欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1871-1881.doi: 10.3724/SP.J.1006.2023.24134

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析

魏正欣1(), 刘昌燕2(), 陈宏伟2, 李莉2, 孙龙清2, 韩雪松2, 焦春海2,*(), 沙爱华1,*()   

  1. 1长江大学农学院 / 湿地生态与农业利用教育部工程研究中心, 湖北荆州 434025
    2湖北省农业科学院粮食作物研究所 / 粮食作物种质创新与遗传改良湖北省重点实验室, 湖北武汉 430064
  • 收稿日期:2022-06-03 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-01
  • 通讯作者: *沙爱华, E-mail: aihuasha@163.com; 焦春海, E-mail: jiaoch@hotmai.com
  • 作者简介:魏正欣, E-mail: 2545439813@qq.com
    刘昌燕, E-mail: Liucy0602@163.com第一联系人:**同等贡献
  • 基金资助:
    本研究由国家重点研发计划项目(2019YFD1001303);本研究由国家重点研发计划项目(2019YFD1001300);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08);湖北省农业科技创新中心项目(2021-620-000-001-01)

Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L.

WEI Zheng-Xin1(), LIU Chang-Yan2(), CHEN Hong-Wei2, LI Li2, SUN Long-Qing2, HAN Xue-Song2, JIAO Chun-Hai2,*(), SHA Ai-Hua1,*()   

  1. 1College of Agriculture, Yangtze University / Engineering Research center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, Hubei, China
    2Hubei Academy of Agricultural Sciences Institute of Food Crops / Hubei Provincial Key Laboratory of Germplasm Innovation and Genetic Improvement of Food Crops, Wuhan 430064, Hubei, China
  • Received:2022-06-03 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-01
  • Contact: *E-mail: aihuasha@163.com; E-mail: jiaoch@hotmai.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    The National Key Research and Development Program of China(2019YFD1001303);The National Key Research and Development Program of China(2019YFD1001300);The China Agriculture Research System of MOF and MARA(CARS-08);The Hubei Agricultural Science and Technology Innovation Center Project(2021-620-000-001-01)

摘要:

蚕豆(Vicia faba L.)是一种重要的食用豆作物, 干旱会导致蚕豆产量降低。鉴定蚕豆耐旱基因, 有利于通过分子标记辅助育种和基因工程手段培育抗旱品种。在前期研究中, 我们通过转录组测序鉴定出了一类天冬氨酸转氨酶基因(ASPAT)响应蚕豆干旱胁迫。ASPAT催化天冬氨酸(ASP)和α-酮戊二酸的可逆转氨反应, 生成草酰乙酸和谷氨酸, 是参与植物体代谢的关键酶。本文基于转录组测序数据, 通过生物信息学方法全基因组鉴定了蚕豆ASPAT基因家族成员, 并分析了各基因家族成员的理化性质、亚细胞定位、基因结构、蛋白结构域、保守基序、系统进化、蛋白质互作和基因表达模式。结果显示, 蚕豆转录参考基因组中共有8个ASPAT基因家族成员, 包括3个真核型ASPAT (AAT)基因和5个原核型ASPAT (PAT)基因, 分别定位于线粒体和叶绿体。系统发育分析表明, 蚕豆ASPAT蛋白主要可分为2个亚族Iα和Iβ。Iα为AAT蛋白, 包括VfASPAT1~VfASPAT3。Iβ为PAT蛋白, 包括VfASPAT4~VfASPAT8。蚕豆ASPAT家族成员均含有motif 1、motif 3、motif 9, 且具有相似的基因结构和共同的蛋白结构域Aminotran-1-2。VfASPAT蛋白互作网络分析表明该家族成员可能参与逆境胁迫代谢过程。转录组和荧光定量PCR分析表明该家族8个成员在干旱处理16 h和64 h表达模式不同, 除VfASPAT4VfASPAT6外其他基因表达量都呈上调趋势, 表明VfASPAT基因可能对干旱胁迫有正向调控作用。本文研究结果为进一步分析蚕豆ASPAT的抗旱功能, 应用ASPAT提高蚕豆抗旱性奠定了基础。

关键词: 蚕豆, 天冬氨酸转氨酶, 基因家族, 干旱胁迫, 基因表达

Abstract:

Fava beans (Vicia faba L.) is an important food bean crop, and drought can lead to lower fava bean yields. The identification of drought tolerance genes of fava beans is beneficial to breed the drought-resistant varieties through molecular marker-assisted breeding and genetic engineering. In a previous study, we identified a class of aspartate aminotransferase genes (ASPAT) in response to faba bean drought stress by transcriptome sequencing. ASPAT catalyzes the reversible reaction of transamination between aspartate and α-oxoglutarate to generate oxaloacetate and glutamate, and plays a key role in plant metabolism. Based on transcriptomic sequencing data, ASPAT members were identified in genome-wide level. The physicochemical properties, subcellular localizations, gene structures, protein domains, conserved motifs, phylogeny, protein interaction, and gene expression patterns of each member were analyzed. The results indicate that eight ASPAT genes were identified from the transcriptomes, which included three eukaryotype ASPAT (AAT) genes and five prokarytoype ASPAT (PAT) genes with mitochondria and chloroplast location, respectively. Phylogenetic analysis showed that ASPAT could be divided into two subfamilies Iα and Iβ. Iα is AAT protein including VfASPAT1-VfASPAT3, and Iβ is PAT protein consisting of VfASPAT4-VfASPAT8. ASPAT family members of Vicia faba contain motif 1, motif 3, and motif 9, and had similar gene structures and common protein domain aminotran-1-2. VfASPATs protein interaction network suggested that the members might be involved in stress metabolism. Transcriptome and qRT-PCR indicated that he expression patterns of the eight members were different at 16 hours and 64 hours under drought stress. All the members were up-regulated with the exception of VfASPAT4 and VfASPAT6, implying that VfASPATs may have a positive regulation effect on drought stress. In this study, eight ASPAT genes of Vicia faba were identified, and the structures, distribution, evolutionary relationship, and the relative expression patterns of ASPAT gene family members were analyzed. The results of this study laid a foundation for further analysis of drought resistance function of VfASPATs, and the application of ASPAT to improve drought resistance of fava bean.

Key words: Vicia faba L., aspartate aminotransferase (ASPAT), gene family, drought stress, gene expression

表1

实时荧光定量PCR所用的引物"

基因Gene name 正向引物序列Forward sequence (5'-3') 反向引物序列 Reverse sequence (5'-3')
VfASPAT1 AAGGATAAACGAATAGCCGCAGT TCGGGATGATAGTAACGGAATGT
VfASPAT2 GGCTTCTCACATTTCTCCTTCTC CAACTCGCCTAACTACATCCAAC
VfASPAT3 TGAAGAATTGCAGCCGTATG TGGCAACTCTTTGCTGTTTG
VfASPAT4 ATTGAGGTGGAGCAGAACAGA CGCCAAGCGAATAACAGGAAC
VfASPAT5 GGTGATGAGGTTATTGTGTTTGC CTTTCCAGTAGGATTGTGAGGG
VfASPAT6 AAGCCCTCGCAGATCGGAACAC CCAAAAACTCCCATAGGCACAA
VfASPAT7 AAAATGGAAGGTAAACTGTCGC CCTGTACTGATTGAGGTCGGAA
VfASPAT8 CTGCAGCAACAAGGGAACAAC TGGCAACTCTTTGCTGTTTG
VfNADHD4 AGGGTTAGTGAGCACCATGC ATAGCCAAAGGGAATACGCC

表2

干旱胁迫处理两蚕豆品种发芽率比较"

处理时间
Processing time
鄂蚕豆1号-T
Ecandou 1-T
CDAS105-T 鄂蚕豆1号-CK
Ecandou 1-CK
CDAS105-CK
48 h 0 0 47.6 cd 61.9 bc
64 h 0 4.8 e 78.6 a 76.2 a
72 h 0 9.5 e 83.3 a 81.0 a
96 h 9.5 e 38.1 d 88.1 a 85.7 a

表3

蚕豆ASPAT蛋白理化性质及亚细胞定位预测"

蛋白质
Protein
氨基酸数目Number of amino acids 等电点
pI
相对分子质量
Molecular weight
脂融指数Aliphatic index 不稳定指数Instability index 疏水性分值GARVY 亚细胞定位
Subcellular
localization
VfASPAT1 424 8.42 46,958.64 82.38 39.68 -0.261 线粒体Mitochondrion
VfASPAT2 417 7.24 45,448.99 96.91 43.76 -0.052 叶绿体Chloroplast
VfASPAT3 453 7.73 49,658.54 84.86 36.02 -0.197 叶绿体, 线粒体
Chloroplast, mitochondrion
VfASPAT4 481 7.60 52,060.70 96.36 36.72 0.039 叶绿体Chloroplast
VfASPAT5 394 6.22 43,469.05 85.91 29.62 -0.063 叶绿体Chloroplast
VfASPAT6 407 5.59 45,024.06 96.61 35.48 0.030 叶绿体Chloroplast
VfASPAT7 409 6.02 44,829.10 89.51 41.14 -0.077 叶绿体Chloroplast
VfASPAT8 459 6.56 49,923.62 79.48 50.90 -0.147 叶绿体Chloroplast

表4

蚕豆ASPAT蛋白二级结构预测分析"

蛋白质
Protein
α-螺旋
Alpha helix
β-转角
Beta turn
延伸链
Extended strand
无规则卷曲
Random coil
VfASPAT1 45.28 7.55 14.39 32.78
VfASPAT2 43.65 6.95 15.11 34.29
VfASPAT3 40.84 7.06 17.44 34.66
VfASPAT4 39.09 7.07 18.50 35.34
VfASPAT5 42.39 8.63 17.51 31.47
VfASPAT6 43.49 7.13 14.99 34.40
VfASPAT7 41.08 7.33 19.07 32.52
VfASPAT8 35.29 8.28 20.04 36.38

图1

蚕豆ASPAT蛋白家族的进化分析"

图2

VfASPAT基因结构、蛋白结构域和保守基序分析 A: 基因结构; B: 蛋白结构域; C: motif; D: motif氨基酸序列。"

图3

蚕豆和拟南芥ASPAT蛋白磷酸吡哆醛结合位点 红色矩形框分别为AAT和PAT蛋白磷酸吡哆醛结合位点。"

图4

蚕豆ASPAT蛋白质互作网络"

图5

转录组鉴定蚕豆ASPAT表达 CK1-16/CK1-64为鄂蚕豆1号正常处理16 h/64 h; CK2-16/CK2-64为CDAS105正常处理16 h/64 h; T1-16/T1-64为鄂蚕豆1号干旱处理16 h/64 h; T2-16/T2-64为CDAS105干旱处理16 h/64 h。"

图6

实时荧光定量PCR分析VfASPAT在鄂蚕豆1号和CDAS105中的表达差异 CK-16和CK-64分别为正常处理16 h和64 h时CDAS105/鄂蚕豆1号的表达量比值; T1-16和T1-64分别为干旱处理16 h和64 h时CDAS105/鄂蚕豆1号的表达量比值。小写字母表示差异显著性(P < 0.05)。"

[1] 郝振萍, 金潇潇, 王长义, 王倩, 赵辉. 鲜食蚕豆苗期耐盐品种的筛选. 江苏农业科学, 2016, 44(12): 198-200.
Hao Z P, Jin X X, Wang C Y, Wang Q, Zhao H. Selection of salt tolerant varieties of fresh Vicia faba at seedling stage. Jiangsu Agric Sci, 2016, 44(12): 198-200. (in Chinese)
[2] Session J. Food and agriculture organization of the United Nations. Forest, 2004, 5: 9.
[3] 王海飞, 关建平, 马钰, 孙雪莲, 宗绪晓. 中国蚕豆种质资源ISSR标记遗传多样性分析. 作物学报, 2011, 37: 595-602.
doi: 10.3724/SP.J.1006.2011.00595
Wang H F, Guan J P, Ma Y, Sun X L, Zong X X. Genetic diversity of Chinese faba bean (Vcia faba L.) germplasm revealed by ISSR markers. Acta Agron Sin, 2011, 37: 595-602. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00595
[4] Bimurzayev N, Sari H, Kurunc A, Doganay K H, Asmamaw M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci Rep, 2021, 11: 18198.
doi: 10.1038/s41598-021-97810-6 pmid: 34521913
[5] 刘任远, 鲁仕宝, 黄强. 干旱灾害成因及对策研究. 生态经济, 2013, (8): 27-31.
Liu R Y, Lu S B, Huang Q. The study on causes and solutions of drought damage. Ecol Econ, 2013, (8): 27-31. (in Chinese with English abstract)
[6] 赵丽芬, 董绿凤, 王邦海, 张瑞玲. 干旱对蚕豆生长发育及产量的影响. 农业科技通讯, 2013, (10): 138-141.
Zhao L F, Dong L F, Wang B H, Zhang R L. Effects of drought on the growth and yield of Vicia faba L. Bull Agric Sci Technol, 2013, (10): 138-141. (in Chinese)
[7] 武学霞, 李兰平, 刘玉皎. 蚕豆耐旱机制研究进展. 分子植物育种[2022-09-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20210423.1305.014.html
Wu X X, Li L P, Liu Y J. Research advances on drought tolerance mechanism in Faba bean (Vicia faba L.). Mol Plant Breed [2022-09-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20210423.1305.014.html (in Chinese with English abstract)
[8] 肖贵, 张明, 连荣芳, 墨金萍, 王梅春, 朱国宝. 干旱半干旱区黑膜蚕豆高产栽培技术. 甘肃农业科技, 2017, (6): 52-53.
Xiao G, Zhang M, Liang R F, Mo J P, Wang M C, Zhu G B. High yield cultivation techniques of broad bean with black film in arid and semi-arid areas. Gansu Agric Sci Technol, 2017, (6): 52-53. (in Chinese)
[9] 李萍, 侯万伟, 刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析. 作物学报, 2019, 45: 267-275.
doi: 10.3724/SP.J.1006.2019.84075
Li P, Hou W W, Liu Y J. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China. Acta Agron Sin, 2019, 45: 267-275. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84075
[10] Liepman A H, Olsen L J. Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci, 2004, 23: 73-89.
doi: 10.1080/07352680490273419
[11] Wrenger C, Muller I B, Silber A M, Jordanova R, Lamzin V S, Groves M R. Aspartate aminotransferase-bridging carbohydrate and energy metabolism in plasmodium falciparum. Curr Drug Metabol, 2012, 13: 332-336.
doi: 10.2174/138920012799320400
[12] Murooka Y, Mori Y, Hayashi M. Variation of the amino acid content of Arabidopsis seeds by expressing soybean aspartate aminotransferase gene. J Biosci Bioengin, 2002, 9: 225-230.
[13] de la Torre F, Cañas R A, Pascual M B, Avila C, Canovas F M. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot, 2014, 65: 5527-5534.
doi: 10.1093/jxb/eru240 pmid: 24902885
[14] Gaufichon L, Rothstein S J, Suzuki A. Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol, 2016, 57: 675-689.
[15] de la Torre F, Santis L D, Suárez M F, Crespillo R, Canovas F M. Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J, 2006, 46: 414-425.
pmid: 16623902
[16] Miesak B H, Coruzzi G M. Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol, 2002, 129: 650-660.
doi: 10.1104/pp.005090
[17] Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G. Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol, 2011, 168: 1813-1819.
[18] Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292.
doi: 10.1046/j.1365-313X.2002.01359.x
[19] Su T, Han M, Min J, Cao D, Zhai G, Zhou H, Li N, Li M. Genome-wide characterization of AspATs in populus: gene expression variation and enzyme activities in response to nitrogen perturbations. Forests, 2019, 10: 449.
doi: 10.3390/f10050449
[20] 梁成刚, 张青, 李敬, 熊丹, 许光利, 汪燕, 刘泉, 黄鹏, 李天. 水稻灌浆期高温对天冬氨酸代谢酶活性及其家族氨基酸含量的影响. 中国水稻科学, 2013, 27: 71-76.
Liang C G, Zhang Q, Li J, Xiong D, Xu G L, Wang Y, Liu Q, Huang P, Li T. Effect of high temperature on aspartate metabolism enzyme activities and aspartate family amino acids contents at rice grain filling stage. Chin J Rice Sci, 2013, 27: 71-76. (in Chinese with English abstract)
[21] Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet, 2009, 118: 1381-1390.
doi: 10.1007/s00122-009-0988-3 pmid: 19259642
[22] Han M, Zhang C, Suglo P, Sun S Y, Wang M Y, Su T. l-Aspartate: an essential metabolite for plant growth and stress acclimation. Molecules, 2021, 26: 1887.
doi: 10.3390/molecules26071887
[23] Khan N, Bano A, Rahman M A, Guo J, Kang Z Y, Babar M A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep, 2019, 9: 2097.
doi: 10.1038/s41598-019-38702-8
[24] Ullah N, Yüce M, Gökçe Z N Ö, Budak H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics, 2017, 18: 969.
doi: 10.1186/s12864-017-4321-2
[25] Ali Q, Athar H, Haider M Z, Shahid S, Aslam N, Shehzad F, Naseem J, Ashraf R, Ali A, Hussain S M. Plant Tolerance to Environmental Stress. Boca Raton: CRC Press, 2019. pp 175-204.
[26] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[27] Doncheva N T, Morris J H, Gorodkin J, Jensen L J. Cytoscape string app: network analysis and visualization of proteomics data. J Proteome Res, 2018, 18: 623-632.
doi: 10.1021/acs.jproteome.8b00702
[28] Kou Y, Qiao L, Wang Q. Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol, 2015, 36: 2249-2255.
doi: 10.1007/s13277-014-2832-x
[29] Zhang H M, Wheeler S L, Xia X, Colyvas K, Offler C E, Patrick J W. Transcript profiling identifies gene cohorts controlled by each signal regulating trans-differentiation of epidermal cells of Vicia faba cotyledons to a transfer cell phenotype. Front Plant Sci, 2017, 8: 2021.
doi: 10.3389/fpls.2017.02021
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[31] Schlüter U, Bräutigam A, Droz J M, Schwender J, Weber A P M. The role of alanine and aspartate aminotransferases in C4 photosynthesis. Plant Biol, 2019, 21: 64-76.
[32] 王宇晨, 曲春浦, 刘关君. 杨树天冬氨酸转氨酶基因家族鉴定及表达分析. 南方农业学报, 2019, 50: 506-514.
Wang Y C, Qu C P, Liu G J. Identification and expression analysis of poplar aspartate aminotransferase (ASPAT) genes family. J Southern Agric, 2019, 50: 506-514. (in Chinese with English abstract)
[33] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄. 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013, 34: 2200-2208.
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X. Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops, 2013, 34: 2200-2208. (in Chinese with English abstract)
[34] 沙伟, 赵超越, 马天意, 张梅娟, 彭疑芳. 苹果酸脱氢酶在植物中的研究进展. 分子植物育种 [2022-09-27]. .
Sha W, Zhao C Y, Ma T Y, Zhang M J, Peng Y F. Research progress of malate dehydrogenase in plants. Mol Plant Breed [2022-09-27]. . (in Chinese with English abstract)
[35] Barghini E, Cossu R M, Cavallini A, Giordani T. Transcriptome analysis of response to drought in poplar interspecific hybrids. Genomics Data, 2015, 3: 143-145.
doi: 10.1016/j.gdata.2015.01.004 pmid: 26484164
[36] Silvente S, Camas A, Lara M. Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism. J Exp Bot, 2003, 54: 1545-1551.
pmid: 12730270
[1] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[2] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[3] 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993.
[4] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[5] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[6] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[7] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[8] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[9] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[10] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[11] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[12] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[13] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[14] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[15] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[10] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .