

Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.)

LIN Xiao-Xin(), HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng*(), CHEN Rui*()   

  1. Rice Research Institute, Southwest University/Academy of Agricultural Sciences, Southwest University/Transgenic Plants and Safety Control, Chongqing Key Laboratory, Chongqing 400715, China
  • Received:2022-05-09 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-11-17
  • Contact: *E-mail: chenruin998@gmail.com;E-mail: liyf1980@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32172044)

摘要:

水稻粒形与产量和营养品质密切相关, 挖掘水稻粒形发育相关基因并解析其分子机制, 对提高水稻产量、改善籽粒营养品质具有重要意义。利用甲基磺酸乙酯(ethyl methanesulfonate, EMS)处理籼稻品种西大1B, 获得了1个水稻粒形突变体, 命名为long grain and degenerated palea (lgdp)。lgdp表现出外稃伸长, 从而导致籽粒长度增加的特征, 进一步扫描电镜分析发现, lgdp籽粒变长主要原因是其外稃细胞数目极显著增加。遗传分析表明该性状受1对隐性基因调控; 利用lgdp与ZH11杂交构建的F2分离群体, 通过BSA法将目标基因定位在3号染色体分子标记ZLN43和ZLN-1之间, 物理距离大约810 kb。通过转录测序和PCR分析初步确认LGDP候选基因编码一个MADS-box基因。qPCR分析表明, LGDP可能通过负向调控GW7/GL7GS3TGW6等水稻粒长正向调控因子的表达, 从而影响了颖壳细胞数目的增殖, 进而影响籽粒长度。本研究结果为应用LGDP基因改良水稻粒形提供了新的资源。

关键词: 水稻, 粒形, 细胞数目, 基因定位

Abstract:

The grain shape, which consists of grain length and grain width, is the primary determinant of grain yield and one of the important appearance quality traits in rice. It is of great significance to identify the related genes associated with grain shape and to study molecular mechanisms for improving the yield and quality of rice. In this study, a long grain mutant named long grain and degenerated palea (lgdp) deriving from EMS (ethyl methane sulfonate) mutation groups of Xida 1B was reported. In lgdp mutant, the elongation of lemma resulted in a long grain. Further SEM analysis revealed that the main reason for lemma elongation was the extremely significant increase in the number of glume cells. Genetic analysis showed that the lgdp trait was regulated by a pair of recessive genes. Using BSA method and the F2 population crossing lgdp with ZH11, the target gene was located between the molecular markers ZLN43 and ZLN-1 on chromosome 3, with a physical distance of about 810 kb. The analysis of RNA-seq and PCR indicated the LGDP candidate gene might encode a MADS-box protein. The qPCR referred that LGDP negatively regulated the relative expression levels of several positive grain length regulatory factors, GW7/GL7, GS3, TGW6, which affected the cell proliferation of glumes and the grain length. The results of this study laid a foundation for the molecular function analysis of LGDP gene in the future.

Key words: rice (Oryza sativa L.), grain shape, cell number, gene mapping

图 1

野生型和突变体lgdp的表型观察 A: 野生型小穗; B: 图A中小穗去掉外稃后的形态; C: 野生型小穗的横切面; D: 图C的局部放大; E: 野生型早期幼穗原基; F, K: lgdp的Type1和Type2两种小穗类型; G: 图F中小穗去除外稃后的形态; H: lgdp小穗的横切面; I: 图H的局部放大; J: Type1早期幼穗原基; L: 图K中小穗去除外稃后的形态: M: lgdp小穗的横切面; N: 图M的局部放大; O: Type2早期幼穗原基。缩写: le: 外稃; sl: 护颖; lo: 浆片: pa: 内稃; pi: 雌蕊。标尺: A为22 mm; B为20 mm; C为240 μm; D为75 μm; E, J, O为100 μm; F, G, K, L为23 mm; H为300 μm; I为78 μm; M为300 μm, N为80 μm。"

图2

野生型(WT)和突变体lgdp的株型与粒形 A: 野生型和lgdp的植株; B: 野生型和lgdp籽粒宽度比较; C: 野生型和lgdp籽粒(去壳)宽度比较; D: 野生型和lgdp籽粒长度比较; E: 野生型和lgdp籽粒(去壳)长度比较; F: 株高统计; G: 节间长度统计; H: 穗长统计; I: 一次枝梗数统计; J: 二次枝梗数统计; K: 每穗小花数; L: 每穗实粒数统计; M: 粒宽统计; N: 籽粒(去壳)宽度统计; O: 粒长统计; P: 籽粒(去壳)长度统计; Q: 结实率统计; R: 千粒重统计。**表示在0.01概率水平差异显著, *表示在0.05概率水平差异显著。标尺: A为40 cm; B为33 mm; C为40 mm; D为90 mm。"

图3

野生型(WT)和突变体lgdp颖壳的扫描电镜(SEM)观察 A: 野生型的成熟籽粒颖壳; B: lgdp突变体的成熟籽粒颖壳; C, D: 扫描电镜观察外稃外表皮; E, F: 扫描电镜观察内稃外表皮; G: 外稃长度统计; H: 内桴长度统计; I: 外稃外表皮纵行细胞数目统计; J: 内稃外表皮纵行细胞数目统计: K: 外稃外表皮细胞大小统计; L: 内稃外表皮细胞大小统计。缩写: le: 外稃; pa: 内稃。**表示在0.01概率水平差异显著, *表示在0.05概率水平差异显著。标尺: A、B为5 mm; C~F为300 μm。"

表1

野生型和lgdp突变体F2分离的卡方测验"

名称
Name
父本
Male parent
母本
Female parent
野生型
Wild type
突变型
Mutant type
卡方值
Chi-square value (χ20.05=3.84)
组合1 Combination 1 lgdp 56S 355 106 0.89
组合2 Combination 2 lgdp ZH11 176 44 2.67
组合3 Combination 3 lgdp NIP 70 13 3.38

图4

LGDP基因的精确定位 A: LGDP基因的定位; B: LGDP候选基因的转录组测序分析; C: LGDP候选基因的PCR分析和序列比对。N: 天冬酰胺; E: 谷氨酸; A: 丙氨酸; D: 天冬氨酸; M: 蛋氨酸; V: 缬氨酸; H: 组氨酸; TGA: 终止密码子。"

图5

粒形相关基因表达分析 将1B的穗中的转录水平设置为1.0, Bar值表示3个生物学重复的平均值±SD; **表示在0.01概率水平差异显著。"

[1] 施思, 刘坚, 马伯军, 钱前. 水稻颖壳发育的研究进展. 中国稻米, 2012, 18(5): 25-29.
doi: 10.3969/j.issn.1006-8082.2012.05.007
Shi S, Liu J, Ma B J, Qian Q. Research progress of rice glume development. Chin Rice, 2012, 18(5): 25-29. (in Chinese with English abstract)
[2] Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284 pmid: 10468600
[3] Wang L, Xu Y Y, Ma Q B, Li D, Xu Z H, Chong K. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res, 2006, 16: 916-922.
doi: 10.1038/sj.cr.7310111 pmid: 17117160
[4] Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J, 2011, 67: 907-916.
doi: 10.1111/j.1365-313X.2011.04643.x
[5] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107 pmid: 20974950
[6] Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46: 652-656.
doi: 10.1038/ng.2958 pmid: 24777451
[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1 pmid: 16453132
[8] Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K,, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182: 1323-1334.
doi: 10.1534/genetics.109.103002 pmid: 19506305
[9] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318
[10] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352 pmid: 19305410
[11] Tao Y J, Miao J, Wang J, Li W Q, Xu Y, Wang F Q, Jiang Y J, Chen Z H, Fan F J, Xu M B, Zhou Y, Liang G H, Yang J. RGG1, involved in the cytokinin regulatory pathway, controls grain size in rice. Rice, 2020, 13: 76.
doi: 10.1186/s12284-020-00436-x pmid: 33169285
[12] Miao J, Yang Z F, Zhang D P, Wang Y Z, Xu M B, Zhou L H, Wang J, Wu S J, Yao Y L, Du X, Gu F F, Gong Z Y, Gu M H, Liang G H, Zhou Y. Mutation of RGG 2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnol J, 2019, 17: 650-664.
doi: 10.1111/pbi.13005 pmid: 30160362
[13] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[14] Huang K, Wang D K, Duan P G, Zhang B L, Xu R, Li N, Li Y H. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 2017, 91: 849-860.
doi: 10.1111/tpj.2017.91.issue-5
[15] Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant, 2021, 14: 1266-1280.
doi: 10.1016/j.molp.2021.04.011 pmid: 33930509
[16] Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27: 1142-1156.
doi: 10.1038/cr.2017.98 pmid: 28776570
[17] Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wan J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019, 180: 381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160
[18] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
doi: 10.1105/tpc.17.00959
[19] Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R C, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H. Control of grain size and weight by the OsMKKK10- OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018, 11: 860-873.
doi: 10.1016/j.molp.2018.04.004
[20] Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen‐activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557.
doi: 10.1111/tpj.2014.77.issue-4
[21] Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952
[22] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[23] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
doi: 10.1105/tpc.104.024950 pmid: 15705958
[24] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107.
doi: 10.1073/pnas.1512748112 pmid: 26283354
[25] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/ SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018, 11: 736-749.
doi: 10.1016/j.molp.2018.03.005
[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11: 750-753.
doi: 10.1016/j.molp.2018.03.007
[27] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant, 2018, 11: 754-756.
doi: S1674-2052(18)30092-3 pmid: 29567448
[28] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[29] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749
[30] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352 pmid: 26147620
[31] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[32] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[33] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[34] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[35] Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas, 2003, 25: 705-707.
[36] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884.
doi: 10.1105/tpc.12.6.871 pmid: 10852934
[37] Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006, 223: 882-890.
doi: 10.1007/s00425-005-0141-8
[38] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9: 852.
doi: 10.1038/s41467-018-03047-9 pmid: 29487282
[39] Wang C S, Tang S C, Zhan Q L, Hou Q Q, Zhao Y, Zhao Q, Feng Q, Zhou C C, Lyu D F, Cui L L, Li Y, Miao J S, Zhu C R, Lu Y Q, Wang Y C, Wang Z Q, Zhu J J, Shangguan Y Y, Gong J Y, Yang S H, Wang W Q, Zhang J F, Xie H A, Huang X H, Han B. Dissecting a heterotic gene through Graded Pool-Seq mapping informs a rice-improvement strategy. Nat Commun, 2019, 10: 2982.
doi: 10.1038/s41467-019-11017-y
[1] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[2] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[3] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[4] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[5] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[6] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[7] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[8] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[9] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[10] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
[11] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[12] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[13] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[14] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[15] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .