欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1979-1993.doi: 10.3724/SP.J.1006.2023.24160

• 耕作栽培·生理生化 • 上一篇    下一篇

外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性

项嘉铭(), 戴茜, 刘立军*()   

  1. 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2022-07-11 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2023-01-11
  • 通讯作者: *刘立军, E-mail: liulijun@mail.hzau.edu.cn
  • 作者简介:E-mail: dicerx@163.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(麻类);本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-16-E10)

Exogenous salicylic acid improves the tolerance of Yunma 1 (Cannabis sativa L.) to copper stress

XIANG Jia-Ming(), DAI Qian, LIU Li-Jun*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-07-11 Accepted:2022-11-25 Published:2023-07-12 Published online:2023-01-11
  • Contact: *E-mail: liulijun@mail.hzau.edu.cn
  • Supported by:
    The China Agriculture Research System of MOF and MARA(麻类);The China Agriculture Research System of MOF and MARA(CARS-16-E10)

摘要:

工业大麻是我国重要的天然纤维作物, 其主要种植区铜矿丰富, 耕地土壤受铜污染严重; 工业大麻有较强的耐铜性和较高的生物量, 可代替粮食作物在铜污染土壤上种植, 探究如何增强其耐铜性具有重要意义。水杨酸(SA)在植物抗逆方面有重要作用。本研究采用铜敏感品种云麻1号, 探究外源SA对铜胁迫下工业大麻耐铜性和铜富集的影响。结果表明, 铜胁迫对工业大麻具有明显毒害作用; 外源SA降低了麻纤维铜含量, 增强了根系对Cu2+的吸收和固定, 地下部铜含量是胁迫组的1610.1%, 铜累积量是胁迫组的857.1%, 这可能是通过提高半纤维素和木葡聚糖的代谢及葡萄糖苷酶的活性实现的。外源SA促进了铜胁迫下工业大麻光合作用和干物质累积, 显著增强了氧化还原酶的活性, 降低了ROS和MDA含量, 减少氧化损伤。在铜胁迫下施用外源SA, 可以特异性诱导CsCIPK25CsWRKY32表达, 并通过调控作物离子转运、铜吸收固定、金属螯合物合成等多种途径增强铜胁迫下工业大麻的耐受性。

关键词: 工业大麻, 铜胁迫, 水杨酸, 基因表达

Abstract:

Industrial hemp is an important natural fiber crop in China. Its main planting areas are richer in copper mines, and the cultivated soil is seriously polluted by copper. Industrial hemp has strong copper tolerance and high biomass and can replace food crops on copper-contaminated soils. It is of great significance to explore how to enhance its copper tolerance. Salicylic acid (SA) plays an important role in plant stress resistance. In this study, to explore the effect of exogenous SA on the copper tolerance and copper enrichment of industrial hemp under copper stress, the copper-sensitive variety Yunma 1 was used as the experimental material. The results showed that copper stress had obvious toxic effects on industrial hemp. Exogenous SA reduced the copper content of hemp fibers and enhanced the absorption and fixation of Cu2+ in roots. The copper content in underground and the copper accumulation were 1610.1% and 857.1% in stress group, respectively, which may be achieved by improving the metabolism of hemicellulose and xyloglucan and the activity of glucosidase. Exogenous SA promoted the photosynthesis and dry matter accumulation of industrial hemp under copper stress, enhanced significantly the oxidoreductase activity, decreased ROS and MDA content, and reduced oxidative damage. The application of exogenous SA under copper stress can specifically induce the relative expression level of CsCIPK25 and CsWRKY32, and enhance the tolerance of industrial hemp under copper stress by regulating ion transport, and copper absorption immobilization, and metal chelate synthesis.

Key words: industrial hemp, copper stress, salicylic acid, the relative expression level of genes

表1

铜尾矿砂和普通土壤基本信息"

土壤
Soil
全氮含量
Total nitrogen content
(g kg-1)
全磷含量
Total phosphorus content (g kg-1)
全钾含量
Total potassium content (g kg-1)
总铜含量
Total copper content (mg kg-1)
铜尾矿砂Copper tailing sand 0.0252 0.542 0.61 1110.72
普通土壤Ordinary soil 1.9148 0.904 4.09 33.35

表2

qRT-PCR所用引物"

基因
Gene name
正义引物
Forward primer (5°-3°)
反义引物
Reverse primer (5°-3°)
CsCIPK25 GAAATGCTCTGCCTTGGCTAT GTGCCACCTCGTAAACCTCC
CsWRKY32 ATCATTTTGGGCATGTAACGGA TTGGCAGATGTGGATGGGTC
CsUBQ TACTGCGCCAGCTAACAAACC GCACCCGTCTGACCTGAATC

图1

铜胁迫及水杨酸喷施对苗期云麻1号根系生长的影响 C0: 无Cu处理; C1: Cu胁迫; S0: 无SA处理; S1: SA处理。不同小写字母表示处理间在0.05概率水平差异显著。"

图2

水杨酸处理对铜胁迫下云麻1号生长的影响 C0: 普通土壤; C1: Cu污染土壤; S0: 无SA处理; S1: SA处理。不同小写字母表示处理间在0.05概率水平差异显著。"

表3

外源水杨酸对铜胁迫下云麻1号生长的影响"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
地上部干重
Above-ground dry weight (g)
地下部干重
Under-ground dry weight (g)
C0S0 204.71±5.76 ab 8.14±0.54 ab 27.19±0.81 a 2.53±0.50 ab
C0S1 206.11±7.24 a 8.91±0.37 a 28.51±2.68 a 2.76±0.61 a
C1S0 146.28±8.61 c 7.36±0.37 b 10.50±0.12 d 1.65±0.29 b
C1S1 195.00±6.73 b 8.90±0.58 a 22.74±1.54 bc 2.22±0.19 ab

图3

外源水杨酸对铜胁迫下苗期云麻1号活性氧清除系统的影响 处理同图1。不同小写字母表示处理间在0.05概率水平差异显著。"

图4

外源水杨酸对铜胁迫下云麻1号铜富集的影响 ACC: 地上部铜含量; UCC: 地下部铜含量; ACA: 地上部铜累积量; UCA: 地下部铜累积量; FCC: 纤维铜含量; GI: 富集系数; VI: 转运系数。处理同图2。不同小写字母表示处理间在0.05概率水平差异显著。"

图5

铜胁迫及水杨酸喷施对苗期云麻1差异基因表达的影响 A: 转录组测序各处理间差异基因表达情况; B: 外源水杨酸对铜胁迫下工业大麻差异基因表达的影响; C: 转录组测序所有处理间差异基因表达情况。处理同图1。"

图6

差异表达基因GO富集分析 A: C0S0 vs C1S0-GO; B: C1S0 vs C1S1-GO。处理同图1。"

图7

差异表达基因KEGG富集分析 A: C0S0 vs C1S0-KEGG; B: C1S0 vs C1S1-KEGG。处理同图1。"

图8

水杨酸处理对铜胁迫下云麻1号基因表达影响 处理同图1。不同小写字母表示处理间在0.05概率水平差异显著。"

[1] 杨阳, 张云云, 苏文君, 杨明, 郭鸿彦, 刘飞虎. 工业大麻纤维特性与开发利用. 中国麻业科学, 2012, 34: 237-240.
Yang Y, Zhang Y Y, Su W J, Yang M, Guo H Y, Liu F H. Fiber properties and development and utilization of industrial hemp. Plant Fiber Sci China, 2012, 34: 237-240. (in Chinese with English abstract)
[2] Hänsch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol, 2009, 12: 259-266.
doi: 10.1016/j.pbi.2009.05.006 pmid: 19524482
[3] Palmer C M, Guerinot M L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol, 2009, 5: 333-340.
doi: 10.1038/nchembio.166 pmid: 19377460
[4] 温宗国, 季晓立. 中国铜资源代谢趋势及减量化措施. 清华大学学报(自然科学版), 2013, 53(9): 65-70.
Wen Z G, Ji X L. Copper resource trends and use reduction measures in China. J Tsinghua Univ (Sci Technol Edn), 2013, 53(9): 65-70. (in Chinese with English abstract)
[5] 周东美, 王玉军, 郝秀珍, 陈怀满. 铜矿区重金属污染分异规律初步研究. 农业环境科学学报, 2002, 21: 225-227.
Zhou D M, Wang Y J, Hao X Z, Chen H M. Primary study of distribution of heavy metals in copper mines. J Agro-Environ Sci, 2002, 21: 225-227. (in Chinese with English abstract)
[6] An F, Gao B J, Dai X, Wang M, Wang X H. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. J Hazard Mater, 2011, 192: 956-962.
doi: 10.1016/j.jhazmat.2011.05.050 pmid: 21741170
[7] 胡筑兵, 陈亚华, 王桂萍, 沈振国. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响. 植物学通报, 2006, 23: 129-137.
Hu Z B, Chen Y H, Wang G P, Shen Z G. Effects of copper stress on growth, chlorophyll fluorescence parameters and antioxidant enzyme activities of Zea mays seedlings. Chin Bull Bot, 2006, 23: 129-137. (in Chinese with English abstract)
[8] Zhang H, Hu L Y, Hu K D, He Y D, Wang S H, Luo J P. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol, 2008, 50: 1518-1529.
doi: 10.1111/j.1744-7909.2008.00769.x
[9] 王晓维, 国勤, 徐健程, 聂亚平, 万进荣, 杨潇一, 杨文亭. 铜胁迫和间作对玉米抗氧化酶活性及丙二醛含量的影响. 农业环境科学学报, 2014, 33: 1890-1896.
Wang X W, Guo Q, Xu J C, Nie Y P, Wan J R, Yang X Y, Yang W T. Effects of copper stresses and intercropping on antioxidant enzyme activities and malondialdehyde contents in maize. J Agro-Environ Sci, 2014, 33: 1890-1896. (in Chinese with English abstract)
[10] David M R, Vladimir S, Ilya R. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol, 1998, 118: 565-572.
doi: 10.1104/pp.118.2.565
[11] Zhang Y L, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol, 2019, 50: 299-336.
[12] 孟雪娇, 邸昆, 丁国华. 水杨酸在植物体内的生理作用研究进展. 中国农学通报, 2010, 26(15): 217-224.
Meng X J, Di K, Ding G H. Progress of study on the physiological role of salicylic acid in plant. Chin Agric Sci Bull, 2010, 26(15): 217-224. (in Chinese with English abstract)
[13] Appu M, Muthukrishnan S. Foliar application of salicylic acid stimulates flowering and induce defense related proteins in finger millet plants. Univ J Plant Sci, 2014, 2: 14-18.
[14] Klessig D F, Malamy J. The salicylic acid signal in plants. Plant Mol Biol, 1994, 26: 1439-1458.
doi: 10.1007/BF00016484 pmid: 7858199
[15] 崔婧. 水杨酸与植物抗逆性. 安徽农学通报, 2007, 13(9): 35-38.
Cui J. Effects of salicylic acid on resisting adversity of plants. Anhui Agric Sci Bull, 2007, 13(9): 35-38. (in Chinese with English abstract)
[16] Janda T, Szalai G, Pal M. Salicylic acid signalling in plants. Int J Mol Sci, 2020, 21: 2655.
doi: 10.3390/ijms21072655
[17] 丁佳红, 薛正莲, 杨超英. 水杨酸对铜胁迫下水稻幼苗膜脂过氧化作用的影响. 黑龙江农业科学, 2013, (1): 14-18.
Ding J H, Xue Z L, Yang C Y. Effect on different factors on rice callus formation. Heilongjiang Agric Sci, 2013, (1): 14-18. (in Chinese with English abstract)
[18] Al-hakimi A B M, Hama A M. Ascorbic acid, thiamine or salicylic acid induced changes in some physiological parameters in wheat grown under copper stress. Plant Prot Sci, 2011, 47: 92-108.
doi: 10.17221/20/2010-PPS
[19] Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 2002, 53: 366.
[20] El-tayeb M A, El-enany A E, Ahmed N L. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul, 2006, 50: 191-199.
doi: 10.1007/s10725-006-9118-2
[21] Kováik J, Klejdus B, Hedbavny J, Backor M. Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci, 2010, 178: 307-311.
doi: 10.1016/j.plantsci.2010.01.009
[22] Moravcová S, Tůma J, Dučaiová Z K, Waligorski P, Kula M, Saja D, Slomka A, Baba W, Libik-Konieczny M. Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol Biochem, 2017, 122: 19-30.
doi: 10.1016/j.plaphy.2017.11.007
[23] Guo B, Liang Y, Zhu Y. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol, 2009, 166: 20-31.
doi: 10.1016/j.jplph.2008.01.002
[24] Khan N, Bano A. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. Int J Phytorem, 2017, 20: 405-414.
doi: 10.1080/15226514.2017.1381940
[25] Huang Y T, Cai S Y, Chen S Y, Ruan X L, Mei G F, Ruan G H, Cao D D. Salicylic acid enhances sunflower seed germination under Zn2+ stress via involvement in Zn2+ metabolic balance and phytohormone interactions. Sci Hortic, 2020, 275: 109702.
doi: 10.1016/j.scienta.2020.109702
[26] 张亚娟, 王倩, 龙瑜菡, 李璇, 李光菊, 邓纲, 刘飞虎. 不同大麻品种种子萌发期耐重金属铜胁迫能力评价. 中国麻业科学, 2018, 40: 183-191.
Zhang Y J, Wang Q, Long Y H, Li X, Li G J, Deng G, Liu F H. Effects of Cu2+ stress on the seed germination and Cu-tolerance evaluation of industrial hemp. Plant Fiber Sci China, 2018, 40: 183-191. (in Chinese with English abstract)
[27] 刘飞虎, 苏文君, 杜光辉, 杨阳. 一种工业大麻液体栽培方法. 中国专利. CN103621392A. 2013-12-23.
Liu F H, Su W J, Du G H, Yang Y. A method for industrial hemp liquid culture. China Patent: CN103621392A. 2013-12-23 (in Chinese)
[28] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125: 189-198.
doi: 10.1016/0003-9861(68)90654-1 pmid: 5655425
[29] Dhindsa R S, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against liqid peroxidation. J Exp Bot, 2005, 56: 685-694.
doi: 10.1093/jxb/eri051
[30] Gutteridge J M C, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci, 1990, 15: 129-135.
pmid: 2187293
[31] Rao M V, Paliyath G, Ormrod D P. Ultraviolet-band ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol, 1996, 110: 125-136.
[32] 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制. 植物学报, 2021, 56: 614-626.
doi: 10.11983/CBB21024
Xie L L, Wang J L, Wu G Q. Regulatory mechanisms of the plant CBL-CIPK signaling system in response to abiotic stress. Chin Bull Bot, 2021, 56: 614-626. (in Chinese with English abstract)
[33] 谢政文, 王连军, 陈锦洋, 王娇, 苏一钧, 杨新笋, 曹清河. 植物WRKY转录因子及其生物学功能研究进展. 中国农业科技导报, 2016, 18(3): 46-54.
Xie Z W, Wang L J, Chen J Y, Wang J, Su Y J, Yang X S, Cao Q H. Studies on WRKY transcription factors and their biological functions in plants. J Agric Sci Technol, 2016, 18(3): 46-54. (in Chinese with English abstract)
[34] 张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用. 生物技术通报, 2021, 27(10): 203-215.
Zhang T, Li Z Q, Wu G Q. Role of WRKY transcription factor in plant response to stresses. Biotechnol Bull, 2021, 27(10): 203-215. (in Chinese with English abstract)
[35] 林义章, 徐磊. 铜污染对高等植物的生理毒害作用研究. 中国生态农业学报, 2007, 15: 201-204.
Lin Y Z, Xu L. Physiological toxicity of copper pollution to higher plant. Chin J Eco-Agric, 2007, 15: 201-204. (in Chinese with English abstract)
[36] Li Z Y, Ma Z W, Kuijp T J, Yuan Z W, Huang L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ, 2014, 468-469: 843-853.
doi: 10.1016/j.scitotenv.2013.08.090
[37] Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot, 2001, 52: 1101-1109.
pmid: 11432926
[38] Bai X Y, Dong Y J, Wang Q H, Xu L L, Kong J, Liu S. Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biol Plant, 2014, 59: 163-170.
doi: 10.1007/s10535-014-0476-8
[39] Ghori N H, Ghori T, Hayat M Q, Imadi S R, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. Int J Environ Sci Technol, 2019, 16: 3.
[40] Sun L, Zhang X H, Wang O, Yang E D, Cao Y Y, Sun R B. Lowered Cd toxicity, uptake and expression of metal transporter genes in maize plant by ACC deaminase-producing bacteria Achromobacter sp. J Hazard Mater, 2022, 423: 127036.
doi: 10.1016/j.jhazmat.2021.127036
[41] Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant, 1994, 90: 791-800.
doi: 10.1111/ppl.1994.90.issue-4
[42] 朱守晶, 史文娟. 苎麻液泡膜质子焦磷酸酶基BnVP1的克隆及镉胁迫下的表达分析. 农业生物技术学报, 2021, 29: 1485-1494.
Zhu S J, Shi W J. Cloning of the vacuolar H+-pyrophosphatases gene BnVP1 from ramie (Boehmeria nivea) and expression analysis under cadmium stress. J Agric Biotechnol, 2021, 29: 1485-1494. (in Chinese with English abstract)
[43] Swigoňová Z, Mohsen A W, Vockley J. Acyl-CoA Dehydrogenases: dynamic history of protein family evolution. J Mol Evol, 2009, 69: 176-193.
doi: 10.1007/s00239-009-9263-0 pmid: 19639238
[44] 郝向阳, 孙雪丽, 王天池, 吕科良, 赖钟雄, 程春振. 植物PAL基因及其编码蛋白的特征与功能研究进展. 热带作物学报, 2018, 39: 1452-1461.
Hao X Y, Sun X L, Wang T C, Lyu K L, Lai Z X, Cheng C Z. Characteristics and functions of plant Phenylalanine Ammonia Lyase genes and the encoded proteins. Chin J Trop Crops, 2018, 39: 1452-1461. (in Chinese with English abstract)
[45] 罗才林. 水杨酸和茉莉酸甲酯胁迫下白及响应与苯丙氨酸解氨酶基因的克隆. 遵义医科大学硕士学位论文, 贵州遵义, 2019.
Luo C L. Phenylalanine Ammonia-lyase Gene Cloning during Stress Responses Against Salicylic Acid and Methyl Jasmonate in Bletilla striata. MS Thesis of Zunyi Medical University, Zunyi, Guizhou, China, 2019. (in Chinese with English abstract)
[46] 乔枫, 张丽, 耿贵工, 陈志, 曾阳, 谢惠春. CoCl2胁迫下青稞苯丙氨酸解氨酶基因的克隆与表达分析. 中国农业大学学报, 2021, 26(3): 18-27.
Qiao F, Zhang L, Geng G G, Chen Z, Zeng Y, Xie H C. Cloning and expression of phenylalanine ammonialyase gene of Hordeum vulgare var. nudum under CoCl2 stress. J China Agric Univ, 2021, 26(3): 18-27. (in Chinese with English abstract)
[47] 李文文. 外源水杨酸对铜胁迫下菊芋的调控效应及其耐铜机理研究. 浙江师范大学硕士学位论文, 浙江金华, 2021.
Li W W. Regulatory Effect of Exogenous Salicylic Acid on Heliantus tuberosus L. under Copper Stress and the Mechanism of Copper. MS Thesis of Zhejiang Normal University, Jinhua, Zhejiang, China, 2021. (in Chinese with English abstract)
[48] Jia H L, Wang X H, Wei T, Wang M, Liu X, Hua L, Ren X H, Guo J K, Li J S. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicol Environ Saf, 2021, 207: 111550.
doi: 10.1016/j.ecoenv.2020.111550
[49] Zhang Z W, Deng Z L, Tao Q, Peng H Q, Wu F, Fu Y F, Yang X Y, Xu P Z, Li Y, Wang C Q, Chen Y E, Yuan M, Lan T, Tang X Y, Chen G D, Zeng J, Yuan S. Salicylic and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea. Chemosphere, 2022, 292: 133466.
[50] Kaur G, Sharma P, Rathee S, Singh H P, Batish D R, Kohli R K. Salicylic acid pre-treatment modulates Pb2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots. Environ Sci Pollut Res, 2021, 28: 51989-52000.
doi: 10.1007/s11356-021-14151-7
[51] Wang L, Li R, Yan X X, Liang X F, Sun Y B, Xu Y M. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. Ecotoxicol Environ Saf, 2020, 194: 110369.
doi: 10.1016/j.ecoenv.2020.110369
[52] 陈娜, 潘丽娟, 迟晓元, 陈明娜, 王通, 王冕, 杨珍, 胡冬青, 王道远, 禹山林. 花生果糖-1,6-二磷酸醛缩酶基因AhFBA1的克隆与表达. 作物学报, 2014, 40: 934-941.
doi: 10.3724/SP.J.1006.2014.00934
Chen N, Pan L J, Chi L Y, Chen M N, Wang T, Wang M, Yang Z, Hu D Q, Wang D Y, Yu S L. Cloning and expression of fructose-1,6-bisphosphate aldolase gene AhFBA1 in peanut (Arachis hypogaea L.). Acta Agron Sin, 2014, 40: 934-941. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00934
[53] 王晨, 李家儒. 植物β-葡萄糖苷酶的研究进展. 生物资源, 2021, 43(2): 101-109.
Wang C, Li J R. Research progress of plant β-glucosidase. Biotic Resour, 2021, 43(2): 101-109. (in Chinese with English abstract)
[54] 崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用. 中国生物化学与分子生物学报, 2017, 33: 220-226.
Cui H P, Zhou W, Guo C H. The role of plant peroxisomes in ROS signaling network. Chin J Biochem Mol Biol, 2017, 33: 220-226. (in Chinese with English abstract)
[55] Pan W H, Zheng Z Z, Yan X, Shen J Q, Shou J X, Jiang L X, Pan J W. Overexpression of CBL interacting protein kinase 2 improves plant tolerance to salinity and mercury. Biol Plant, 2019, 63: 183-192.
[56] Li G Z, Zheng Y X, Chen S J, Liu J, Wang P F, Wang Y H, Guo T C, Kang G Z. TaWRKY74 participates copper tolerance through regulation of TaGST1 expression and GSH content in wheat. Ecotoxicol Environ Saf, 2021, 221: 112469.
doi: 10.1016/j.ecoenv.2021.112469
[57] Shi K, Liu X, Zhu Y P, Bai Y X, Shan D Q, Zheng X D, Wang L, Zhang H X, Wang C Y, Yan T C, Zhou F F, Hu Z H, Sun Y Z, Guo Y, Kong J. MdWRKY11 improves copper tolerance by directly promoting the expression of the copper transporter gene MdHMA5. Hortic Res, 2020, 7: 105.
doi: 10.1038/s41438-020-0326-0
[58] Linger P, Müssig J, Fischer H, Kobert J. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod, 2002, 16: 33-42.
doi: 10.1016/S0926-6690(02)00005-5
[59] Zehra S S, Arshad M, Mahmood T, Waheed A. Assessment of heavy metal accumulation and their translocation in plant species. Afr J Biotechnol, 2009, 8: 2802-2810.
[60] Wang L N, Yang X Y, Ren Z H, Hu X Y, Wang X F. Alleviation of photosynthetic inhibition in copper-stressed tomatoes through rebalance of ion content by exogenous nitric oxide. Turk J Bot, 2015, 39: 10-22.
doi: 10.3906/bot-1312-17
[61] 王龙, 樊婕, 魏畅, 李鸽子, 张静静, 焦秋娟, 陈果, 孙娈姿, 柳海涛. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应. 草业学报, 2021, 30(4): 150-159.
doi: 10.11686/cyxb2020411
Wang L, Fan J, Wei C, Li G Z, Zhang J J, Jiao Q J, Chen G, Sun R Z, Liu H T. Mitigative effect of exogenous ascorbic acid on the growth of copper-stressed chicory (Cichorium intybus) seedlings. Acta Pratac Sin, 2021, 30(4): 150-159. (in Chinese with English abstract)
[62] 许艳萍, 吕品, 张庆滢, 郭蓉, 邓纲, 郭鸿彦, 杨明. 不同工业大麻品种对田间5种重金属吸收积累特性的比较. 农业环境与发展, 2020, 37(1): 106-114.
Xu Y P, Lyu P, Zhang Q Y, Guo R, Deng G, Guo H Y, Yang M. Comparison of the absorption and accumulation characteristics of five heavy metals among different industrial hemp varieties. J Agric Resour Environ, 2020, 37(1): 106-114. (in Chinese with English abstract)
[1] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[2] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[3] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[4] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[5] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[6] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[7] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[8] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[9] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[10] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[11] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839.
[15] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .