欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1735-1746.doi: 10.3724/SP.J.1006.2023.22050

• 综述 •    下一篇

水稻株型生理生态与遗传基础研究进展

许娜(), 徐铨*(), 徐正进, 陈温福   

  1. 沈阳农业大学水稻研究所, 辽宁沈阳110866
  • 收稿日期:2022-09-05 接受日期:2023-02-19 出版日期:2023-07-12 网络出版日期:2023-02-24
  • 通讯作者: *徐铨, E-mail: kobexu34@syau.edu.cn
  • 作者简介:E-mail: xuna1109@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(32071982);本研究由国家自然科学基金项目(U1708231);本研究由国家自然科学基金项目(31430062);国家重点研发计划项目(2017YFD0100500)

Research progress on physiological ecology and genetic basis of rice plant architecture

XU Na(), XU Quan*(), XU Zheng-Jin, CHEN Wen-Fu   

  1. Rice Research Institute of Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2022-09-05 Accepted:2023-02-19 Published:2023-07-12 Published online:2023-02-24
  • Contact: *E-mail: kobexu34@syau.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(32071982);The National Natural Science Foundation of China(U1708231);The National Natural Science Foundation of China(31430062);The National Key Research and Development Program of China(2017YFD0100500)

摘要:

株型是水稻重要农艺性状, 与产量、品质及抗逆性有密切关系。株型改良过去曾对水稻育种发挥了重要作用, 未来还将对水稻育种产生深远影响。本文结合沈阳农业大学水稻团队相关工作, 从株型的概念、株型育种研究简要回顾、株型生理生态与遗传基础等方面综合评述了水稻株型研究进展, 还讨论了水稻株型相关领域存在问题与发展方向。充分利用现代分子生物学相关理论与技术最新研究结果, 解析群体与个体、个体器官之间的相互关系及其优化组合模式, 明确生理生态基础及其分子调控网络并付诸株型育种实践, 有望实现更高水平上全方位的水稻“理想株型”。

关键词: 水稻, 株型, 生理生态, 遗传基础

Abstract:

Rice is one of the most important crops in China and even the world. Plant type is an important agronomic trait of rice, which is closely related to yield, quality, and stress resistance. Plant type improvement has played an important role in rice breeding in the past, and will have a profound impact on rice breeding in the future. On the base of related achievements of Rice Research Institute of Shenyang Agricultural University, this paper comprehensively reviewed the research progress of rice plant type from the aspects of the concept of plant type, physiological ecology, and genetic basis of plant type breeding, and also discussed the existing problems and development direction of rice plant type. With the application of the latest research results of modern molecular biology, analyze the relationship between various organs and their optimal combination among population and individual, define the physiological ecology basis and the molecular regulatory network, and apply to plant type breeding practice, which is expected to achieve a higher level of “ideal plant type breeding” of rice.

Key words: rice, plant type, physiological ecology, genetic basis

图1

典型粳稻(A)、典型籼稻(B)和直立穗型粳稻(C)群体生理生态特性比较 图标和箭头大小表示太阳辐射、H2O和CO2扩散强度高低"

图2

典型粳稻穗弯曲诱发的倒伏"

图3

典型籼稻(左)和直立穗型粳稻(右)形态解剖特性"

图4

籼粳稻粒型和穗型与产量和品质的关系"

图5

分蘖夹角、分蘖数和叶片夹角的分子网络示意图"

[1] Engledow F L, Wadham S M. Investigations on yield in the cereals I. J Agric Sci, 1923, 13: 390-439.
doi: 10.1017/S0021859600003828
[2] Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance. Ann Bot, 1938, 2: 811-818.
doi: 10.1093/oxfordjournals.aob.a084036
[3] 门司正三, 佐伯敏郎. 光合作用与作物生产译丛(2). 朱建人译. 北京: 中国农业出版社, 1980. pp 1-24.
Monsi M, Saeki T. Photosynthesis and Crop Production (2). Zhu J R, Trans. Beijing: China Agriculture Press, 1980. pp 1-24. (in Chinese)
[4] 角田重三郎, 高桥成人. 稻的生物学. 闵绍楷等译. 北京: 中国农业出版社, 1989. pp 80-105.
Tsunoda S, Takahashi N. Biology of Rice. Min S K, et al. Trans. Beijing: China Agriculture Press, 1989. pp 80-105. (in Chinese)
[5] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
doi: 10.1007/BF00056241
[6] 松岛省三. 稻作的理论与技术. 庞诚译. 北京: 中国农业出版社, 1979. pp 3-8.
Matsushima S. Theory and Technology of Rice Cultivation. Pang C, Trans. Beijing: Agriculture Press, 1979. pp 3-8. (in Chinese)
[7] 陈温福, 徐正进, 张龙步. 北方粳型超级稻育种的理论与方法. 沈阳农业大学学报, 2005, 36(1): 3-8.
Chen W F, Xu Z J, Zhang L B. Theories and methods of breeding japonica rice for super high yield. J Shenyang Agric Univ, 2005, 36(1): 3-8. (in Chinese with English abstract)
[8] 杨守仁, 张龙步, 王进民. 水稻理想株形育种的理论和方法初论. 中国农业科学, 1984, 17(3): 6-13.
Yang S R, Zhang L B, Wang J M. The theory and method of ideal plant morphology in rice breeding. Sci Agric Sin, 1984, 17(3): 6-13. (in Chinese with English abstract)
[9] 黄耀祥, 林青山. 水稻超高产、特优质株型模式的构想和育种实践. 广东农业科学, 1994, (4): 1-6.
Huang Y X, Lin Q S. Thinking and practice on rice breeding method for high yield and good grain quality. Guangdong Agric Sci, 1994, (4): 1-6. (in Chinese)
[10] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical eice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559.
doi: 10.2135/cropsci1999.3961552x
[11] 李诚, 吴俊, 庄文, 邓启云. 水稻高产育种与形态改良. 杂交水稻, 2013, 28(3): 1-5.
Li C, Wu J, Zhuang W, Deng Q Y. Research progress in rice breeding for high yield through improvement of plant type. Hybrid Rice, 2013, 28(3): 1-5. (in Chinese with English abstract)
[12] Jiang L L, Wu L A, Wang Y, Xu Q, Xu Z J, Chen W F. Research progress on the divergence and genetic basis of agronomic traits in xian and geng rice. Crop J, 2022, 10: 924-931.
doi: 10.1016/j.cj.2022.02.006
[13] 徐正进, 陈温福, 周洪飞, 张龙步, 杨守仁. 直立穗型水稻群体生理生态特性及其利用前景. 科学通报, 1996, 41: 1122-1126.
Xu Z J, Chen W F, Zhou W F, Zhang L B, Yang S R. Characteristics of rice with erect panicle and prospects of their utilization. Chin Sci Bull, 1996, 41: 1122-1126 (in Chinese with English Abstract).
doi: 10.1360/csb1996-41-12-1122
[14] 徐正进, 张树林, 周淑清, 刘丽霞. 水稻穗型与抗倒伏性关系的初步分析. 植物生理学报, 2004, 40: 561-563.
Xu Z J, Zhang S L, Zhou S Q, Liu L X. Primary analysis of relationship between rice panicle type and lodging resistance. Plant Physiol J, 2004, 40: 561-563. (in Chinese with English abstract)
doi: 10.1104/pp.40.3.561
[15] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6.
Yuan L P. Hybrid rice breeding for super high yield. Hybrid Rice, 1997, 12(6): 1-6. (in Chinese with English abstract)
[16] 東正昭. 水稲超多収品種育種の現状と今後の課題. 農業および園芸, 1987, 63: 793-799.
Tadaaki H. Breeding of ultra-high yielding varieties of paddy rice: present status and future problems. Agric Hortic, 1987, 63: 793-799. (in Japanese)
[17] Peng S, Khush G S, Cassman K G. Evolution of the new plant ideotype for increased yield potential. In: CassmanK G,ed. Breaking the Yield Barrier. Philippines: International Rice Research Institute, 1994. pp 5-20.
[18] 陈温福, 徐正进. 水稻超高产育种理论与方法. 北京: 科学出版社, 2008. pp 35-69.
Chen W F, Xu Z J. Theories and Methods of Rice Breeding for Super High Yield. Beijing: Science Press, 2008. pp 35-69. (in Chinese)
[19] 章怡兰, 林雪, 吴仪, 李梦佳, 张晟婕, 路梅, 饶玉春, 王跃星. 水稻根系遗传育种研究进展. 植物学报, 2020, 55: 382-393.
doi: 10.11983/CBB20021
Zhang Y L, Lin X, Wu Y, Li M J, Zhang S J, Lu M, Rao Y C, Wang Y X. Research progress on rice root genetics and breeding. Chin Bull Bot, 2020, 55: 382-393 (in Chinese with English abstract).
[20] 丁兆军, 白洋. 根系发育和微生物组研究现状及未来发展趋势. 中国科学: 生命科学, 2021, 51: 1447-1456.
Ding Z J, Bai Y. The current and future studies on plant root development and root microbiota. Sci Sin (Vitae), 2021, 51: 1447-1456. (in Chinese with English abstract)
[21] 川田信一郎. 水稲の根. 東京: 農山漁村文化協会, 1982. pp 599-609.
Kawada S. Root System of Rice. Tokyo: Rural Culture Association, 1982. pp 599-609. (in Japanese)
[22] Yoshida S, Bhattacharjee D P, Cabuslay G S. Relationship between plant type and root growth in rice. Soil Sci Plant Nutr, 1982, 28: 473-482.
doi: 10.1080/00380768.1982.10432387
[23] 朱德峰, 林贤青, 曹卫星. 水稻深层根系对生长和产量的影响. 中国农业科学, 2001, 34: 429-432.
Zhu D F, Lin X Q, Cao W X. Effects of deep roots on growth and yield in two rice varieties. Sci Agric Sin, 2001, 34: 429-432 (in Chinese with English abstract)
[24] Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J Z, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45: 1097-1102.
doi: 10.1038/ng.2725
[25] Pingali P L. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA, 2012, 109: 12302-12308.
doi: 10.1073/pnas.0912953109 pmid: 22826253
[26] 赵小红, 白羿雄, 姚有华, 安立昆, 吴昆仑. 禾谷类作物茎秆特性与茎倒伏关系的研究. 植物生理学报, 2021, 57: 257-264.
Zhao X H, Bai Y X, Yao Y H, An L K, Wu K L. Research progress on the relationship between stem characteristics and crop stem lodging. Plant Physiol J, 2021, 57: 257-264. (in Chinese with English abstract)
doi: 10.1104/pp.57.2.257
[27] 滕祥勇, 王金明, 李鹏志, 林秀云, 孙强. 水稻抗倒伏性的影响因素及评价方法研究进展. 福建农业学报, 2021, 36: 1245-1254.
Teng X Y, Wang J M, Li P Z, Lin X Y, Sun Q. Advances on studies relating to lodging resistance of rice plant. Fujian J Agric Sci, 2021, 36: 1245-1254. (in Chinese with English abstract)
[28] 方立魁, 桑贤春, 何光华. 水稻分蘖角度遗传机制的研究进展. 分子植物育种, 2008, 6: 935-940.
Fang L K, Sang X C, He G H. Development of mechanism genetics of tiller angle in rice. Mol Plant Breed, 2008, 6: 935-940. (in Chinese with English abstract)
[29] 陈温福, 徐正进, 张龙步, 杨守仁. 水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究. 中国水稻科学, 1990, 4: 163-168.
Chen W F, Xu Z J, Zhang L B, Yang S R. Comparative studies on stomatal density and its relations to gas diffusion resistance and net photosynthetic rate in rice leaf. Chin J Rice Sci, 1990, 4: 163-168. (in Chinese with English abstract)
[30] Khush G S. Prospects and approaches to increasing the genetic yield of rice. In: EvensonR E, HerdtR W, HossainM,eds. Rice Research in Asia:Progress and Priorities. Wallingford: CAB International in Association with the International Rice Research Institute, 1996.
[31] 徐正进, 陈温福, 黄瑞冬, 中崎铁也, 奥本裕, 古坂隆俊. 水稻穗型改良的生理与遗传基础研究进展. 自然科学进展, 2007, 17: 1161-1167.
Xu Z J, Chen W F, Huang R D, Nakazaki T, Okumoto Y, Tanisaka T. Research progress on the physiological and genetic basis of rice panicle type improvement. Prog Nat Sci, 2007, 17: 1161-1167. (in Chinese)
[32] 熊振民, 朱旭东, 孔繁林, 王国梁. 水稻着粒密度的遗传分析. 中国水稻科学, 1987, 1: 101-106.
Xiong Z M, Zhu X D, Kong F L, Wang G L. Genetic analysis of spikelet density on rice. Chin J Rice Sci, 1987, 1: 101-106. (in Chinese with English abstract)
[33] 徐正进, 陈温福. 中国北方粳型超级稻研究进展. 中国农业科学, 2016, 49: 239-250.
doi: 10.3864/j.issn.0578-1752.2016.02.005
Xu Z J, Chen W F. Research progress and related problems on japonica super rice in northern China. Sci Agric Sin, 2016, 49: 239-250. (in Chinese with English abstract)
[34] Fei C, Xu Q, Xu Z J, Chen W F. Effect of rice breeding process on improvement of yield and quality in China. Rice Sci, 2020, 27: 363-367.
doi: 10.1016/j.rsci.2019.12.009
[35] 徐正进, 陈温福, 张树林, 张文忠, 马殿荣, 刘丽霞, 周淑清. 辽宁水稻穗型指数品种间差异及其与产量和品质的关系. 中国农业科学, 2005, 38: 1926-1930.
Xu Z J, Chen W F, Zhang S L, Zhang W Z, Ma D R, Liu L X, Zhou S Q. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Sci Agric Sin, 2005, 38: 1926-1930. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.at-2004-2569
[36] 王丹英, 章秀福, 朱智伟, 陈能, 闵捷, 姚青, 严建立, 廖西元. 食用稻米品质性状间的相关性分析. 作物学报, 2005, 31: 1086-1091.
Wang D Y, Zhang X F, Zhu Z W, Chen N, Min J, Yao Q, Yan J L, Liao X Y. Correlation analysis of rice grain quality characteristics. Acta Agron Sin, 2005, 31: 1086-1091. (in Chinese with English abstract)
[37] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a
[38] Gao H B, Wang W G, Wang Y H, Liang Y. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Mol Breed, 2019, 39: 167.
doi: 10.1007/s11032-019-1076-2
[39] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[40] Song X G, Lu Z F, Yu H, Shao G N, Xiong J S, Meng X B, Jing Y H, Liu G F, Xiong G S, Duan J B, Yao X F, Liu C M, Li H Q, Wang Y H, Li J Y. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res, 2017, 27: 1128-1141.
doi: 10.1038/cr.2017.102
[41] Fang Z M, Ji Y Y, Hu J, Guo R K, Sun S Y, Wang X L. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1expression in rice tillering. Mol Plant, 2020, 13: 586-597.
doi: 10.1016/j.molp.2019.12.005
[42] Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1164.
doi: 10.1038/ng.197 pmid: 18820699
[43] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158
[44] Zhang W F, Tan L B, Sun H Y, Zhao X H, Liu F X, Cai H W, Fu Y C, Sun X Y, Gu P, Zhu Z F, Sun C Q. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol Plant, 2019, 12: 1075-1089.
doi: 10.1016/j.molp.2019.04.005
[45] Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S J, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of Auxin. Plant Cell, 2018, 30: 1461-1475.
doi: 10.1105/tpc.18.00063
[46] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
doi: 10.1038/cr.2007.38
[47] Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17: 2243-2254.
doi: 10.1105/tpc.105.030973 pmid: 15994910
[48] Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24: 105-109.
doi: 10.1038/nbt1173 pmid: 16369540
[49] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
doi: 10.1105/tpc.104.024950
[50] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisudwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[51] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002, 130: 1152-1161.
doi: 10.1104/pp.007179 pmid: 12427982
[52] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591-1606.
doi: 10.1105/tpc.12.9.1591 pmid: 11006334
[53] Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009, 7: 791-806.
doi: 10.1111/pbi.2009.7.issue-8
[54] Zhang C, Xu Y Y, Guo S Y, Zhu J Y, Huan Q, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet, 2012, 8: e1002686.
doi: 10.1371/journal.pgen.1002686
[55] Wang L, Xu Y Y, Zhang C, Ma Q B, Joo S H, Kim S K, Xu Z H, Chong K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PloS One, 2008, 3: e3521.
doi: 10.1371/journal.pone.0003521
[56] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839-13844.
doi: 10.1073/pnas.0706386104
[57] Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 2009, 151: 669-680.
doi: 10.1104/pp.109.140806 pmid: 19648232
[58] Yang C, Shen W J, He Y, Tian Z H, Li J X. OVATE Family protein 8 positively mediates Brassinosteroid signaling through interacting with the GSK3-like Kinase in rice. PLoS Genet, 2016, 12: e1006118.
doi: 10.1371/journal.pgen.1006118
[59] Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara K I, Nagato Y, Itoh J I. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J, 2014, 78: 927-936.
doi: 10.1111/tpj.12517
[60] Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/ OsGH3.13 activation. Plant Physiol, 2009, 151: 1889-1901.
doi: 10.1104/pp.109.146803
[61] Zhao S Q, Xiang J J, Xue H W. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant, 2013, 6: 174-187.
doi: 10.1093/mp/sss064
[62] Song Y L, You J, Xiong L Z. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol, 2009, 70: 297-309.
doi: 10.1007/s11103-009-9474-1
[63] Bian H W, Xie Y K, Guo F, Han N, Ma S Y, Zeng Z H, Wang J H, Yang Y N, Zhu M Y. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol, 2012, 196: 149-161.
doi: 10.1111/nph.2012.196.issue-1
[64] Attia K A, Abdelkhalik A F, Ammar M H, Wei C, Yang J S, Lightfoot D A, El-Sayed W M, El-Shemy H A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol, 2009, 11(S1): i29-34.
[65] Chen S H, Zhou L J, Xu P, Xue H W. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genet, 2018, 14: e1007829.
doi: 10.1371/journal.pgen.1007829
[66] Zhang S N, Wang S K, Xu Y X, Yu C L, Shen C J, Qian Q, Geisler M, Jiang D A, Qi Y H. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ, 2015, 38: 638-654.
doi: 10.1111/pce.2015.38.issue-4
[67] Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006, 48: 390-402.
doi: 10.1111/j.1365-313X.2006.02875.x pmid: 17052323
[68] Ferrero-Serrano Á, Assmann S M. The alpha-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot, 2016, 67: 3433-3443.
doi: 10.1093/jxb/erw183 pmid: 27194741
[69] Wang L, Wang Z, Xu Y Y, Joo S H, Kim S K, Xue Z, Xu Z H, Wang Z Y, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2009, 57: 498-510.
doi: 10.1111/tpj.2009.57.issue-3
[70] Wei L Y, Gu L F, Song X W, Cui X K, Lu Z K, Zhou M, Wang L L, Hu F Y, Zhai J X, Meyers B C, Cao X F. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci USA, 2014, 111: 3877-3882.
doi: 10.1073/pnas.1318131111
[71] Li Q F, Lu J, Zhou Y, Wu F, Tong H N, Wang J D, Yu J W, Zhang C Q, Fan X L, Liu Q Q. Abscisic acid represses rice lamina joint inclination by antagonizing brassinosteroid biosynthesis and signaling. Int J Mol Sci, 2019, 20: 4908.
doi: 10.3390/ijms20194908
[72] Gan L J, Wu H, Wu D P, Zhang Z F, Guo Z F, Yang N, Xia K, Zhou X, Oh K M, Matsuoka M, Ng D, Zhu C H. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci, 2015, 241: 238-245.
doi: 10.1016/j.plantsci.2015.10.012
[73] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[74] Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445: 652-655.
doi: 10.1038/nature05504
[75] Li S Y, Zhao B, R Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA, 2013, 110: 3167-3172.
doi: 10.1073/pnas.1300359110
[76] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545-549.
doi: 10.1038/ng.592
[77] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541-544.
doi: 10.1038/ng.591
[78] Duan E C, Wang Y H, Li X H, Lin Q B, Zhang T, Wang Y P, Zhou C L, Zhang H, Jiang L, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Wan J M. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1in rice. Plant Cell, 2019, 31: 1026-1042.
doi: 10.1105/tpc.19.00023
[79] Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27: 1142-1156.
doi: 10.1038/cr.2017.98
[80] Mao C Z, Ding W N, Wu Y R, Yu J, He X W, Shou H X, Wu P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol, 2007, 176: 288-298.
doi: 10.1111/nph.2007.176.issue-2
[81] Wang L, Ming L C, Liao K Y, Xia C J, Sun S Y, Chang Y, Wang H K, Fu D B, Xu C H, Wang Z J, Li X, Xie W B, Ou-Yang Y D, Zhang Q L, Li X H, Zhang Q H, Xiao J H, Zhang Q F. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Mol Plant, 2021, 14: 1168-1184.
doi: 10.1016/j.molp.2021.04.013 pmid: 33933648
[82] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12: 1090-1102.
doi: 10.1016/j.molp.2019.04.008
[83] Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649-5657.
doi: 10.1242/dev.01441
[84] Chu H W, Qian Q, Liang W Q, Yin C S, Tan H X, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D B. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 2006, 142: 1039-1052.
doi: 10.1104/pp.106.086736
[85] Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130: 3841-3850.
doi: 10.1242/dev.00564 pmid: 12835399
[86] Song S, Wang G F, Hu Y, Liu H Y, Bai X F, Qin R, Xing Y Z. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J Exp Bot, 2018, 69: 4283-4293.
doi: 10.1093/jxb/ery232 pmid: 30124949
[87] Fujita D, Trijatmiko K R, Tagle A G, Sapasap M V, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban R B, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin I H, Ishimaru T, Kobayashi N. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA, 2013, 110: 20431-20436.
doi: 10.1073/pnas.1310790110
[88] Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J Z, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep, 2013, 3: 2149.
doi: 10.1038/srep02149
[89] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016, 12: e1006386.
doi: 10.1371/journal.pgen.1006386
[90] Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R H, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci USA, 2013, 110: 767-772.
doi: 10.1073/pnas.1216151110 pmid: 23267064
[91] Chen H, Tang Y Y, Liu J F, Tan L B, Jiang J H, Wang M M, Zhu Z F, Sun X Y, Sun C Q. Emergence of a novel chimeric gene underlying grain number in rice. Genetics, 2017, 205: 993-1002.
doi: 10.1534/genetics.116.188201 pmid: 27986805
[92] Choi D, Kim J H, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol, 2004, 45: 897-904.
doi: 10.1093/pcp/pch098
[93] Gao F, Wang K, Liu Y, Chen Y P, Chen P, Shi Z Y, Luo J, Jiang D L, Fan F F, Zhu Y G, Li S Q. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants, 2015, 2: 15196.
doi: 10.1038/nplants.2015.196
[94] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
doi: 10.1105/tpc.17.00959
[95] Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shang-Guan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518
[96] Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice. Nat Commun, 2017, 8: 1497.
doi: 10.1038/s41467-017-01501-8
[97] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352
[98] Xu Q, Xu N, Xu H, Tang L, Liu J, Sun J, Wang J Y. Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L. ssp. japonica in early hybrid generations. Mol Breed, 2014, 34: 1933-1942.
doi: 10.1007/s11032-014-0150-z
[99] Xu H, Zhao M H, Zhang Q, Xu Z J, Xu Q. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed Sci, 2016, 66: 659-667.
doi: 10.1270/jsbbs.16120
[100] Cui Y, Jiang N, Xu Z J, Xu Q. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC Plant Biol, 2020, 20: 90.
doi: 10.1186/s12870-020-2289-6 pmid: 32111163
[101] Li F, Liu W B, Tang J Y, Chen J F, Tong H N, Hu B, Li C L, Fang J, Chen M S, Chu C C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res, 2010, 20: 838-849.
doi: 10.1038/cr.2010.69
[102] Qiao Y L, Piao R H, Shi J X, Lee S I, Jiang W Z, Kim B K, Lee J, Han L Z, Ma W B, Koh H J. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet, 2011, 122: 1439-1449.
doi: 10.1007/s00122-011-1543-6
[103] Piao R H, Jiang W Z, Ham T H, Choi M S, Qiao Y L, Chu S H, Park J H, Woo M O, Jin Z X, An G, Lee J, Koh H J. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet, 2009, 119: 1497-1506.
doi: 10.1007/s00122-009-1151-x
[104] Jiang G H, Xiang Y H, Zhao J Y, Yin D D, Zhao X F, Zhu L H, Zhai W X. Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D. Genetics, 2014, 197: 1395-1407.
doi: 10.1534/genetics.114.163931 pmid: 24950892
[105] Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J, 2007, 51: 1030-1040.
doi: 10.1111/j.1365-313X.2007.03200.x
[106] Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA, 1998, 95: 1979-1982.
doi: 10.1073/pnas.95.5.1979 pmid: 9482818
[107] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J, 2009, 58: 592-605.
doi: 10.1111/tpj.2009.58.issue-4
[108] Gao X Q, Chen Z H, Zhang J, Li X W, Chen G X, Li X H, Wu C Y. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta, 2012, 235: 713-727.
doi: 10.1007/s00425-011-1532-7
[109] 徐海, 孙健, 徐铨, 潘国君, 周广春, 张忠旭, 孙玥, 徐正进, 陈温福. 北方粳稻优化穗部性状和籼型血缘改良品质研究进展. 科学通报, 2022, 67: 135-142.
Xu H, Sun J, Xu Q, Pan G J, Zhou G C, Zhang Z X, Sun Y, Xu Z J, Chen W F. Research progress on optimizing panicle characters and quality improvement of indica pedigree in northern japonica rice. Chin Sci Bull, 2022, 67: 135-142. (in Chinese with English abstract)
doi: 10.1360/TB-2021-0946
[110] 游修龄. 中韩出土古稻引发的稻作起源及籼粳分化问题. 农业考古, 2002, (1): 101-103.
You X L. Issues on origin of rice cultivation and differentiation of xian and geng subspecies caused by ancient rice unearthed in China and South Korea. Agric Archaeol, 2002, (1): 101-103. (in Chinese)
[111] 松尾孝嶺. 稻学大成第3卷:遗伝编. 1990. pp 197-198.
Matsuo T M. Great Achievement of Rice Science, Vol. 3: Genetics. 1990. pp 197-198. (in Japanese)
[112] van der Bom F J T, Williams A, Bell M J. Root architecture for improved resource capture: trade-offs in complex environments. J Exp Bot, 2020, 71: 5752-5763.
doi: 10.1093/jxb/eraa324 pmid: 32667996
[113] 李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望. 中国农业科学, 2022, 55: 425-437.
doi: 10.3864/j.issn.0578-1752.2022.03.001
Li L, Li C N, Mao X G, Wang J Y, Jing R L. Advances and perspectives of approaches to phenotyping crop root system. Sci Agric Sin, 2022, 55: 425-437. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.03.001
[114] 兰金松, 庄慧. 水稻株型分子机理研究进展. 中国水稻科学, 2023, [2023-07-09]
Lan J S, Zhuang H. Advances in the molecular mechanism of rice molecular breeding with plant type. Chin J Rice Sci, 2023, [2023-07-09] . (in Chinese with English abstract)
[1] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[2] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[3] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 侯新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[4] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[5] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[6] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[7] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[8] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[9] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[10] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[11] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[12] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[13] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[14] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[15] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .