作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1882-1894.doi: 10.3724/SP.J.1006.2023.24172
王会伟(), 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友*()
WANG Hui-Wei(), ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You*()
摘要:
油莎豆是一种综合利用价值高的新型经济作物, 抗逆性极强, 具有在盐渍化土壤上种植发展的潜力。为明确其耐盐特性, 本研究设置5个NaCl浓度(0、0.3%、0.6%、0.9%和1.2%), 分析了NaCl胁迫对油莎豆茎豆萌发和幼苗生长过程中形态和生理指标的影响。结果表明, 在0.3%和0.6% NaCl胁迫下, 茎豆发芽率、幼苗根长和苗高受影响程度较小; 根系中膜受损程度指标物丙二醛(MDA)和氧化胁迫物过氧化氢(H2O2)的含量增加不显著, 而渗透调节物甜菜碱(GB)、脯氨酸(Pro)的含量和抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性显著提高, 整体上受到的盐胁迫伤害较小。而在0.9%和1.2% NaCl胁迫下, 盐胁迫伤害十分明显, 茎豆萌发和幼苗生长受到严重的抑制。为进一步鉴定油莎豆耐盐相关基因, 利用RNA-seq技术检测了0、0.3%和0.6% NaCl胁迫下油莎豆根系的基因表达情况。通过基因差异表达分析、加权基因共表达网络分析(WGCNA)以及GO富集分析发现, 24个主要与氧化还原、跨膜转运、几丁质水解相关的GO terms显著富集, 涉及了15个显著上调表达基因。其中, DN23985_c0_g1、DN2960_c0_g1、DN8384_c1_g1分别编码玉米黄质环氧酶、L-抗坏血酸过氧化物酶、谷胱甘肽转移酶, 具有抗氧化作用, 参与抗氧化调节; DN21785_c1_g1和DN6596_c0_g1二者均编码氨基酸转运蛋白, 可能通过积累氨基酸类小分子(如Pro)而增强渗透调节; DN14393_c0_g1编码几丁质酶, 能够水解几丁质而促进植物应对胁迫响应。本研究明确了油莎豆在0.6%及以下浓度NaCl胁迫时具有较好的耐盐性, 并进一步筛选出耐盐相关基因, 为油莎豆在盐渍化土壤的种植和耐盐品种的培育提供了重要的参考。
[1] |
Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66-71.
doi: 10.1016/s1360-1385(00)01838-0 pmid: 11173290 |
[2] |
Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 2015, 22: 123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642 |
[3] | 姚荣江, 杨劲松, 刘广明. 东北地区盐碱土特征及其农业生物治理. 土壤, 2006, 38: 256-262. |
Yao S J, Yang J S, Liu G M. Characteristics and agro-biological management of saline-alkalized land in Northeast China. Soils, 2006, 38: 256-262. (in Chinese with English abstract) | |
[4] | 俞仁培, 陈德明. 我国盐渍土资源及其开发利用. 土壤通报, 1999, 30: 158-159. |
Yu R P, Chen D M. The development and utilization of saline soil resources. Chin J Soil Sci, 1999, 30: 158-159. (in Chinese with English abstract) | |
[5] | 张英虎, 沈会权, 周春霖, 栾海业, 臧慧, 乔海龙, 陈健, 陶红, 陈和. 大麦种质资源株高和耐盐性分析. 江苏农业科学, 2018, 46(19): 56-58. |
Zhang Y H, Shen H Q, Zhou C S, Luan H Y, Zang H, Qiao H L, Chen J, Tao H, Chen H. Analysis on plant height and salt tolerance of barley germplasm resources. Jiangsu Agric Sci, 2018, 46(19): 56-58. (in Chinese with English abstract) | |
[6] | 杨帆, 朱文学. 油莎豆研究现状及展望. 粮食与油脂, 2020, 33(7): 4-6. |
Yang F, Zhu W X. Research status and prospect of Cyperus esculentus. Grains Oils, 2020, 33(7): 4-6.. (in Chinese with English abstract) | |
[7] | 王瑞元, 王晓松, 相海. 一种多用途的新兴油料作物——油莎豆. 中国油脂, 2019, 44(1): 1-4. |
Wang R Y, Wang X S, Xiang H. A new multiuse oil crops—Cyperus esculentus. China Oils Fats, 2019, 44(1): 1-4. (in Chinese) | |
[8] | 刘玉兰, 王小宁, 舒垚, 马宇翔. 不同产地油莎豆性状及组成分析研究. 中国油脂, 2020, 45(8): 125-129. |
Liu Y L, Wang X N, Shu Y, Ma Y X. Character and composition of Cyperus esculentus from different origins. China Oils Fats, 2020, 45(8): 125-129. (in Chinese with English abstract) | |
[9] |
Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5 |
[10] | 张相锋, 杨晓绒, 焦子伟. 植物耐盐性评价研究进展及评价策略. 生物学杂志, 2018, 35(6): 91-94. |
Zhang X F, Yang X R, Jiao Z W. Research progress of salt tolerance evaluation in plants and tolerance evaluation strategy. J Biol, 2018, 35(6): 91-94. (in Chinese with English abstract) | |
[11] | 徐涵, 郭容芳, 张玉苗, 李蓉, 肖学宸, 曹子谊, 王姗姗, 张可轩, 陈晓慧, 陈晓东, 陈裕坤, 叶炜, 叶开温, 林玉玲, 赖钟雄. 植物耐盐性: 演化和盐基因组学. 热带作物学报, 2020, 41: 1979-1989. |
Xu H, Guo R F, Zhang Y M, Li R, Xiao X C, Cao Z Y, Wang S S, Zhang K X, Chen X H, Chen X D, Chen Y K, Ye W, Ye K W, Lin Y L, Lai Z X. Plant halotolerance: evolution and halogenomics. Chin J Trop Crops, 2020, 41: 1979-1989. (in Chinese with English abstract) | |
[12] | 张晓婷, 王雪松, 贾文飞, 徐振彪, 王颖, 吴林. 植物在盐处理下的研究进展. 北方园艺, 2021, (6): 137-143. |
Zhang X T, Wang X S, Jia W F, Xu Z B, Wang Y, Wu L. Research progress of plants under salt treatment. Northern Hortic, 2021, (6): 137-143. (in Chinese with English abstract) | |
[13] | Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 2014: 701596-701614. |
[14] | Zhao C, Zhang H, Song C, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation, 2020, 1: 100017. |
[15] | Yousefirad S, Soltanloo H, Ramezanpour S S, Nezhad K Z, Shariati V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS One, 2020, 15: e0229513. |
[16] |
Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001 |
[17] | Yong H Y, Zou Z W, Kok E P, Kwan B H, Chow K, Nasu S, Nanzyo M, Kitashiba H, Nishio T. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int, 2014, 2014: 467395. |
[18] |
Shen X Y, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol, 2014, 86: 303-317.
doi: 10.1007/s11103-014-0230-9 |
[19] |
Barbieri G, Stefanello R, Menegaes J, Munareto J, Nunes U. Seed germination and initial growth of quinoa seedlings under water and salt stress. J Agric Sci, 2019, 11(15): 153.
doi: 10.1002/(ISSN)1097-0010 |
[20] |
申吴燕, 吐尔逊娜依·热依木, 雪热提江·麦提努日, 邓婷婷, 黄长福, 王梦, 马伊王利, 麻浩. 12种植物萌发期耐盐性筛选. 新疆农业科学, 2020, 57: 1912-1920.
doi: 10.6048/j.issn.1001-4330.2020.10.017 |
Shen W Y, Tuerxunnayi R, Xueretijiang M, Deng T T, Huang C F, Wang M, Ma Y L, Ma H. Selection of salt tolerance of 12 forage species in Xinjiang during germination period. Xinjiang Agric Sci, 2020, 57: 1912-1920. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2020.10.017 |
|
[21] | 郝雪峰, 高惠仙, 燕平梅, 李晓春, 李珊珊. 盐胁迫对大豆种子萌发及生理的影响. 湖北农业科学, 2013, 52: 1263-1266. |
Hao X F, Gao H X, Yan P M, Li X C, Li S S. Effects of salt stress on seed germination and physiology of soybean. Hubei Agric Sci, 2013, 52: 1263-1266. (in Chinese with English abstract) | |
[22] | 张相锋, 杨晓绒, 焦子伟. 植物耐盐性评价研究进展及评价策略. 生物学杂志, 2018, 5(6): 91-94. |
Zhang X F, Yang X R, Jiao Z W. Advances and strategies of salt tolerance evaluation in plants. J Biol, 2018, 5(6): 91-94. (in Chinese with English abstract) | |
[23] | 付恩光, 刘宏伟, 马震, 郭旭. 山东寿光北部地区土壤盐渍化特征与现状评价. 地质调查与研究, 2016, 39: 300-304. |
Fu E G, Liu H W, Ma Z, Guo X. Characteristics and status assessment of soil salinization in the northern Shouguang area, Shandong province. Geol Surv Res, 2016, 39: 300-304. (in Chinese with English abstract) | |
[24] | 张俊华, 贾萍萍, 孙媛, 贾科利. 基于高光谱特征的盐渍化土壤不同土层盐分离子含量预测. 农业工程学报, 2019, 35(12): 106-115. |
Zhang J H, Jia P P, Sun Y, Jia K L. Prediction of salinity ion content in different soil layers based on hyperspectral data. Trans CSAE, 2019, 35(12):106-115. (in Chinese with English abstract) | |
[25] | 高宗军, 任晓辉, 安永会, 吴玺, 赫明浩, 刘久潭. 黑河中游明花乡北部盐渍化地区土壤盐分特征分析. 北方园艺, 2020, (21): 71-79. |
Gao Z J, Ren X H, An Y H, Wu X, He M H, Liu J T. Analysis of soil salinity characteristics in salinized areas of northern Minghua township in the middle reaches of Heihe River. Northern Hortic, 2020, (21): 71-79. (in Chinese with English abstract) | |
[26] | 唐晓倩, 刘广全. NaCl胁迫对圆柏幼苗生长和离子吸收及分配的影响. 西北植物学报, 2017, 37: 1372-1380. |
Tang X Q, Liu G Q. Effects of NaCl stress on the growth, ion absorption and distribution of Juniperus chinensis seedlings. Acta Bot Boreali-Occident Sin, 2017, 37: 1372-1380. (in Chinese with English abstract) | |
[27] | 王亦菲, 杜志钊, 马运涛, 许建华, 余飞宇, 陆瑞菊, 刘成洪, 陈志伟. NaCl预处理对糯玉米发芽期耐盐性的影响. 上海农业学报, 2020, 36(3): 20-24. |
Wang Y F, Du Z Z, Ma Y T, Xu J H, Yu F Y, Lu R J, Liu C H, Chen Z W. Effects of seed pretreatments with different NaCl concentrations on salt tolerance in two waxy maize varieties under different salt stresses at germination stage. Acta Agric Shanghai, 2020, 36(3): 20-24. (in Chinese with English abstract) | |
[28] | 杨春葆, 原红军. NaCl胁迫西藏青稞芽期幼苗根系生长特性及其耐盐性分析. 广东农业科学, 2021, 48(2): 26-32. |
Yang C B, Yuan H J. Analysis of root growth characteristics and salt resistance of Tibetan highland barley at bud stage under NaCl stress. Guangdong Agric Sci, 2021, 48(2): 26-32. (in Chinese with English abstract) | |
[29] | 陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报(自然科学版), 2011, 24(3): 47-50. |
Chen M, Li H Y, Lyu F T. Research advances in mechanisms of plant salinity tolerance. J Liaocheng Univ (Nat Sci Edn), 2011, 24(3): 47-50. (in Chinese with English abstract) | |
[30] | 邵桂花. 大豆种质资源耐盐性田间鉴定方法. 作物杂志, 1986, (3): 36-37. |
Shao G H. Field identification method for salt tolerance of soybean germplasm resources. Crops, 1986, (3): 36-37. (in Chinese with English abstract) | |
[31] |
姚佳, 刘信宝, 郭米山, 王晓彤, 曹冲, 李志华. 不同浓度NaCl胁迫对扁蓿豆苗期生长及生理指标的影响. 草地学报, 2014, 22: 564-571.
doi: 10.11733/j.issn.1007-0435.2014.03.019 |
Yao J, Liu X B, Guo M S, Wang X T, Cao C, Li Z H. Effects of different NaCl concentrations on the growth and physiological indexes of Melilotoides ruthenica seedlings. Acta Agrest Sin, 2014, 22: 564-571. (in Chinese with English abstract) | |
[32] | 周璐璐, 伏兵哲, 许冬梅, 陈丽萍, 吴小娟, 高雪芹. 盐胁迫对沙芦草萌发特性影响及耐盐性评价. 草业科学, 2015, 32: 1252-1259. |
Zhou L L, Fu B Z, Xu D M, Chen L P, Wu X J, Gao X Q. Effects of salt stress on germination characteristics of Agropyron mongolicum and salt-tolerance evaluation. Pratacult Sci, 2015, 32: 1252-1259. (in Chinese with English abstract) | |
[33] |
杨宏伟, 刘文瑜, 沈宝云, 李朝周. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017, 26(8): 146-153.
doi: 10.11686/cyxb2016394 |
Yang X W, Liu W Y, Shen B Y, Li C Z. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress. Acta Pratacult Sin, 2017, 26(8): 146-153. (in Chinese with English abstract) | |
[34] | 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805-814. |
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805-814. (in Chinese with English abstract) | |
[35] | 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展. 内蒙古民族大学学报(自然科学版), 2014, 29: 315-318. |
Meng F H, Wang C, Xu S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance. J Inner Mongolia Univ Nationalities (Nat Sci Edn), 2014, 29: 315-318. (in Chinese with English abstract) | |
[36] | 王聪, 朱月林, 杨立飞, 杨恒山. NaCl胁迫对菜用大豆种子膨大过程中抗氧化系统及渗透调节物质的影响. 西北植物学报, 2012, 32: 297-305. |
Wang C, Zhu Y L, Yang L F, Yang H S. Effects of NaCl stress on antioxidant system and osmotic regulation substances during seed filling period. Acta Bot Boreali-Occident Sin, 2012, 32: 297-305. (in Chinese with English abstract) | |
[37] | 任丽丽, 任春明, 赵自国. 植物耐盐性研究进展. 山西农业科学, 2010, 38(5): 87-90. |
Ren L L, Ren C M, Zhao Z G. Research advances in plant salt-tolerance. J Shanxi Agric Sci, 2010, 38(5): 87-90. (in Chinese with English abstract) | |
[38] | 宋丹, 张华新, 耿来林, 刘涛, 白淑兰. 植物耐盐种质资源评价及耐盐生理研究进展. 世界林业研究, 2006, 19(3): 27-32. |
Song D, Zhang H X, Geng L L, Liu T, Bai S L. Advances in assessment of salt tolerance and physiological mechanism in plants. World For Res, 2006, 19(3): 27-32. (in Chinese with English abstract) | |
[39] |
Qi W C, Zhang L, Xu H B, Wang L, Jiao Z. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochem Biophys Res Commun, 2014, 450: 1010-1015.
doi: 10.1016/j.bbrc.2014.06.086 |
[40] | 王军, 李筠, 王龙, 任立凯, 刘耀鸿, 迟铭, 浦汉春. 不同基因型小麦品种(系)耐盐性筛选. 江苏农业科学, 2009, (3): 77-79. |
Wang J, Li Y, Wang L, Ren L K, Liu Y H, Chi M, Pu H C. Screening of salt tolerance of wheat varieties (lines) of different genotypes. Jiangsu Agric Sci, 2009, (3): 77-79. (in Chinese with English abstract) | |
[41] | 辛承松, 罗振, 孔祥强, 王江伟. 不同基因型陆地棉亲本及其杂交后代的耐盐性差异. 棉花学报, 2011, 23: 235-240. |
Xin C S, Luo Z, Kong X Q, Wang J W. Salt tolerant variation among parents of different genotype upland cotton and their hybrids. Cotton Sci, 2011, 23: 235-240. (in Chinese with English abstract) | |
[42] |
Shi Y L, Zhang R, Wu X P, Meng Z G, Guo S D. Cloning and characterization of a somatic embryogenesis receptor-like kinase gene in cotton (Gossypium hirsutum). J Integr Agric, 2012, 11: 898-909.
doi: 10.1016/S2095-3119(12)60080-X |
[43] | Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 41: 437-448. |
[44] |
李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报, 2022, 48: 1583-1611.
doi: 10.3724/SP.J.1006.2022.14121 |
Li P T, Zhao Z L, Huang C H, Huang G Q, Xu L N, Deng Z H, Zhang Y, Zhao X W. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA. Acta Agron Sin, 2022, 48: 1583-1600. (in Chinese with English abstract) | |
[45] |
韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因. 作物学报, 2022, 48: 1645-1657.
doi: 10.3724/SP.J.1006.2022.14107 |
Han S, Huo Y Q, Li H, Han H R, Hou S Y, Sun Z X, Han Y H, Li H Y. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet. Acta Agron Sin, 2022, 48: 1645-1657. (in Chinese with English abstract) | |
[46] | 金伊楠, 许自成, 张环纬, 王发展, 陈思昂, 熊亚南, 魏烁果. 烟草盐胁迫与耐盐相关基因的研究进展. 中国烟草学报, 2018, 24(6): 112-118. |
Jin Y N, Xu Z C, Zhang H W, Wang F Z, Chen S A, Xiong Y N, Wei S G. Research progress on salt stress of and salt-resistance-related genes in tobacco. Acta Tabac Sin, 2018, 24(6): 112-118. (in Chinese with English abstract) | |
[47] | 郑崇珂, 窦玉慧, 解丽霞, 谢先芝. 水稻耐盐相关基因的研究进展. 分子植物育种, 2017, 15: 4411-4422. |
Zheng C K, Dou Y H, Xie L X, Xie X Z. Research progress on the genes related to salt tolerance in rice. Mol Plant Breed, 2017, 15: 4411-4422. (in Chinese with English abstract) | |
[48] | 赖伟, 何鹏, 徐明远, 陈梁海, 刘世强, 杨寅桂. 黄瓜耐盐性与耐盐相关基因的研究进展. 中国蔬菜, 2020, (6): 16-22. |
Lai W, He P, Xu M Y, Chen L H, Liu S Q, Yang Y G. Research progress on cucumber salt tolerance and salt tolerance related genes. China Vegetables, 2020, (6): 16-22. (in Chinese with English abstract) | |
[49] | 张秋玉. 盐胁迫下番茄玉米黄质环氧化酶基因与光保护关系的研究. 山东农业大学硕士学位论文, 山东泰安, 2012. |
Zhang Q Y. Analysis of the Relationship between LeZE and Photoprotection under Salt Stress. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2012. (in Chinese with English abstract) | |
[50] | 孙卫红, 李风, 束德峰, 董新纯, 杨秀梅, 孟庆伟. 转番茄正义抗坏血酸过氧化物酶基因提高烟草耐盐能力. 中国农业科学, 2009, 42: 1165-1171. |
Sun W H, Li F, Shu D F, Dong X C, Yang X M, Meng Q W. Tobacco plants transformed with tomato sense LetAPX enhanced salt tolerance. Sci Agric Sin, 2009, 42: 1165-1171. (in Chinese with English abstract) | |
[51] | 戚元成, 张慧, 赵彦修. 植物谷胱甘肽转移酶和盐胁迫. 山东师范大学学报(自然科学版), 2002, (2): 71-75. |
Qi Y C, Zhang H, Zhao Y X. Plant glutathione S-transferases and salt stress. J Shandong Norm Univ (Nat Sci Edn), 2002, (2): 71-75. (in Chinese with English abstract) | |
[52] | 杨晓慧, 蒋卫杰, 魏珉, 余宏军. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报(自然科学版), 2006, (2): 302-305. |
Yang X H, Jiang W J, Wei M, Yu H J. Review on plant response and resistance mechanism to salt stress. J Shandong Agric Univ (Nat Sci Edn), 2006, (2): 302-305. (in Chinese with English abstract) | |
[53] |
Deinlein U, Stephan A B, Horie T, Luo W, Xu G, Schroeder J I. Plant salt-tolerance mechanisms. Trends Plant Sci, 2014, 19: 371-379.
doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845 |
[54] | 王志英, 张福丽, 王占斌. 小黑杨转几丁质酶基因及酶活性. 林业科学, 2010, 46(2): 147-151. |
Wang Z Y, Zhang F L, Wang Z B. Transformation of chitinase gene into Populus simonii × P. nigra and chitinase activity of transgenic plants. Sci Silvae Sin, 2010, 46(2): 147-151. (in Chinese with English abstract) | |
[55] | 周桦楠, 孙思凡, 杨颖慧, 聂楠, 何绍贞, 刘庆昌, 翟红. 甘薯几丁质酶基因IbChi的克隆及其耐盐性分析. 分子植物育种, 2022, 20: 2812-2820. |
Zhou H N, Sun S F, Yang Y H, Nie N, He S Z, Liu Q C, Zhai H. Cloning and salt tolerance analysis of chitinase gene IbChi from sweet-potato. Mol Plant Breed, 2022, 20: 2812-2820. (in Chinese with English abstract) | |
[56] | 周洁, 黄婧. 柳树几丁质酶基因SlChi的克隆和功能验证. 分子植物育种, 2018, 16: 8013-8021. |
Zhou J, Huang J. Cloning and functional identification of chitinase gene SlChi in Salix. Mol Plant Breed, 2018, 16: 8013-8021. (in Chinese with English abstract) |
[1] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[2] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[3] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[4] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[5] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[6] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[7] | 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133. |
[8] | 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358. |
[9] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[10] | 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744. |
[11] | 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8. |
[12] | 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247. |
[13] | 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020. |
[14] | 彭振,何守朴,龚文芳,潘兆娥,贾银华,卢艳丽,杜雄明. 陆地棉幼苗NaCl胁迫下转录因子表达的转录组学分析[J]. 作物学报, 2017, 43(03): 354-370. |
[15] | 王润青,樊晓聪,宋梅芳,肖阳,郭林,孟凡华,杨青华,吴大付,杨建平. 小麦DELLA获得性突变体矮变1号增强了幼苗的抗盐能力[J]. 作物学报, 2016, 42(11): 1721-1726. |
|