作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1871-1881.doi: 10.3724/SP.J.1006.2023.24134
魏正欣1(), 刘昌燕2(), 陈宏伟2, 李莉2, 孙龙清2, 韩雪松2, 焦春海2,*(), 沙爱华1,*()
WEI Zheng-Xin1(), LIU Chang-Yan2(), CHEN Hong-Wei2, LI Li2, SUN Long-Qing2, HAN Xue-Song2, JIAO Chun-Hai2,*(), SHA Ai-Hua1,*()
摘要:
蚕豆(Vicia faba L.)是一种重要的食用豆作物, 干旱会导致蚕豆产量降低。鉴定蚕豆耐旱基因, 有利于通过分子标记辅助育种和基因工程手段培育抗旱品种。在前期研究中, 我们通过转录组测序鉴定出了一类天冬氨酸转氨酶基因(ASPAT)响应蚕豆干旱胁迫。ASPAT催化天冬氨酸(ASP)和α-酮戊二酸的可逆转氨反应, 生成草酰乙酸和谷氨酸, 是参与植物体代谢的关键酶。本文基于转录组测序数据, 通过生物信息学方法全基因组鉴定了蚕豆ASPAT基因家族成员, 并分析了各基因家族成员的理化性质、亚细胞定位、基因结构、蛋白结构域、保守基序、系统进化、蛋白质互作和基因表达模式。结果显示, 蚕豆转录参考基因组中共有8个ASPAT基因家族成员, 包括3个真核型ASPAT (AAT)基因和5个原核型ASPAT (PAT)基因, 分别定位于线粒体和叶绿体。系统发育分析表明, 蚕豆ASPAT蛋白主要可分为2个亚族Iα和Iβ。Iα为AAT蛋白, 包括VfASPAT1~VfASPAT3。Iβ为PAT蛋白, 包括VfASPAT4~VfASPAT8。蚕豆ASPAT家族成员均含有motif 1、motif 3、motif 9, 且具有相似的基因结构和共同的蛋白结构域Aminotran-1-2。VfASPAT蛋白互作网络分析表明该家族成员可能参与逆境胁迫代谢过程。转录组和荧光定量PCR分析表明该家族8个成员在干旱处理16 h和64 h表达模式不同, 除VfASPAT4和VfASPAT6外其他基因表达量都呈上调趋势, 表明VfASPAT基因可能对干旱胁迫有正向调控作用。本文研究结果为进一步分析蚕豆ASPAT的抗旱功能, 应用ASPAT提高蚕豆抗旱性奠定了基础。
[1] | 郝振萍, 金潇潇, 王长义, 王倩, 赵辉. 鲜食蚕豆苗期耐盐品种的筛选. 江苏农业科学, 2016, 44(12): 198-200. |
Hao Z P, Jin X X, Wang C Y, Wang Q, Zhao H. Selection of salt tolerant varieties of fresh Vicia faba at seedling stage. Jiangsu Agric Sci, 2016, 44(12): 198-200. (in Chinese) | |
[2] | Session J. Food and agriculture organization of the United Nations. Forest, 2004, 5: 9. |
[3] |
王海飞, 关建平, 马钰, 孙雪莲, 宗绪晓. 中国蚕豆种质资源ISSR标记遗传多样性分析. 作物学报, 2011, 37: 595-602.
doi: 10.3724/SP.J.1006.2011.00595 |
Wang H F, Guan J P, Ma Y, Sun X L, Zong X X. Genetic diversity of Chinese faba bean (Vcia faba L.) germplasm revealed by ISSR markers. Acta Agron Sin, 2011, 37: 595-602. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00595 |
|
[4] |
Bimurzayev N, Sari H, Kurunc A, Doganay K H, Asmamaw M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci Rep, 2021, 11: 18198.
doi: 10.1038/s41598-021-97810-6 pmid: 34521913 |
[5] | 刘任远, 鲁仕宝, 黄强. 干旱灾害成因及对策研究. 生态经济, 2013, (8): 27-31. |
Liu R Y, Lu S B, Huang Q. The study on causes and solutions of drought damage. Ecol Econ, 2013, (8): 27-31. (in Chinese with English abstract) | |
[6] | 赵丽芬, 董绿凤, 王邦海, 张瑞玲. 干旱对蚕豆生长发育及产量的影响. 农业科技通讯, 2013, (10): 138-141. |
Zhao L F, Dong L F, Wang B H, Zhang R L. Effects of drought on the growth and yield of Vicia faba L. Bull Agric Sci Technol, 2013, (10): 138-141. (in Chinese) | |
[7] | 武学霞, 李兰平, 刘玉皎. 蚕豆耐旱机制研究进展. 分子植物育种[2022-09-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20210423.1305.014.html |
Wu X X, Li L P, Liu Y J. Research advances on drought tolerance mechanism in Faba bean (Vicia faba L.). Mol Plant Breed [2022-09-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20210423.1305.014.html (in Chinese with English abstract) | |
[8] | 肖贵, 张明, 连荣芳, 墨金萍, 王梅春, 朱国宝. 干旱半干旱区黑膜蚕豆高产栽培技术. 甘肃农业科技, 2017, (6): 52-53. |
Xiao G, Zhang M, Liang R F, Mo J P, Wang M C, Zhu G B. High yield cultivation techniques of broad bean with black film in arid and semi-arid areas. Gansu Agric Sci Technol, 2017, (6): 52-53. (in Chinese) | |
[9] |
李萍, 侯万伟, 刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析. 作物学报, 2019, 45: 267-275.
doi: 10.3724/SP.J.1006.2019.84075 |
Li P, Hou W W, Liu Y J. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China. Acta Agron Sin, 2019, 45: 267-275. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84075 |
|
[10] |
Liepman A H, Olsen L J. Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci, 2004, 23: 73-89.
doi: 10.1080/07352680490273419 |
[11] |
Wrenger C, Muller I B, Silber A M, Jordanova R, Lamzin V S, Groves M R. Aspartate aminotransferase-bridging carbohydrate and energy metabolism in plasmodium falciparum. Curr Drug Metabol, 2012, 13: 332-336.
doi: 10.2174/138920012799320400 |
[12] | Murooka Y, Mori Y, Hayashi M. Variation of the amino acid content of Arabidopsis seeds by expressing soybean aspartate aminotransferase gene. J Biosci Bioengin, 2002, 9: 225-230. |
[13] |
de la Torre F, Cañas R A, Pascual M B, Avila C, Canovas F M. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot, 2014, 65: 5527-5534.
doi: 10.1093/jxb/eru240 pmid: 24902885 |
[14] | Gaufichon L, Rothstein S J, Suzuki A. Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol, 2016, 57: 675-689. |
[15] |
de la Torre F, Santis L D, Suárez M F, Crespillo R, Canovas F M. Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J, 2006, 46: 414-425.
pmid: 16623902 |
[16] |
Miesak B H, Coruzzi G M. Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol, 2002, 129: 650-660.
doi: 10.1104/pp.005090 |
[17] | Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G. Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol, 2011, 168: 1813-1819. |
[18] |
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292.
doi: 10.1046/j.1365-313X.2002.01359.x |
[19] |
Su T, Han M, Min J, Cao D, Zhai G, Zhou H, Li N, Li M. Genome-wide characterization of AspATs in populus: gene expression variation and enzyme activities in response to nitrogen perturbations. Forests, 2019, 10: 449.
doi: 10.3390/f10050449 |
[20] | 梁成刚, 张青, 李敬, 熊丹, 许光利, 汪燕, 刘泉, 黄鹏, 李天. 水稻灌浆期高温对天冬氨酸代谢酶活性及其家族氨基酸含量的影响. 中国水稻科学, 2013, 27: 71-76. |
Liang C G, Zhang Q, Li J, Xiong D, Xu G L, Wang Y, Liu Q, Huang P, Li T. Effect of high temperature on aspartate metabolism enzyme activities and aspartate family amino acids contents at rice grain filling stage. Chin J Rice Sci, 2013, 27: 71-76. (in Chinese with English abstract) | |
[21] |
Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet, 2009, 118: 1381-1390.
doi: 10.1007/s00122-009-0988-3 pmid: 19259642 |
[22] |
Han M, Zhang C, Suglo P, Sun S Y, Wang M Y, Su T. l-Aspartate: an essential metabolite for plant growth and stress acclimation. Molecules, 2021, 26: 1887.
doi: 10.3390/molecules26071887 |
[23] |
Khan N, Bano A, Rahman M A, Guo J, Kang Z Y, Babar M A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep, 2019, 9: 2097.
doi: 10.1038/s41598-019-38702-8 |
[24] |
Ullah N, Yüce M, Gökçe Z N Ö, Budak H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics, 2017, 18: 969.
doi: 10.1186/s12864-017-4321-2 |
[25] | Ali Q, Athar H, Haider M Z, Shahid S, Aslam N, Shehzad F, Naseem J, Ashraf R, Ali A, Hussain S M. Plant Tolerance to Environmental Stress. Boca Raton: CRC Press, 2019. pp 175-204. |
[26] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[27] |
Doncheva N T, Morris J H, Gorodkin J, Jensen L J. Cytoscape string app: network analysis and visualization of proteomics data. J Proteome Res, 2018, 18: 623-632.
doi: 10.1021/acs.jproteome.8b00702 |
[28] |
Kou Y, Qiao L, Wang Q. Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol, 2015, 36: 2249-2255.
doi: 10.1007/s13277-014-2832-x |
[29] |
Zhang H M, Wheeler S L, Xia X, Colyvas K, Offler C E, Patrick J W. Transcript profiling identifies gene cohorts controlled by each signal regulating trans-differentiation of epidermal cells of Vicia faba cotyledons to a transfer cell phenotype. Front Plant Sci, 2017, 8: 2021.
doi: 10.3389/fpls.2017.02021 |
[30] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[31] | Schlüter U, Bräutigam A, Droz J M, Schwender J, Weber A P M. The role of alanine and aspartate aminotransferases in C4 photosynthesis. Plant Biol, 2019, 21: 64-76. |
[32] | 王宇晨, 曲春浦, 刘关君. 杨树天冬氨酸转氨酶基因家族鉴定及表达分析. 南方农业学报, 2019, 50: 506-514. |
Wang Y C, Qu C P, Liu G J. Identification and expression analysis of poplar aspartate aminotransferase (ASPAT) genes family. J Southern Agric, 2019, 50: 506-514. (in Chinese with English abstract) | |
[33] | 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄. 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013, 34: 2200-2208. |
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X. Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops, 2013, 34: 2200-2208. (in Chinese with English abstract) | |
[34] | 沙伟, 赵超越, 马天意, 张梅娟, 彭疑芳. 苹果酸脱氢酶在植物中的研究进展. 分子植物育种 [2022-09-27]. . |
Sha W, Zhao C Y, Ma T Y, Zhang M J, Peng Y F. Research progress of malate dehydrogenase in plants. Mol Plant Breed [2022-09-27]. . (in Chinese with English abstract) | |
[35] |
Barghini E, Cossu R M, Cavallini A, Giordani T. Transcriptome analysis of response to drought in poplar interspecific hybrids. Genomics Data, 2015, 3: 143-145.
doi: 10.1016/j.gdata.2015.01.004 pmid: 26484164 |
[36] |
Silvente S, Camas A, Lara M. Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism. J Exp Bot, 2003, 54: 1545-1551.
pmid: 12730270 |
[1] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[2] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[3] | 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993. |
[4] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[5] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[6] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[7] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[8] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[9] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[10] | 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85. |
[11] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[12] | 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166. |
[13] | 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104. |
[14] | 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350. |
[15] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
|