作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1994-2001.doi: 10.3724/SP.J.1006.2023.24196
索海翠(), 刘计涛, 王丽, 李成晨, 单建伟, 李小波*()
SUO Hai-Cui(), LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo*()
摘要:
马铃薯作为世界第四大粮食作物, 是全球2/3人口的主食, 是锌生物强化策略的重要目标作物, 因此研究马铃薯锌吸收具有重要作用。锌转运蛋白调节植物锌吸收过程。本研究在前期研究基础上克隆了马铃薯锌转运蛋白基因StZIP12, 定量PCR结果表明该基因在马铃薯各组织中均有表达, 在新叶中表达量显著高于其他组织, 且受到低锌诱导表达; 利用异源酵母互补试验证实了StZIP12能够恢复锌吸收障碍酵母突变体ZHY3 (zrt1zrt2)的锌吸收功能; 利用转基因手段过表达StZIP12于马铃薯品种鄂薯3号, 在缺锌处理下, 与非转基因对照植株相比较, 过表达StZIP12提高了转基因马铃薯株高, 转基因组培苗的根长和总锌含量以及盆栽转基因植株块茎的锌含量增加, 其中2个株系块茎锌含量分别比对照提高22.00%和32.95%。以上结果证明了StZIP12在马铃薯锌的吸收过程中起着重要调节作用, 为马铃薯锌生物强化提供了理论依据。
[1] | Bouis H E, Hotz C, McClafferty B, Meenakshi J V, Pfeiffer W H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2011, 32: S31-S40. |
[2] | 古秋霞, 林群, 黄修杰. 2015年广东马铃薯产业发展形势与对策建议. 广东农业科学, 2016, 43(3): 21-24. |
Gu Q X, Lin Q, Huang X J. Development situation and countermeasures of potato industry in Guangdong in 2015. Guangdong Agric Sci, 2016, 43(3): 21-24. (in Chinese with English abstract) | |
[3] |
Monsant A C, Kappen P, Wang Y, Pigram P J, Baker A J M, Tang C. In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure. Plant Soil, 2011, 1: 167-183.
doi: 10.1007/BF02080924 |
[4] | López-millán A F, Ellis D R, Grusak M A. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol, 2004, 54: 583-596. |
[5] |
Eide D, Broderius M, Fett J, Guerinot M L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996, 93: 5624-5628.
doi: 10.1073/pnas.93.11.5624 pmid: 8643627 |
[6] | Wang Y H, Yang J, Miao R, Kang Y, Qi Z. A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. J Plant Physiol, 2021, 256: 15329. |
[7] |
Milner M J, Jesse S, Eric C, Kochian L V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64: 369-381.
doi: 10.1093/jxb/ers315 pmid: 23264639 |
[8] |
Lin Y F, Liang H M, Yang S Y, Boch A, Clemens S, Chen C C, Wu J F, Huang J L, Yeh K C. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol, 2009, 182: 392-404.
doi: 10.1111/j.1469-8137.2009.02766.x pmid: 19210716 |
[9] | Grégory V, Grotz N, Fabienne D, Frédéric G, Curie C. Irt1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 6: 1223-1233. |
[10] | Connolly E L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002, 6: 1347-1357. |
[11] |
Grégory V, Jean-François B, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J, 2001, 26: 181-189.
doi: 10.1046/j.1365-313x.2001.01018.x |
[12] | Rogers E E, Eide D J, Guerinot M L. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA, 2000, 22: 12356-12360. |
[13] |
Lee S, Jeong H J, Kim S A, Lee J, Guerinot M L, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol, 2010, 73: 507-517.
doi: 10.1007/s11103-010-9637-0 pmid: 20419467 |
[14] | Yang X, Huang J, Jiang Y, Zhang H S. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep, 2009, 2: 281-287. |
[15] |
Chen W R, Feng Y, Chao Y E. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol, 2008, 55: 400-409.
doi: 10.1134/S1021443708030175 |
[16] |
Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot, 2007, 58: 2909-2915.
doi: 10.1093/jxb/erm147 pmid: 17630290 |
[17] |
Kabir A H, Akther M S, Skalicky M, Das U, Hossain M M. Downregulation of Zn transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn deficient tomato. Sci Rep, 2021, 11: 6040.
doi: 10.1038/s41598-021-85649-w |
[18] |
Tiong J L, Mcdonald G K, Genc Y, Pedas P, Hayes J E, Toubia J, Langridge P, Huang C Y. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol, 2013, 201: 131-143.
doi: 10.1111/nph.2013.201.issue-1 |
[19] |
Ramesh S A, Choimes S, Schachtman D P. Over-expression of an Arabidopsis zinc transporter in hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol, 2004, 54: 373-385.
doi: 10.1023/B:PLAN.0000036370.70912.34 |
[20] |
Gaitánsolís E, Taylor N J, Dimuth S, William S, Schachtman D P. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci, 2015, 6: 492.
doi: 10.3389/fpls.2015.00492 pmid: 26217349 |
[21] |
Guerinot M L. The ZIP family of metal transporters. Biochim Biophys Acta, 2000, 1465: 190-198.
doi: 10.1016/s0005-2736(00)00138-3 pmid: 10748254 |
[22] |
Williams L E, Pittman J K, Hall J L. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta, 2000, 1465: 104-126.
pmid: 10748249 |
[23] |
Gaxiola R A, Fink G R, Hirschi K D. Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol, 2002, 129: 967-973.
pmid: 12114553 |
[24] |
Mills R F, Krijger G C, Baccarini P J, Hall J L, Williams L E. Functional expression of At HMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J, 2003, 35: 164-176.
doi: 10.1046/j.1365-313X.2003.01790.x |
[25] | 张丽婷, 王志强, 马兴立, 彭凌馨, 郭瑞盼, 王俊哲, 刘康, 林同保. 植物中锌转运蛋白的研究进展. 贵州农业科学, 2014, 42(8): 55-60. |
Zhang L T, Wang Z Q, Ma X L, Peng L X, Guo R P, Wang J Z, Liu K, Lin T B. Research progress of zinc transporters in plants. Guizhou Agric Sci, 2014, 42(8): 55-60. (in Chinese with English abstract) | |
[26] | Henriques A R, Chalfun-Junior A, Aarts M. Strategies to increase zinc deficiency tolerance and homeostasis in plants. Brazi J Plant Physiol, 2011, 24: 3-8. |
[27] |
López Millán A F, Ellis D R, Grusak M A. Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci, 2005, 168: 1015-1022.
doi: 10.1016/j.plantsci.2004.11.018 |
[28] |
Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA, 1996, 93: 2454-2458.
doi: 10.1073/pnas.93.6.2454 pmid: 8637895 |
[29] |
Li X B, Suo H C, Liu J T, Wang L, Li C C, Liu W. Genome-wide identification and expression analysis of the potato ZIP gene family under Zn-deficienc. Biol Planta, 2020, 64: 845-855.
doi: 10.32615/bp.2020.125 |
[30] |
武亮亮, 姚磊, 马瑞, 朱熙, 杨江伟, 张宁, 司怀军. 马铃薯HD-Zip I家族ATHB12基因的克隆及功能鉴定. 作物学报, 2016, 42: 1112-1121.
doi: 10.3724/SP.J.1006.2016.01112 |
Wu L L, Yao L, Ma R, Zhu X, Yang J W, Zhang N, Si H J. Cloning and functional identification of the ATHB12 gene of HD-Zip I family in potato (Solanum tuberosum L.). Acta Agron Sin, 2016, 42: 1112-1121. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01112 |
|
[31] | 傅明辉, 陈肖丽. 植物锌铁转运蛋白ZIP家族的生物信息学分析. 广东农业科学, 2015, 42(1): 124-132. |
Fu M H, Chen X L. Bioinformatic analysis of ZIP family of zinc and iron transporters in plants. Guangdong Agric Sci, 2015, 42(1): 124-132. (in Chinese with English abstract) | |
[32] |
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+, transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr, 2006, 52: 464-469.
doi: 10.1111/j.1747-0765.2006.00055.x |
[33] |
Tan L T, Qu M M, Zhu Y X, Peng C, Wang J R, Gao D Y, Chen C Y. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol, 2020, 183: 1235-1249.
doi: 10.1104/pp.19.01569 pmid: 32341004 |
[34] |
Li S Z, Zhou X J, Huang Y Q, Zhu L Y, Zhang S J, Zhao Y F, Guo J J, Chen J T, Chen R. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol, 2013, 13: 114.
doi: 10.1186/1471-2229-13-114 pmid: 23924433 |
[35] |
Fu X Z, Zhou X, Xing F, Ling L L, Peng L Z. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci, 2017, 8: 588.
doi: 10.3389/fpls.2017.00588 pmid: 28469631 |
[36] |
Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy R R, Makarla U, Guligowda S A. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep, 2013, 7: 309-319.
doi: 10.1007/s11816-012-0264-x |
[37] |
Huang S, Ma J F. Silicon suppresses zinc uptake through down-regulating zinc transporter gene in rice. Physiol Planta, 2020, 170: 580-591.
doi: 10.1111/ppl.v170.4 |
[38] |
Huang S, Sasaki A, Yamaji N, Okada H, Mitani-Ueno N, Ma J F. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol, 2020, 183: 1224-1234.
doi: 10.1104/pp.20.00125 pmid: 32371522 |
[39] |
Youngsup S, Ryuichi T, Hiromi N, Takashi Y. Sweet potato expressing the rice Zn transporter OsZIP4 exhibits high Zn content in the tuber. Plant Biotechnol, 2016, 33: 99-104.
doi: 10.5511/plantbiotechnology.16.0328a |
[40] |
Tan L T, Zhu Y X, Fan T, Peng C, Wang J R. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun, 2019, 512: 112-118.
doi: 10.1016/j.bbrc.2019.03.024 |
[41] |
Ricachenevsky F K, Punshon T, Lee S, Oliveira B H N, Trenz T S, Maraschin F S, Hindt M N, Danku J, Salt D E, Fett J P, Guerinot M L. Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7. Front Plant Sci, 2018, 9: 865.
doi: 10.3389/fpls.2018.00865 pmid: 30018622 |
[1] | 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870. |
[2] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[3] | 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005. |
[4] | 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110. |
[5] | 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45. |
[6] | 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284. |
[7] | 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668. |
[8] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[9] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[10] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[11] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[12] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[13] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[14] | 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812. |
[15] | 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545. |
|