欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 988-995.doi: 10.3724/SP.J.1006.2023.24082

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响

李红艳1(), 李洁雅1, 李响1, 叶广继1,2,3,4,5,6, 周云1,2,3,4,5,6, 王舰1,2,3,4,5,6,*()   

  1. 1青海大学, 青海西宁 810016
    2青海省农林科学院, 青海西宁 810016
    3青海大学青藏高原生物技术教育部重点实验室, 青海西宁 810016
    4青海省马铃薯育种重点实验室, 青海西宁 810016
    5省部共建三江源生态与高原农牧业国家重点实验室, 青海西宁 810016
    6青藏高原种质资源研究与利用实验室, 青海西宁 810016
  • 收稿日期:2022-04-03 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-17
  • 通讯作者: *王舰, E-mail: jianwang2197@163.com
  • 作者简介:E-mail: 1286068155@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-9);青海省科学自然基金项目-创新团队(2022-ZJ-902);青海省创新平台建设专项(2022-ZJ-Y01)

Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato

LI Hong-Yan1(), LI Jie-Ya1, LI Xiang1, YE Guang-Ji1,2,3,4,5,6, ZHOU Yun1,2,3,4,5,6, WANG Jian1,2,3,4,5,6,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China
    3Qinghai University Key Laboratory of Qinghai-Tibet Plateau Biotechnology of the Ministry of Education, Xining 810016, Qinghai, China
    4Qinghai Provincial Key Laboratory of Potato Breeding, Xining 810016, Qinghai, China
    5Provincial and Ministry Co-construction of the State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Xining 810016, Qinghai, China
    6Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, Qinghai, China
  • Received:2022-04-03 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-17
  • Contact: *E-mail: jianwang2197@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-9);Qinghai Natural Science Foundation Program-Innovation Team(2022-ZJ-902);Qinghai Innovation Platform Construction Project(2022-ZJ-Y01)

摘要:

目前对马铃薯(Solanum tuberosum L.)中MYB基因参与的花青素研究较为深入, 但对影响马铃薯品质和安全的糖苷生物碱(steroidal glycoalkaloids, SGAs)在不同组织中的变化规律及调控机制尚不完全清楚。LrAN2是黑果枸杞(Lycium ruthenicum)中的MYB基因, 与黑果枸杞果实中花青素的积累有关。本研究以野生型大西洋、2种转LrAN2大西洋株系(LrAN2oe#66和LrAN2oe#200)为试验材料, 检测不同组织中的花青素和SGAs含量, 并对SGAs生物合成相关基因的表达量分析。pH示差法检测花青素发现, 仅在转基因植株(LrAN2oe#200)叶片中检测到一定量的花青素(12 mg 100 g-1 FW)。高效液相色谱-串联质谱法检测SGAs发现, 3个材料不同组织SGAs含量变化为叶片>薯皮>薯肉。薯皮中的SGAs含量无显著性差异; 薯肉中LrAN2oe#66的SGAs含量较对照降低、LrAN2oe#200对照显著增加1.3倍, 但未超出安全标准(0.2 mg g-1 FW); 叶片中LrAN2oe#66的SGAs含量较对照增加1倍、LrAN2oe#200较对照显著增加3.8倍。qRT-PCR分析基因表达量发现, StHMG1StSGT2基因受到LrAN2基因的调控在转基因植株中显著上调。本研究结果对马铃薯植株中花青素含量的积累具有指导意义, 为进一步解析马铃薯资源中花青素及SGAs的调控机制提供理论依据。

关键词: LrAN2基因, 马铃薯, 花青素, 糖苷生物碱

Abstract:

At present, the research on the anthocyanins involved in the MYB gene in potato (Solanum tuberosum L.) is relatively in-depth, but the change rule and regulatory mechanism of the glycoalkaloids (steroidal glycoalkaloids, SGAs) in different tissues, which affect the quality and safety of potato, are still unclear. LrAN2, the MYB gene in Lycium ruthenicum, is associated with the accumulation of anthocyanins in Lycium ruthenicum fruit. In this study, to detect the contents of anthocyanins and SGAs in different tissues, and to analyze the expression of genes related to SGA biosynthesis, wild-type Atlantic and two trans-LrAN2 Atlantic lines (LrAN2oe#66 and LrAN2oe#200) were used as the test materials. The detection of anthocyanins by pH differential method showed that only a certain number of anthocyanins (12 mg 100 g-1 FW) were detected in the leaves of transgenic plants (LrAN2oe#200). The contents of SGAs by HPLC-TMS in different tissues of the three materials were as follows: leaves>potato skin>potato flesh. There was no significant difference in the contents of SGAs in potato peels. Compared with the control, the SGAs content of LrAN2oe#66 in potato flesh was lower than the control, and the SGAs content of LrAN2oe#200 was significantly increased by 1.3 times, but did not exceed the safety standard (0.2 mg g-1 FW). The contents of SGAs in LrAN2oe#66 of leaves were increased by 1 times and LrAN2oe#200 was significantly increased by 3.8 times compared with the control. StHMG1 and StSGT2 genes were significantly up-regulated in transgenic plants under the regulation of LrAN2 gene by qRT-PCR. These results give a guiding significance for the accumulation of anthocyanins in potato plants and provide a theoretical basis for further analysis of the regulation mechanism of anthocyanins and SGAs in potato resources.

Key words: LrAN2 gene, potato, anthocyanin, glycoalkaloid

图1

马铃薯SGAs生物合成途径"

表1

试验所需引物序列"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
qStHMG1 CAGGTTCAAATGCAAGACTC GATAGATCTATTATATTTCAT
qStSQS1 ACTTGCAGAGACTCGGGAAC TCGGTTGCCAGAAAGTTGTG
qStCAS ACCATTACACTCTGCAGCAA GAACGATATTCTCCCAATGC
qStSSR2 AAGCGCCTTGAACAGAGGAA ACCCTTGACATTTGGCCCAT
qStGAME4 GGCTTGCATTTGAGGTGTTTA GAGCCTTGAGTCCCTTATGAT
qStGAME8a TGGGAGATATGACAATTC GCCATGCCAAAGTTATTACC
qStSGT1 GGAACAATCTCACTGCTC CACACACACACCAAGTTAC
qStSGT2 CAATCTTACCGCACTTATAG GTGTTTATTCCCAGCCCTAG
qStSMT1 GATATCTAGGGGACAGGT CAGGTAGCTTCTATTGCG
qStCYP51G AATGTGGGGTTGCTGTTAGT ATCAACCCACCAACAATAGG
Actin (internal reference gene) AGATGCTTACGCTGGATG GAATGC TTCCGGTGTGGTTGGATTCTGTTC

图2

部分过表达LrAN2基因马铃薯 M: DL 2000 marker; Plasmid: LrAN2质粒; WT: 野生型。"

图3

大西洋(Atlantic)和转基因马铃薯的表型特征(A)、大西洋和LrAN2oe#200的花青素含量(B) n.d.表示花青素含量为0 mg 100 g-1, 生物学重复n = 3。"

图4

Atlantic、LrAN2oe#66、LrAN2oe#200薯皮(A)、薯肉(B)和叶片(C)中的SGAs含量 不同小写字母表示不同品种间SGAs的差异显著性(P < 0.05)。"

图5

SGAs生物合成相关基因在Atlantic和LrAN2oe#200薯皮中的表达量变化 不同小写字母表示不同品种间基因表达量的差异显著性(P < 0.05)。"

图6

SGAs生物合成相关基因在Atlantic和LrAN2oe#200薯肉中的表达量变化 不同小写字母表示不同品种间基因表达量的差异显著性(P < 0.05)。"

图7

SGAs生物合成相关基因在Atlantic和LrAN2oe#200叶片中的表达量变化 不同小写字母表示不同品种间基因表达量的差异显著性(P < 0.05)。"

[1] 石娜, 何玉华. 糖苷生物碱的药理学及临床应用研究进展. 畜牧与饲料科学, 2018, 39(6): 78-80.
Shi N, He Y H. Progress in pharmacology and clinical application of glycoalkaloids. Anim Husb Feed Sci, 2018, 39(6): 78-80. (in Chinese with English abstract)
[2] 梁克红, 卢林纲, 朱大洲, 朱宏. 马铃薯糖苷生物碱的研究进展. 食品研究与开发, 2017, 38(21): 195-199.
Liang K H, Lu L G, Zhu D Z, Zhu H. Research progress of potato glycoside alkaloids. Food Res Dev, 2017, 38(21): 195-199. (in Chinese with English abstract)
[3] Mohsenikia M, Farhangi B, Alizadeh A M, Khodayari H, Khodayari S, Khori V, Arjmand A Y, Vesovic M, Soleymani A, Najafi F. Therapeutic effects of dendrosomal solanine on a metastatic breast tumor. Life Sci, 2016, 148: 260-267.
doi: 10.1016/j.lfs.2016.02.008 pmid: 26854999
[4] 李志文, 周宝利, 刘翔, 张平. 茄科植物体内糖苷生物碱的生理生态活性研究进展. 上海农业学报, 2011, 27(3): 129-134.
Li Z W, Zhou B L, Liu X, Zhang P. Research progress on the physiological and ecological activities of glycoalkaloids in Solanaceae. Shanghai J Agric Sci, 2011, 27(3): 129-134. (in Chinese with English abstract)
[5] Sanford L L, Kobayashi R S, Deahl K L, Sinden S L. Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J, 1997, 74: 15-21.
doi: 10.1007/BF02849168
[6] 伍慧敏, 曾静, 李美, 刘德明, 杜宇, 熊兴耀, 曾建国. 液相色谱-质谱联用法检测马铃薯中α-茄碱含量. 食品科学, 2013, 34(24): 121-124.
Wu H M, Zeng J, Li M, Liu D M, Du Y, Xiong X Y, Zeng J G. Determination of α-solanine in potato by liquid chromatography-mass spectrometry. Food Sci, 2013, 34(24): 121-124. (in Chinese with English abstract)
[7] 任丹丹, 刘洋, 史晓梅, 孙大江, 王书雅, 谢云峰. 超高效液相色谱-串联质谱法测定马铃薯中α-茄碱和α-卡茄碱. 食品安全质量检测学报, 2019, 10: 8231-8235.
Ren D D, Liu Y, Shi X M, Sun D J, Wang S Y, Xie Y F. Determination of α-solanine and α-caconine in potato by ultra performance liquid chromatography-tandem mass spectrometry. J Food Safety Qual Test, 2019, 10: 8231-8235. (in Chinese with English abstract)
[8] 郭海霞, 张晶晶, 安然, 乔岩, 石文慧, 石菁, 张金文. 马铃薯地上部绿色组织中糖苷生物碱合成调控的研究. 园艺学报, 2017, 44: 1105-1115.
Guo H X, Zhang J J, An R, Qiao Y, Shi W H, Shi J, Zhang J W. Study on the regulation of glycoalkaloid synthesis in the aboveground green tissues of potato. Acta Hortic Sin, 2017, 44: 1105-1115. (in Chinese with English abstract)
[9] Itkin M, Heinig U, Tzfadia O, Bhide A J, Shinde B, Cardenas P D, Bocobza S E, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri A P, Aharoni A. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science, 2013, 341: 175-179.
doi: 10.1126/science.1240230 pmid: 23788733
[10] Nakayasu M, Umemoto N, Ohyama K, Fujimoto Y, Lee H J, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. A dioxygenase catalyzes steroid 16 α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiol, 2017, 175: 120-133.
doi: 10.1104/pp.17.00501 pmid: 28754839
[11] Nes W D. Biosynthesis of cholesterol and other sterols. Chem Rev, 2011, 111: 6423-6451.
doi: 10.1021/cr200021m pmid: 21902244
[12] Kumar A, Fogelman E, Weissberg M, Tanami Z, Veilleux R E, Ginzberg I. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta, 2017, 246: 1189-1202.
doi: 10.1007/s00425-017-2763-z pmid: 28828630
[13] Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 2014, 26: 3763-3774.
doi: 10.1105/tpc.114.130096
[14] Arnqvist L, Dutta P C, Jonsson L, Sitbon F. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol, 2003, 131: 1792-1799.
doi: 10.1104/pp.102.018788 pmid: 12692338
[15] Sonawane P D, Heinig U, Panda S, Gilboa N S, Yona M, Kumar S P, Alkan N, Unger T, Bocobza S, Pliner M, Malitsky S, Tkachev M, Meir S, Rogachev I, Aharoni A. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc Natl Acad Sci USA, 2018, 115: E5419-E5428.
[16] 黄红苹, 郭华春, 王琼, 沈词专, 周晨. 云南马铃薯品种(系)块茎中的龙葵素含量测定. 中国农业科学, 2011, 44: 1512-1518.
Huang H P, Guo H C, Wang Q, Shen C Z, Zhou C. Determination of solanine content in tubers of Yunnan potato varieties (lines). Sci Agric Sin, 2011, 44: 1512-1518. (in Chinese with English abstract)
[17] Cárdenas P, Sonawane P, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun, 2016, 7: 10654.
doi: 10.1038/ncomms10654 pmid: 26876023
[18] 许芸梅, 李玉梅, 贾玉鑫, 张春芝, 李灿辉, 黄三文, 祝光涛. 马铃薯红色薯肉调控基因的精细定位与候选基因分析. 中国农业科学, 2019, 52: 2678-2685.
Xu Y M, Li Y M, Jia Y X, Zhang C Z, Li C H, Huang S W, Zhu G T. Fine mapping and candidate gene analysis of regulatory genes in potato red potato meat. Sci Agric Sin, 2016, 52: 2678-2685. (in Chinese with English abstract)
[19] Chhon S, Jeon J, Kim J, Park S U. Accumulation of anthocyanins through overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules, 2020, 10: 277.
doi: 10.3390/biom10020277
[20] Rommens C M, Richael C M, Yan H, Navarre D A, Ye J, Krucker M, Swords K. Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnol J, 2008, 6: 870-886.
doi: 10.1111/j.1467-7652.2008.00362.x pmid: 18662373
[21] 罗香怡, 李云, 曹东, 魏乐, 宗渊, 刘宝龙. 枸杞MYB转录因子LrAN2在番茄中的过量表达分析. 西北农业学报, 2021, 30: 1374-1381.
Luo X Y, Li Y, Cao D, Wei L, Zong Y, Liu B L. Analysis of overexpression of Lycium barbarum MYB transcription factor LrAN2 in tomato. Northwest Agric J, 2021, 30: 1374-1381. (in Chinese with English abstract)
[22] Zong Y, Zhu X, Liu Z, Xi X, Li G, Cao D, Wei L, Li J, Liu B. Functional MYB transcription factor encoding gene AN2 is associated with anthocyanin biosynthesis in Lycium ruthenicum Murray. BMC Plant Biol, 2019, 19: 169.
doi: 10.1186/s12870-019-1752-8
[23] Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002, 14: 1093-1097.
doi: 10.1105/tpc.010436
[24] Gachon C, Baltz R, Saindrenan P. Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance. Plant Mol Biol, 2004, 54: 137-146.
doi: 10.1023/B:PLAN.0000028775.58537.fe
[25] 谭继君, 伍小松. α-茄碱的生理功能及其在畜禽生产中的应用前景. 中国饲料, 2018, 4(17): 23-26.
Tan J J, Wu X S. Physiological function of α-solanine and its application prospect in livestock and poultry production. China Feed, 2018, 4(17): 23-26. (in Chinese with English abstract)
[26] 商婷婷, 邝梦婷, 胡新喜, 熊兴耀, 陆英. HPLC-ELSD法同时测定马铃薯中α-茄碱和α-卡茄碱含量. 食品与机械, 2015, 31(4): 55-58.
Shang T T, Guang M T, Hu X X, Xiong X Y, Lu Y. Simultaneous determination of α-solanine and α-chaconine in potato by HPLC-ELSD. Food Mach, 2015, 31(4): 55-58. (in Chinese with English abstract)
[27] 郑海松, 谢晶琦, 孙娟娟, 叶永康, 操小栋. 转基因作物中CaMV35S序列信号双重放大的电化学基因传感方法. 分析测试学报, 2021, 40: 989-995.
Zheng H S, Xie J Q, Sun J J, Ye Y K, Cao X D. Electrochemical gene sensing method for double amplification of CaMV35S sequence signal in transgenic crops. Chin J Analy Test, 2021, 40: 989-995. (in Chinese with English abstract)
[28] Holtorf S, Apel K, Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol, 1995, 29: 637-646.
pmid: 8541491
[1] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[2] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
[3] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[4] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[5] 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668.
[6] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[7] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[10] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[11] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[12] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[13] 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839.
[14] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
[15] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .