欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 996-1005.doi: 10.3724/SP.J.1006.2023.24062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

StEFR1正调控马铃薯对晚疫病的抗性

张卫娜(), 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩*()   

  1. 甘肃农业大学园艺学院, 甘肃兰州 730070
  • 收稿日期:2022-03-21 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-22
  • 通讯作者: *秦舒浩, E-mail: qinsh@gsau.edu.cn
  • 作者简介:E-mail: zhangwn@gsau.edu.cn
  • 基金资助:
    甘肃农业大学科技创新基金(公招博士科研启动基金项目)(GAU-KYQD-2020-10);甘肃省自然科学基金项目(21JR7RA827);国家自然科学基金项目(32060441)

StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum)

ZHANG Wei-Na(), YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao*()   

  1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-03-21 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-22
  • Contact: *E-mail: qinsh@gsau.edu.cn
  • Supported by:
    Science and Technology Innovation Fund of Gansu Agricultural University (Doctoral Research Start-up Fund Project for Public Recruitment)(GAU-KYQD-2020-10);Natural Science Foundation of Gansu Province(21JR7RA827);National Natural Science Foundation of China(32060441)

摘要:

马铃薯晚疫病是毁灭性卵菌病害, 对我国乃至全球的农业生产造成巨大的经济损失。本试验结合生物信息学分析、表达模式和功能验证, 分析了LRR-RLK家族成员StEFR1调控晚疫病抗性的作用和潜在的调控机制。进化分析表明, StEFR1与拟南芥中功能已知的AtEFR序列相似度为53.9%。接种晚疫病菌3 d和elf18处理3 h, ‘大西洋’离体叶片中StEFR1的表达分别上调至对照的1.87倍和2.31倍。瞬时过表达StEFR1的叶片受到晚疫病菌侵染时抗性增强, 表现在叶片病斑面积较对照减小, 而叶片细胞活性较对照增强。此外, 与野生型相比, 过表达StEFR1的叶片中3个PTI标记基因、SA和JA信号通路相关基因差异表达, 且呈不同程度的显著上调, 而ET信号通路相关基因的表达量无明显变化。综上所述, StEFR1参与晚疫病菌诱导的PTI抗性, 且调控SA和JA激素信号相关基因的表达, 对晚疫病起正调控作用。本文为深入研究StEFR1调控晚疫病免疫反应的分子机制奠定了基础, 并为晚疫病分子育种研究提供重要参考。

关键词: 马铃薯晚疫病, LRR-RLK家族, 激素信号, 标记基因, 差异表达

Abstract:

Potato late blight is a devastating oomycete disease, which causes great economic losses to agricultural production. In this study, we analyzed the role and potential regulatory mechanism of StEFR1 in regulating late blight resistance by the relative expression pattern and functional verification combined with the bioinformatics methods. Evolutionary analysis showed that the sequence similarity between StEFR1 and AtEFR was 53.9%. After inoculated with Phytophthora infestans for 3 days and treatment with elf18 for 3 hours, the relative expression level of StEFR1 in isolated leaves of Atlantic was upregulated to 1.87 times and 2.31 times compared with the control, respectively. The late blight resistance significantly increased after the overexpression of StEFR1 in the isolated leaves of Atlantic by agrobacterium infiltration method. Compared with the control, the area of leaf lesion size decreased and the activity of leaf cells increased. And the marker genes of PTI, SA, and JA signaling pathways in overexpressed leaves were significantly up-regulated to varied degrees, while the relative expression levels of ET related-genes did not change significantly. In conclusion, StEFR1 was involved in the PTI resistance and regulated the relative expression levels of SA and JA hormone signaling related genes, suggesting that StEFR1 positively regulated the potato late blight. This study lays a foundation for further revealing the molecular mechanism of StEFR1 in regulating the immune response and provides important reference for the molecular breeding of late blight.

Key words: potato late blight, LRR-RLKs, hormonal signal, marker gene, differential expression

表1

实时荧光定量PCR引物"

基因名称
Gene name
上游引物
Forward sequence (5′-3′)
下游引物
Reverse sequence (5′-3′)
ef1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
ChtA TTCTGGATGACAGCACAGGATAA GGCGTCCATTGCCCAAT
PR-1b GGCATCCCGAGCACAAAAT CTGCACCGGAATGAATCAAGT
PR-2 GTGAAGCTGGTTTGGGAAATG TTGCCAATCAACGTCATGTCTAC
WRKY7 CCAACTGGAAGCAACAACAA CCTGATTAGAATGATTAGCCAACA
WRKY8 CCTACTGTGACATCTCATCAATCC GGGTGCTCCCATTTCAGAC
ACRE31 CAGGATGAATCGGATCTGAAA CGGCAATCCCAATTTCTCTA
LOX CAGATCAGGCCCCGTTAATG CCTGTAAGTCCACCTTCACTTGTTG
PAL-2 GGTCACTGCCTCGGGTGAT CCTGCCAGTGAGCAAACCA
ERF3 GTGTTGACGTGAAACCAACCAT CCGGTGGAGGAAAGTTAAGGT

图1

StEFR1结构域鉴定、进化分析和序列比对 A: 对StEFR1进行结构域鉴定发现, 此基因为典型的LRR-RLK家族成员; B: StEFR1与拟南芥中功能已知的AT5G20480(AtEFR)亲缘关系相对较近; C: StEFR1与AtEFR序列相似性为53.9%。"

图2

StEFR1响应病原菌信号的表达模式 *、**分别表示在0.05和0.01概率水平差异显著。"

表2

StEFR1启动子区域顺式调控元件"

序号
Serial number
顺式调控元件
Cis-elements
数目
Number
1 防御和应激反应元件Defense and stress responsive elements 2
2 脱落酸响应元件Abscisic acid responsive elements 2
3 厌氧诱导相关元件Anaerobic responsive elements 7
4 干旱诱导元件Drought responsive elements 5
5 玉米醇溶蛋白代谢调节元件Regulatory element for zein metabolism 1
6 光照响应元件Light responsive elements 10

图3

瞬时超表达StEFR1后叶片对晚疫病侵染的抗性增强 A: 第2天时StEFR1的相对表达量最高; B: 第4天时WT叶片发病症状严重; C: WT和OE组叶片的病斑面积; D: WT组大量细胞呈死亡状态。WT: 接种空载体pFGC5941对照组; OE: 接种StEFR1-PFGC5941的处理组。*、**分别表示在0.05和0.01概率水平差异显著。"

图4

接种晚疫病菌后WT和OE叶片中PTI 标记基因(WRKY7、WRKY8和ACRE31)的表达模式 WT: 接种空载体pFGC5941对照组; OE: 接种StEFR1-PFGC5941的处理组。*、**分别表示在0.05和0.01概率水平差异显著。"

图5

接种晚疫病菌后WT和OE叶片中SA (ChtA、PR-1B和PR-2)、JA (LOX和PAL-2)和ET (ERF3)信号通路相关基因的表达模式 WT代表接种空载体pFGC5941对照组; OE代表接种StEFR1-PFGC5941的处理组。*、**分别表示在0.05和0.01概率水平差异显著。"

[1] Lal M, Arora R K, Maheshwari U, Rawal S, Yadav S. Impact of late blight occurrence on potato productivity during 2013-14. Int J Agric Statist Sci, 2016, 12: 187-192.
[2] Lindqvist-Kreuze H, Gastelo M, Perez W, Forbes G A, Koeyer D, Bonierbale M. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. Phytopathology, 2014, 104: 624-633.
doi: 10.1094/PHYTO-10-13-0270-R pmid: 24423400
[3] Haverkort A J, Boonekamp P M, Hutten R, Jacobsen E, Lotz L A P, Kessel G J T, Visser R G F, Vossen E A G. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res, 2008, 51: 47-57.
doi: 10.1007/s11540-008-9089-y
[4] 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019, 52: 2800-2808.
Xu J, Zhu J H, Yang Y L, Tang H, Lyu H P, Fan M S, Shi Y, Dong D F, Wang G J, Wang W X, Xiong X Y, Gao Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Sci Agric Sin, 2019, 52: 2800-2808. (in Chinese with English abstract).
[5] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
doi: 10.1038/nature05286
[6] Park T H, Vleeshouwers V G A A, Jacobsen E, Van Der Vossen E, Visser R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breed, 2009, 128: 109-117.
doi: 10.1111/j.1439-0523.2008.01619.x
[7] Bradshaw J E, Bryan G J, Lees A K, McLean K, Solomon-Blackburn R M. Mapping the R10 and R11 genes for resistance to late blight (Phytophthora infestans) present in the potato (Solanum tuberosum) R-gene differentials of black. Theor Appl Genet, 2006, 112: 744-751.
doi: 10.1007/s00122-005-0179-9 pmid: 16395567
[8] Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol Plant Pathol, 2013, 14: 740-757.
doi: 10.1111/mpp.12036 pmid: 23710878
[9] Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant, 2015, 8: 521-539.
doi: 10.1016/j.molp.2014.12.022 pmid: 25744358
[10] Couto D, Zipfel C. Regulation of pattern recognition receptor signaling in plants. Nat Rev Immunol, 2016, 16: 537-552.
doi: 10.1038/nri.2016.77
[11] Zipfel C, Robatzek S. Pathogen-associated molecular pattern- triggered immunity: veni, vidi...? Plant Physiol, 2010, 154: 551-554.
doi: 10.1104/pp.110.161547 pmid: 20921183
[12] Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol, 2020, 71: 131-156.
doi: 10.1146/annurev-arplant-073019-025927 pmid: 32186895
[13] Angela C G, Wilkinson R C, Selena G I, Kim F, Coffey M D, Cyril Z, Rathjen J P, Sophien K, Sebastian S, Yang C H. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One, 2011, 6: e16608.
doi: 10.1371/journal.pone.0016608
[14] Montesano M, Kõiv V, Mäe A, Palva E T. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato. Mol Plant Pathol, 2010, 2: 339-346.
doi: 10.1046/j.1464-6722.2001.00083.x
[15] Wu T, Tian Z D, Liu J, Xie C H. A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Mol Biol Rep, 2009, 36: 2365-2374.
doi: 10.1007/s11033-009-9459-9 pmid: 19214776
[16] Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR- LIKE KINASE5 (LYK5). New Phytol, 2017, 215: 382-396.
doi: 10.1111/nph.14592 pmid: 28513921
[17] Lee W S, Rudd J J, Hammond-Kosack K E, Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant Microbe Interact, 2014, 27: 236-243.
doi: 10.1094/MPMI-07-13-0201-R
[18] Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nuernberger T, Jones J D G, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448: 497-500.
doi: 10.1038/nature05999
[19] Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60: 379-406.
doi: 10.1146/annurev.arplant.57.032905.105346 pmid: 19400727
[20] Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse H P, Smoker M, Rallapalli G, Thomma B P H J, Staskawicz B. Interfamily transfer of a plant pattern-recognition receptor confers broad spectrum bacterial resistance. Nat Biotechnol, 2010, 28: 365-369.
doi: 10.1038/nbt.1613
[21] Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas P E, Daudi A, Petzold C J, Singan V R, Kuo R. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog, 2015, 11: e1004809.
doi: 10.1371/journal.ppat.1004809
[22] Turnbull D, Yang L, Naqvi S, Breen S, Welsh L, Stephens J, Morris J, Boevink P C, Hedley P E, Zhan J l, Birch Paul R J, Gilroy E. RXLR effector AVR2 up-regulates a brassinosteroid responsive bHLH transcription factor to suppress immunity. Plant Physiol, 2017, 174: 356-369.
doi: 10.1104/pp.16.01804 pmid: 28270626
[23] He Q, McLellan H, Boevink P C, Sadanandom A, Xie C, Birch P R J, Tian Z. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot, 2015, 66: 3189-3199.
doi: 10.1093/jxb/erv128
[24] Arseneault T, Pieterse C, Gérin-Ouellet M, Goyer C, Filion M. Long-term induction of defense gene expression in potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology, 2014, 104: 926-932.
doi: 10.1094/PHYTO-11-13-0321-R pmid: 24601985
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Zhang L, Zhang F, Melotto M, Yao J, He S Y. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot, 2017, 68: 1371-1385.
doi: 10.1093/jxb/erw478 pmid: 28069779
[27] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125: 749-760.
doi: 10.1016/j.cell.2006.03.037 pmid: 16713565
[28] Lloyd S R, Schoonbeek H-J, Trick M, Zipfel C, Ridout C J. Methods to study PAMP-triggered immunity in Brassica species. Mol Plant Microbe Interact, 2014, 27: 286-295.
doi: 10.1094/MPMI-05-13-0154-FI
[29] 路粉. 水稻中表达拟南芥AtEFR及水稻内源受体对细菌延伸因子EF-Tu识别的研究. 中国农业大学博士学位论文, 北京, 2015.
Lu F. Studies on Recognition of Bacterial Elongation Factor EF-Tu by Arabidopsis AtEFR and Endogenous Receptor in Oryza sativa. PhD Dissertation of China Agricultural University, Beijing, China, 2015. (in Chinese with English abstract)
[30] Schoonbeek H, Wang H H, Stefanato F L, Craze M, Bowden S, Wallington E, Zipfel C, Ridout C J. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol, 2015, 206: 606-613.
doi: 10.1111/nph.13356 pmid: 25760815
[31] Macho A P, Zipfel C. Plant PRRs and the activation of innate immune signaling. Mol Cell, 2014, 54: 263-372.
doi: 10.1016/j.molcel.2014.03.028 pmid: 24766890
[32] Greeff C, Roux M, Mundy J, Petersen M. Receptor-like kinase complexes in plant innate immunity. Front Plant Sci, 2012, 3: 209.
doi: 10.3389/fpls.2012.00209 pmid: 22936944
[33] Liu P L, Du L, Huang Y, Gao S M, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47.
doi: 10.1186/s12862-017-0891-5
[34] McLellan H, Boevink P C, Armstrong M R, Pritchard L, Gomez S, Morales J, Whisson S C, Beynon J L, Birch P R J. An RxLR effector from Phytophthora infestans prevents relocalisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog, 2013, 9: e1003670.
doi: 10.1371/journal.ppat.1003670
[35] 王海霞. 类受体激酶StLRPK1、StSERK3A/BAK和磷酸酶StBSLs在马铃薯晚疫病抗性免疫应答中的作用. 华中农业大学博士学位论文, 湖北武汉, 2018.
Wang H X. Investigation of Receptor Kinase StLRPK1, StSERK3A/BAK1 and Phosphotase StBSLs Functions in Potato Immunity Against Late Blight. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[36] 郑佳仪. 马铃薯高抗晚疫病资源筛选与抗病相关基因挖掘. 中国农业科学院硕士学位论文, 北京, 2020.
Zheng J Y. Identification of High Resistance Potato Resource to Late Blight and Mining of Resistance Related Genes. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract)
[1] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[2] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[3] 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析[J]. 作物学报, 2022, 48(11): 2733-2748.
[4] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[5] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[6] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[7] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[8] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[9] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
[10] 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689.
[11] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[12] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[13] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[14] 邢芦蔓, 吕伟增, 雷薇, 梁雨欢, 卢洋, 陈军营. 玉米种胚HSP20基因对人工老化处理的响应[J]. 作物学报, 2018, 44(11): 1733-1742.
[15] 李永辉,陈琳琳,孙炳剑,王利民,邢小萍,袁虹霞,丁胜利*,李洪连*. 假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J]. 作物学报, 2017, 43(11): 1632-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .