欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1882-1894.doi: 10.3724/SP.J.1006.2023.24172

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析

王会伟(), 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友*()   

  1. 河南省农业科学院经济作物研究所, 河南郑州 450002
  • 收稿日期:2022-08-01 接受日期:2022-10-10 出版日期:2023-07-12 网络出版日期:2022-10-24
  • 通讯作者: *张新友, E-mail: haasz@126.com
  • 作者简介:E-mail: whuiweiw@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2019YFD1002600);河南省重大科技专项项目(211100110100);河南省农业科学院优秀青年科技基金项目(2022YQ19)

Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress

WANG Hui-Wei(), ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You*()   

  1. Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-08-01 Accepted:2022-10-10 Published:2023-07-12 Published online:2022-10-24
  • Contact: *E-mail: haasz@126.com
  • Supported by:
    The National Key Research and Development Project(2019YFD1002600);The Henan Major Science and Technology Project(211100110100);The Excellent Youth Science and Technology Fund of Henan Academy of Agricultural Sciences(2022YQ19)

摘要:

油莎豆是一种综合利用价值高的新型经济作物, 抗逆性极强, 具有在盐渍化土壤上种植发展的潜力。为明确其耐盐特性, 本研究设置5个NaCl浓度(0、0.3%、0.6%、0.9%和1.2%), 分析了NaCl胁迫对油莎豆茎豆萌发和幼苗生长过程中形态和生理指标的影响。结果表明, 在0.3%和0.6% NaCl胁迫下, 茎豆发芽率、幼苗根长和苗高受影响程度较小; 根系中膜受损程度指标物丙二醛(MDA)和氧化胁迫物过氧化氢(H2O2)的含量增加不显著, 而渗透调节物甜菜碱(GB)、脯氨酸(Pro)的含量和抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性显著提高, 整体上受到的盐胁迫伤害较小。而在0.9%和1.2% NaCl胁迫下, 盐胁迫伤害十分明显, 茎豆萌发和幼苗生长受到严重的抑制。为进一步鉴定油莎豆耐盐相关基因, 利用RNA-seq技术检测了0、0.3%和0.6% NaCl胁迫下油莎豆根系的基因表达情况。通过基因差异表达分析、加权基因共表达网络分析(WGCNA)以及GO富集分析发现, 24个主要与氧化还原、跨膜转运、几丁质水解相关的GO terms显著富集, 涉及了15个显著上调表达基因。其中, DN23985_c0_g1DN2960_c0_g1DN8384_c1_g1分别编码玉米黄质环氧酶、L-抗坏血酸过氧化物酶、谷胱甘肽转移酶, 具有抗氧化作用, 参与抗氧化调节; DN21785_c1_g1DN6596_c0_g1二者均编码氨基酸转运蛋白, 可能通过积累氨基酸类小分子(如Pro)而增强渗透调节; DN14393_c0_g1编码几丁质酶, 能够水解几丁质而促进植物应对胁迫响应。本研究明确了油莎豆在0.6%及以下浓度NaCl胁迫时具有较好的耐盐性, 并进一步筛选出耐盐相关基因, 为油莎豆在盐渍化土壤的种植和耐盐品种的培育提供了重要的参考。

关键词: 油莎豆, 耐盐性, NaCl胁迫, 转录组学, 耐盐相关基因

Abstract:

Cyperus esculentus is a new industrial crop with the high comprehensive utilization value, which is a strongly resistant to stresses and has a great potential to grow in saline soil. In order to clarify its salt tolerance, five NaCl concentrations (0, 0.3%, 0.6%, 0.9%, and 1.2%) were set in this study to analyze the effects of NaCl stress on morphological and physiological indexes during germination and seedling growth. The results showed that the germination percentage, root length, and seedling height were less affected under 0.3% and 0.6% NaCl stresses. Meanwhile, the contents of indicator of membrane damage degree, malondialdehyde (MDA), and oxidative stress substance, hydrogen peroxide (H2O2), did not increase significantly. However, the contents of osmoregulation substances [glycine betaine (GB), and proline (Pro)] and the activities of antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] were significantly increased, and the damage of salt stress was less on the whole. However, under 0.9% and 1.2% NaCl stresses, the salt stress injury was very obvious and the germination and seedling growth of Cyperus esculentus were severely inhibited. In order to further identify the genes related to salt tolerance, RNA-seq technology was used to detect the gene expression in roots under 0, 0.3%, and 0.6% NaCl stresses. 24 GO terms mainly related to oxidoreduction, transmembrane transport, chitin hydrolysis was significantly enriched, among which 15 significantly up-regulated genes were involved, through gene differential expression analysis, weighted gene co-expression network analysis (WGCNA), and GO enrichment analysis. Among them, DN23985_c0_g1, DN2960_c0_g1, and DN8384_c1_g1 encoded zeaxanthin epoxidase, L-ascorbate peroxidase, and glutathione S-transferase, respectively, which had antioxidant effects and participated in antioxidant regulation. Both DN21785_c1_g1 and DN6596_c0_g1 encoded amino acid transporters, which may enhance osmoregulation by accumulating small amino acid molecules such as Pro. DN14393_c0_g1 encoded chitinase, which hydrolyzed chitin and promoted plant response to stress. In this study, it was confirmed that Cyperus esculentus had a good salt tolerance under 0.6% or less NaCl stress, and the salt-tolerance related genes were further screened out, which provided an important reference for the cultivation in saline soil and the breeding of salt-tolerant varieties.

Key words: Cyperus esculentus, salt tolerance, NaCl stress, transcriptomics, salt-tolerance related gene

图1

不同浓度NaCl胁迫对油莎豆茎豆萌发的影响 A: 不同浓度NaCl胁迫下油莎豆茎豆的萌发形态。B: 不同浓度NaCl胁迫下油莎豆茎豆的发芽率及耐盐指数。标尺为2 cm。YYS2: 豫油莎2号; YYS3: 豫油莎3号。"

图2

不同浓度NaCl胁迫对油莎豆幼苗生长的影响 A: 不同浓度NaCl胁迫下YYS2幼苗生长特征。B: 不同浓度NaCl胁迫下YYS3幼苗生长特征。标尺为5 cm。YYS2: 豫油莎2号; YYS3: 豫油莎3号。"

表1

NaCl胁迫对两个油莎豆品种幼苗苗高和根长的影响"

NaCl胁迫处理
NaCl stress treatment
苗高Seedling height (cm) 根长Root length (cm)
豫油莎2号
Yuyousha 2
豫油莎3号
Yuyousha 3
豫油莎2号
Yuyousha 2
豫油莎3号
Yuyousha 3
0 (CK) 18.00 ± 1.16 a 15.75 ± 1.25 a 16.56 ± 1.37 a 19.28 ± 1.68 a
0.3% 15.26 ± 1.08 b 13.53 ± 1.17 b 14.16 ± 1.12 b 17.54 ± 1.34 b
0.6% 14.65 ± 0.96 b 13.56 ± 0.85 b 13.53 ± 1.03 c 14.56 ± 1.23 c
0.9% 12.92 ± 1.12 c 11.50 ± 1.23 c 12.85 ± 0.93 d 13.26 ± 1.08 c
1.2% 10.93 ± 0.84 d 9.75 ± 0.99 d 8.92 ± 0.78 e 9.58 ± 0.93 d

图3

不同浓度NaCl胁迫下油莎豆幼苗根系生理指标变化 *表示指标在YYS2和YYS3之间存在显著差异(P < 0.05)。YYS2: 豫油莎2号; YYS3: 豫油莎3号。"

表3

转录组测序数据统计分析"

处理
Treatment
测序总读数
Total reads number
质控后读数
Clean reads number
比对率
Mapped ratio (%)
Q20碱基百分比
Q20
(%)
Q30碱基百分比
Q30
(%)
非冗余基因数
Unigene
number
CK-1 46,067,738 42,556,954 92.37 97.55 93.77 30,191
CK-2 42,308,034 39,254,802 92.78 97.71 94.06
CK-3 50,830,434 47,129,824 92.71 97.59 93.79
0.3%-1 57,271,072 53,011,182 92.56 97.70 93.93
0.3%-2 43,325,228 40,182,946 92.74 97.76 94.00
0.3%-3 52,217,758 48,377,604 92.64 97.48 93.43
0.6%-1 43,209,368 40,018,352 92.61 97.59 93.73
0.6%-2 46,496,392 43,155,836 92.81 97.52 93.58
0.6%-3 41,707,820 38,775,376 92.96 97.39 93.37

图4

重复样品间基因表达量的相关性分析 红框表示同一处理下的3个重复。"

图5

不同浓度NaCl胁迫下基因差异表达分析 A: 不同处理组(0.3% vs CK和0.6% vs CK)差异表达基因数目; B: 不同处理组间差异表达基因的维恩分析。"

图6

耐盐相关基因的筛选 A: 基于超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化物酶(CAT)、甜菜碱(GB)和脯氨酸(Pro)的WGCNA。每行代表一个模块, 每列代表一种性状; 矩形框中上方数字代表模块与性状之间的相关系数, 括号内数字为相应的P值。B: 不同处理间共有的差异表达基因和耐盐相关的黄色模块基因之间的维恩分析。"

图7

耐盐相关基因的GO富集分析 A: 基于MF的GO富集气泡图。B: 显著富集GO terms中所有基因的表达分析及功能注释。"

[1] Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66-71.
doi: 10.1016/s1360-1385(00)01838-0 pmid: 11173290
[2] Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 2015, 22: 123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642
[3] 姚荣江, 杨劲松, 刘广明. 东北地区盐碱土特征及其农业生物治理. 土壤, 2006, 38: 256-262.
Yao S J, Yang J S, Liu G M. Characteristics and agro-biological management of saline-alkalized land in Northeast China. Soils, 2006, 38: 256-262. (in Chinese with English abstract)
[4] 俞仁培, 陈德明. 我国盐渍土资源及其开发利用. 土壤通报, 1999, 30: 158-159.
Yu R P, Chen D M. The development and utilization of saline soil resources. Chin J Soil Sci, 1999, 30: 158-159. (in Chinese with English abstract)
[5] 张英虎, 沈会权, 周春霖, 栾海业, 臧慧, 乔海龙, 陈健, 陶红, 陈和. 大麦种质资源株高和耐盐性分析. 江苏农业科学, 2018, 46(19): 56-58.
Zhang Y H, Shen H Q, Zhou C S, Luan H Y, Zang H, Qiao H L, Chen J, Tao H, Chen H. Analysis on plant height and salt tolerance of barley germplasm resources. Jiangsu Agric Sci, 2018, 46(19): 56-58. (in Chinese with English abstract)
[6] 杨帆, 朱文学. 油莎豆研究现状及展望. 粮食与油脂, 2020, 33(7): 4-6.
Yang F, Zhu W X. Research status and prospect of Cyperus esculentus. Grains Oils, 2020, 33(7): 4-6.. (in Chinese with English abstract)
[7] 王瑞元, 王晓松, 相海. 一种多用途的新兴油料作物——油莎豆. 中国油脂, 2019, 44(1): 1-4.
Wang R Y, Wang X S, Xiang H. A new multiuse oil crops—Cyperus esculentus. China Oils Fats, 2019, 44(1): 1-4. (in Chinese)
[8] 刘玉兰, 王小宁, 舒垚, 马宇翔. 不同产地油莎豆性状及组成分析研究. 中国油脂, 2020, 45(8): 125-129.
Liu Y L, Wang X N, Shu Y, Ma Y X. Character and composition of Cyperus esculentus from different origins. China Oils Fats, 2020, 45(8): 125-129. (in Chinese with English abstract)
[9] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5
[10] 张相锋, 杨晓绒, 焦子伟. 植物耐盐性评价研究进展及评价策略. 生物学杂志, 2018, 35(6): 91-94.
Zhang X F, Yang X R, Jiao Z W. Research progress of salt tolerance evaluation in plants and tolerance evaluation strategy. J Biol, 2018, 35(6): 91-94. (in Chinese with English abstract)
[11] 徐涵, 郭容芳, 张玉苗, 李蓉, 肖学宸, 曹子谊, 王姗姗, 张可轩, 陈晓慧, 陈晓东, 陈裕坤, 叶炜, 叶开温, 林玉玲, 赖钟雄. 植物耐盐性: 演化和盐基因组学. 热带作物学报, 2020, 41: 1979-1989.
Xu H, Guo R F, Zhang Y M, Li R, Xiao X C, Cao Z Y, Wang S S, Zhang K X, Chen X H, Chen X D, Chen Y K, Ye W, Ye K W, Lin Y L, Lai Z X. Plant halotolerance: evolution and halogenomics. Chin J Trop Crops, 2020, 41: 1979-1989. (in Chinese with English abstract)
[12] 张晓婷, 王雪松, 贾文飞, 徐振彪, 王颖, 吴林. 植物在盐处理下的研究进展. 北方园艺, 2021, (6): 137-143.
Zhang X T, Wang X S, Jia W F, Xu Z B, Wang Y, Wu L. Research progress of plants under salt treatment. Northern Hortic, 2021, (6): 137-143. (in Chinese with English abstract)
[13] Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 2014: 701596-701614.
[14] Zhao C, Zhang H, Song C, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation, 2020, 1: 100017.
[15] Yousefirad S, Soltanloo H, Ramezanpour S S, Nezhad K Z, Shariati V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS One, 2020, 15: e0229513.
[16] Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001
[17] Yong H Y, Zou Z W, Kok E P, Kwan B H, Chow K, Nasu S, Nanzyo M, Kitashiba H, Nishio T. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int, 2014, 2014: 467395.
[18] Shen X Y, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol, 2014, 86: 303-317.
doi: 10.1007/s11103-014-0230-9
[19] Barbieri G, Stefanello R, Menegaes J, Munareto J, Nunes U. Seed germination and initial growth of quinoa seedlings under water and salt stress. J Agric Sci, 2019, 11(15): 153.
doi: 10.1002/(ISSN)1097-0010
[20] 申吴燕, 吐尔逊娜依·热依木, 雪热提江·麦提努日, 邓婷婷, 黄长福, 王梦, 马伊王利, 麻浩. 12种植物萌发期耐盐性筛选. 新疆农业科学, 2020, 57: 1912-1920.
doi: 10.6048/j.issn.1001-4330.2020.10.017
Shen W Y, Tuerxunnayi R, Xueretijiang M, Deng T T, Huang C F, Wang M, Ma Y L, Ma H. Selection of salt tolerance of 12 forage species in Xinjiang during germination period. Xinjiang Agric Sci, 2020, 57: 1912-1920. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2020.10.017
[21] 郝雪峰, 高惠仙, 燕平梅, 李晓春, 李珊珊. 盐胁迫对大豆种子萌发及生理的影响. 湖北农业科学, 2013, 52: 1263-1266.
Hao X F, Gao H X, Yan P M, Li X C, Li S S. Effects of salt stress on seed germination and physiology of soybean. Hubei Agric Sci, 2013, 52: 1263-1266. (in Chinese with English abstract)
[22] 张相锋, 杨晓绒, 焦子伟. 植物耐盐性评价研究进展及评价策略. 生物学杂志, 2018, 5(6): 91-94.
Zhang X F, Yang X R, Jiao Z W. Advances and strategies of salt tolerance evaluation in plants. J Biol, 2018, 5(6): 91-94. (in Chinese with English abstract)
[23] 付恩光, 刘宏伟, 马震, 郭旭. 山东寿光北部地区土壤盐渍化特征与现状评价. 地质调查与研究, 2016, 39: 300-304.
Fu E G, Liu H W, Ma Z, Guo X. Characteristics and status assessment of soil salinization in the northern Shouguang area, Shandong province. Geol Surv Res, 2016, 39: 300-304. (in Chinese with English abstract)
[24] 张俊华, 贾萍萍, 孙媛, 贾科利. 基于高光谱特征的盐渍化土壤不同土层盐分离子含量预测. 农业工程学报, 2019, 35(12): 106-115.
Zhang J H, Jia P P, Sun Y, Jia K L. Prediction of salinity ion content in different soil layers based on hyperspectral data. Trans CSAE, 2019, 35(12):106-115. (in Chinese with English abstract)
[25] 高宗军, 任晓辉, 安永会, 吴玺, 赫明浩, 刘久潭. 黑河中游明花乡北部盐渍化地区土壤盐分特征分析. 北方园艺, 2020, (21): 71-79.
Gao Z J, Ren X H, An Y H, Wu X, He M H, Liu J T. Analysis of soil salinity characteristics in salinized areas of northern Minghua township in the middle reaches of Heihe River. Northern Hortic, 2020, (21): 71-79. (in Chinese with English abstract)
[26] 唐晓倩, 刘广全. NaCl胁迫对圆柏幼苗生长和离子吸收及分配的影响. 西北植物学报, 2017, 37: 1372-1380.
Tang X Q, Liu G Q. Effects of NaCl stress on the growth, ion absorption and distribution of Juniperus chinensis seedlings. Acta Bot Boreali-Occident Sin, 2017, 37: 1372-1380. (in Chinese with English abstract)
[27] 王亦菲, 杜志钊, 马运涛, 许建华, 余飞宇, 陆瑞菊, 刘成洪, 陈志伟. NaCl预处理对糯玉米发芽期耐盐性的影响. 上海农业学报, 2020, 36(3): 20-24.
Wang Y F, Du Z Z, Ma Y T, Xu J H, Yu F Y, Lu R J, Liu C H, Chen Z W. Effects of seed pretreatments with different NaCl concentrations on salt tolerance in two waxy maize varieties under different salt stresses at germination stage. Acta Agric Shanghai, 2020, 36(3): 20-24. (in Chinese with English abstract)
[28] 杨春葆, 原红军. NaCl胁迫西藏青稞芽期幼苗根系生长特性及其耐盐性分析. 广东农业科学, 2021, 48(2): 26-32.
Yang C B, Yuan H J. Analysis of root growth characteristics and salt resistance of Tibetan highland barley at bud stage under NaCl stress. Guangdong Agric Sci, 2021, 48(2): 26-32. (in Chinese with English abstract)
[29] 陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报(自然科学版), 2011, 24(3): 47-50.
Chen M, Li H Y, Lyu F T. Research advances in mechanisms of plant salinity tolerance. J Liaocheng Univ (Nat Sci Edn), 2011, 24(3): 47-50. (in Chinese with English abstract)
[30] 邵桂花. 大豆种质资源耐盐性田间鉴定方法. 作物杂志, 1986, (3): 36-37.
Shao G H. Field identification method for salt tolerance of soybean germplasm resources. Crops, 1986, (3): 36-37. (in Chinese with English abstract)
[31] 姚佳, 刘信宝, 郭米山, 王晓彤, 曹冲, 李志华. 不同浓度NaCl胁迫对扁蓿豆苗期生长及生理指标的影响. 草地学报, 2014, 22: 564-571.
doi: 10.11733/j.issn.1007-0435.2014.03.019
Yao J, Liu X B, Guo M S, Wang X T, Cao C, Li Z H. Effects of different NaCl concentrations on the growth and physiological indexes of Melilotoides ruthenica seedlings. Acta Agrest Sin, 2014, 22: 564-571. (in Chinese with English abstract)
[32] 周璐璐, 伏兵哲, 许冬梅, 陈丽萍, 吴小娟, 高雪芹. 盐胁迫对沙芦草萌发特性影响及耐盐性评价. 草业科学, 2015, 32: 1252-1259.
Zhou L L, Fu B Z, Xu D M, Chen L P, Wu X J, Gao X Q. Effects of salt stress on germination characteristics of Agropyron mongolicum and salt-tolerance evaluation. Pratacult Sci, 2015, 32: 1252-1259. (in Chinese with English abstract)
[33] 杨宏伟, 刘文瑜, 沈宝云, 李朝周. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017, 26(8): 146-153.
doi: 10.11686/cyxb2016394
Yang X W, Liu W Y, Shen B Y, Li C Z. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress. Acta Pratacult Sin, 2017, 26(8): 146-153. (in Chinese with English abstract)
[34] 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805-814.
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805-814. (in Chinese with English abstract)
[35] 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展. 内蒙古民族大学学报(自然科学版), 2014, 29: 315-318.
Meng F H, Wang C, Xu S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance. J Inner Mongolia Univ Nationalities (Nat Sci Edn), 2014, 29: 315-318. (in Chinese with English abstract)
[36] 王聪, 朱月林, 杨立飞, 杨恒山. NaCl胁迫对菜用大豆种子膨大过程中抗氧化系统及渗透调节物质的影响. 西北植物学报, 2012, 32: 297-305.
Wang C, Zhu Y L, Yang L F, Yang H S. Effects of NaCl stress on antioxidant system and osmotic regulation substances during seed filling period. Acta Bot Boreali-Occident Sin, 2012, 32: 297-305. (in Chinese with English abstract)
[37] 任丽丽, 任春明, 赵自国. 植物耐盐性研究进展. 山西农业科学, 2010, 38(5): 87-90.
Ren L L, Ren C M, Zhao Z G. Research advances in plant salt-tolerance. J Shanxi Agric Sci, 2010, 38(5): 87-90. (in Chinese with English abstract)
[38] 宋丹, 张华新, 耿来林, 刘涛, 白淑兰. 植物耐盐种质资源评价及耐盐生理研究进展. 世界林业研究, 2006, 19(3): 27-32.
Song D, Zhang H X, Geng L L, Liu T, Bai S L. Advances in assessment of salt tolerance and physiological mechanism in plants. World For Res, 2006, 19(3): 27-32. (in Chinese with English abstract)
[39] Qi W C, Zhang L, Xu H B, Wang L, Jiao Z. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochem Biophys Res Commun, 2014, 450: 1010-1015.
doi: 10.1016/j.bbrc.2014.06.086
[40] 王军, 李筠, 王龙, 任立凯, 刘耀鸿, 迟铭, 浦汉春. 不同基因型小麦品种(系)耐盐性筛选. 江苏农业科学, 2009, (3): 77-79.
Wang J, Li Y, Wang L, Ren L K, Liu Y H, Chi M, Pu H C. Screening of salt tolerance of wheat varieties (lines) of different genotypes. Jiangsu Agric Sci, 2009, (3): 77-79. (in Chinese with English abstract)
[41] 辛承松, 罗振, 孔祥强, 王江伟. 不同基因型陆地棉亲本及其杂交后代的耐盐性差异. 棉花学报, 2011, 23: 235-240.
Xin C S, Luo Z, Kong X Q, Wang J W. Salt tolerant variation among parents of different genotype upland cotton and their hybrids. Cotton Sci, 2011, 23: 235-240. (in Chinese with English abstract)
[42] Shi Y L, Zhang R, Wu X P, Meng Z G, Guo S D. Cloning and characterization of a somatic embryogenesis receptor-like kinase gene in cotton (Gossypium hirsutum). J Integr Agric, 2012, 11: 898-909.
doi: 10.1016/S2095-3119(12)60080-X
[43] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 41: 437-448.
[44] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报, 2022, 48: 1583-1611.
doi: 10.3724/SP.J.1006.2022.14121
Li P T, Zhao Z L, Huang C H, Huang G Q, Xu L N, Deng Z H, Zhang Y, Zhao X W. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA. Acta Agron Sin, 2022, 48: 1583-1600. (in Chinese with English abstract)
[45] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因. 作物学报, 2022, 48: 1645-1657.
doi: 10.3724/SP.J.1006.2022.14107
Han S, Huo Y Q, Li H, Han H R, Hou S Y, Sun Z X, Han Y H, Li H Y. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet. Acta Agron Sin, 2022, 48: 1645-1657. (in Chinese with English abstract)
[46] 金伊楠, 许自成, 张环纬, 王发展, 陈思昂, 熊亚南, 魏烁果. 烟草盐胁迫与耐盐相关基因的研究进展. 中国烟草学报, 2018, 24(6): 112-118.
Jin Y N, Xu Z C, Zhang H W, Wang F Z, Chen S A, Xiong Y N, Wei S G. Research progress on salt stress of and salt-resistance-related genes in tobacco. Acta Tabac Sin, 2018, 24(6): 112-118. (in Chinese with English abstract)
[47] 郑崇珂, 窦玉慧, 解丽霞, 谢先芝. 水稻耐盐相关基因的研究进展. 分子植物育种, 2017, 15: 4411-4422.
Zheng C K, Dou Y H, Xie L X, Xie X Z. Research progress on the genes related to salt tolerance in rice. Mol Plant Breed, 2017, 15: 4411-4422. (in Chinese with English abstract)
[48] 赖伟, 何鹏, 徐明远, 陈梁海, 刘世强, 杨寅桂. 黄瓜耐盐性与耐盐相关基因的研究进展. 中国蔬菜, 2020, (6): 16-22.
Lai W, He P, Xu M Y, Chen L H, Liu S Q, Yang Y G. Research progress on cucumber salt tolerance and salt tolerance related genes. China Vegetables, 2020, (6): 16-22. (in Chinese with English abstract)
[49] 张秋玉. 盐胁迫下番茄玉米黄质环氧化酶基因与光保护关系的研究. 山东农业大学硕士学位论文, 山东泰安, 2012.
Zhang Q Y. Analysis of the Relationship between LeZE and Photoprotection under Salt Stress. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2012. (in Chinese with English abstract)
[50] 孙卫红, 李风, 束德峰, 董新纯, 杨秀梅, 孟庆伟. 转番茄正义抗坏血酸过氧化物酶基因提高烟草耐盐能力. 中国农业科学, 2009, 42: 1165-1171.
Sun W H, Li F, Shu D F, Dong X C, Yang X M, Meng Q W. Tobacco plants transformed with tomato sense LetAPX enhanced salt tolerance. Sci Agric Sin, 2009, 42: 1165-1171. (in Chinese with English abstract)
[51] 戚元成, 张慧, 赵彦修. 植物谷胱甘肽转移酶和盐胁迫. 山东师范大学学报(自然科学版), 2002, (2): 71-75.
Qi Y C, Zhang H, Zhao Y X. Plant glutathione S-transferases and salt stress. J Shandong Norm Univ (Nat Sci Edn), 2002, (2): 71-75. (in Chinese with English abstract)
[52] 杨晓慧, 蒋卫杰, 魏珉, 余宏军. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报(自然科学版), 2006, (2): 302-305.
Yang X H, Jiang W J, Wei M, Yu H J. Review on plant response and resistance mechanism to salt stress. J Shandong Agric Univ (Nat Sci Edn), 2006, (2): 302-305. (in Chinese with English abstract)
[53] Deinlein U, Stephan A B, Horie T, Luo W, Xu G, Schroeder J I. Plant salt-tolerance mechanisms. Trends Plant Sci, 2014, 19: 371-379.
doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845
[54] 王志英, 张福丽, 王占斌. 小黑杨转几丁质酶基因及酶活性. 林业科学, 2010, 46(2): 147-151.
Wang Z Y, Zhang F L, Wang Z B. Transformation of chitinase gene into Populus simonii × P. nigra and chitinase activity of transgenic plants. Sci Silvae Sin, 2010, 46(2): 147-151. (in Chinese with English abstract)
[55] 周桦楠, 孙思凡, 杨颖慧, 聂楠, 何绍贞, 刘庆昌, 翟红. 甘薯几丁质酶基因IbChi的克隆及其耐盐性分析. 分子植物育种, 2022, 20: 2812-2820.
Zhou H N, Sun S F, Yang Y H, Nie N, He S Z, Liu Q C, Zhai H. Cloning and salt tolerance analysis of chitinase gene IbChi from sweet-potato. Mol Plant Breed, 2022, 20: 2812-2820. (in Chinese with English abstract)
[56] 周洁, 黄婧. 柳树几丁质酶基因SlChi的克隆和功能验证. 分子植物育种, 2018, 16: 8013-8021.
Zhou J, Huang J. Cloning and functional identification of chitinase gene SlChi in Salix. Mol Plant Breed, 2018, 16: 8013-8021. (in Chinese with English abstract)
[1] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[2] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[3] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[6] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[7] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[8] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358.
[9] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[10] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[11] 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8.
[12] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[13] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[14] 彭振,何守朴,龚文芳,潘兆娥,贾银华,卢艳丽,杜雄明. 陆地棉幼苗NaCl胁迫下转录因子表达的转录组学分析[J]. 作物学报, 2017, 43(03): 354-370.
[15] 王润青,樊晓聪,宋梅芳,肖阳,郭林,孟凡华,杨青华,吴大付,杨建平. 小麦DELLA获得性突变体矮变1号增强了幼苗的抗盐能力[J]. 作物学报, 2016, 42(11): 1721-1726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .