作物学报 ›› 2023, Vol. 49 ›› Issue (4): 996-1005.doi: 10.3724/SP.J.1006.2023.24062
张卫娜(), 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩*()
ZHANG Wei-Na(), YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao*()
摘要:
马铃薯晚疫病是毁灭性卵菌病害, 对我国乃至全球的农业生产造成巨大的经济损失。本试验结合生物信息学分析、表达模式和功能验证, 分析了LRR-RLK家族成员StEFR1调控晚疫病抗性的作用和潜在的调控机制。进化分析表明, StEFR1与拟南芥中功能已知的AtEFR序列相似度为53.9%。接种晚疫病菌3 d和elf18处理3 h, ‘大西洋’离体叶片中StEFR1的表达分别上调至对照的1.87倍和2.31倍。瞬时过表达StEFR1的叶片受到晚疫病菌侵染时抗性增强, 表现在叶片病斑面积较对照减小, 而叶片细胞活性较对照增强。此外, 与野生型相比, 过表达StEFR1的叶片中3个PTI标记基因、SA和JA信号通路相关基因差异表达, 且呈不同程度的显著上调, 而ET信号通路相关基因的表达量无明显变化。综上所述, StEFR1参与晚疫病菌诱导的PTI抗性, 且调控SA和JA激素信号相关基因的表达, 对晚疫病起正调控作用。本文为深入研究StEFR1调控晚疫病免疫反应的分子机制奠定了基础, 并为晚疫病分子育种研究提供重要参考。
[1] | Lal M, Arora R K, Maheshwari U, Rawal S, Yadav S. Impact of late blight occurrence on potato productivity during 2013-14. Int J Agric Statist Sci, 2016, 12: 187-192. |
[2] |
Lindqvist-Kreuze H, Gastelo M, Perez W, Forbes G A, Koeyer D, Bonierbale M. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. Phytopathology, 2014, 104: 624-633.
doi: 10.1094/PHYTO-10-13-0270-R pmid: 24423400 |
[3] |
Haverkort A J, Boonekamp P M, Hutten R, Jacobsen E, Lotz L A P, Kessel G J T, Visser R G F, Vossen E A G. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res, 2008, 51: 47-57.
doi: 10.1007/s11540-008-9089-y |
[4] | 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019, 52: 2800-2808. |
Xu J, Zhu J H, Yang Y L, Tang H, Lyu H P, Fan M S, Shi Y, Dong D F, Wang G J, Wang W X, Xiong X Y, Gao Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Sci Agric Sin, 2019, 52: 2800-2808. (in Chinese with English abstract). | |
[5] |
Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
doi: 10.1038/nature05286 |
[6] |
Park T H, Vleeshouwers V G A A, Jacobsen E, Van Der Vossen E, Visser R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breed, 2009, 128: 109-117.
doi: 10.1111/j.1439-0523.2008.01619.x |
[7] |
Bradshaw J E, Bryan G J, Lees A K, McLean K, Solomon-Blackburn R M. Mapping the R10 and R11 genes for resistance to late blight (Phytophthora infestans) present in the potato (Solanum tuberosum) R-gene differentials of black. Theor Appl Genet, 2006, 112: 744-751.
doi: 10.1007/s00122-005-0179-9 pmid: 16395567 |
[8] |
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol Plant Pathol, 2013, 14: 740-757.
doi: 10.1111/mpp.12036 pmid: 23710878 |
[9] |
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant, 2015, 8: 521-539.
doi: 10.1016/j.molp.2014.12.022 pmid: 25744358 |
[10] |
Couto D, Zipfel C. Regulation of pattern recognition receptor signaling in plants. Nat Rev Immunol, 2016, 16: 537-552.
doi: 10.1038/nri.2016.77 |
[11] |
Zipfel C, Robatzek S. Pathogen-associated molecular pattern- triggered immunity: veni, vidi...? Plant Physiol, 2010, 154: 551-554.
doi: 10.1104/pp.110.161547 pmid: 20921183 |
[12] |
Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol, 2020, 71: 131-156.
doi: 10.1146/annurev-arplant-073019-025927 pmid: 32186895 |
[13] |
Angela C G, Wilkinson R C, Selena G I, Kim F, Coffey M D, Cyril Z, Rathjen J P, Sophien K, Sebastian S, Yang C H. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One, 2011, 6: e16608.
doi: 10.1371/journal.pone.0016608 |
[14] |
Montesano M, Kõiv V, Mäe A, Palva E T. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato. Mol Plant Pathol, 2010, 2: 339-346.
doi: 10.1046/j.1464-6722.2001.00083.x |
[15] |
Wu T, Tian Z D, Liu J, Xie C H. A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Mol Biol Rep, 2009, 36: 2365-2374.
doi: 10.1007/s11033-009-9459-9 pmid: 19214776 |
[16] |
Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR- LIKE KINASE5 (LYK5). New Phytol, 2017, 215: 382-396.
doi: 10.1111/nph.14592 pmid: 28513921 |
[17] |
Lee W S, Rudd J J, Hammond-Kosack K E, Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant Microbe Interact, 2014, 27: 236-243.
doi: 10.1094/MPMI-07-13-0201-R |
[18] |
Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nuernberger T, Jones J D G, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448: 497-500.
doi: 10.1038/nature05999 |
[19] |
Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60: 379-406.
doi: 10.1146/annurev.arplant.57.032905.105346 pmid: 19400727 |
[20] |
Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse H P, Smoker M, Rallapalli G, Thomma B P H J, Staskawicz B. Interfamily transfer of a plant pattern-recognition receptor confers broad spectrum bacterial resistance. Nat Biotechnol, 2010, 28: 365-369.
doi: 10.1038/nbt.1613 |
[21] |
Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas P E, Daudi A, Petzold C J, Singan V R, Kuo R. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog, 2015, 11: e1004809.
doi: 10.1371/journal.ppat.1004809 |
[22] |
Turnbull D, Yang L, Naqvi S, Breen S, Welsh L, Stephens J, Morris J, Boevink P C, Hedley P E, Zhan J l, Birch Paul R J, Gilroy E. RXLR effector AVR2 up-regulates a brassinosteroid responsive bHLH transcription factor to suppress immunity. Plant Physiol, 2017, 174: 356-369.
doi: 10.1104/pp.16.01804 pmid: 28270626 |
[23] |
He Q, McLellan H, Boevink P C, Sadanandom A, Xie C, Birch P R J, Tian Z. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot, 2015, 66: 3189-3199.
doi: 10.1093/jxb/erv128 |
[24] |
Arseneault T, Pieterse C, Gérin-Ouellet M, Goyer C, Filion M. Long-term induction of defense gene expression in potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology, 2014, 104: 926-932.
doi: 10.1094/PHYTO-11-13-0321-R pmid: 24601985 |
[25] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[26] |
Zhang L, Zhang F, Melotto M, Yao J, He S Y. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot, 2017, 68: 1371-1385.
doi: 10.1093/jxb/erw478 pmid: 28069779 |
[27] |
Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125: 749-760.
doi: 10.1016/j.cell.2006.03.037 pmid: 16713565 |
[28] |
Lloyd S R, Schoonbeek H-J, Trick M, Zipfel C, Ridout C J. Methods to study PAMP-triggered immunity in Brassica species. Mol Plant Microbe Interact, 2014, 27: 286-295.
doi: 10.1094/MPMI-05-13-0154-FI |
[29] | 路粉. 水稻中表达拟南芥AtEFR及水稻内源受体对细菌延伸因子EF-Tu识别的研究. 中国农业大学博士学位论文, 北京, 2015. |
Lu F. Studies on Recognition of Bacterial Elongation Factor EF-Tu by Arabidopsis AtEFR and Endogenous Receptor in Oryza sativa. PhD Dissertation of China Agricultural University, Beijing, China, 2015. (in Chinese with English abstract) | |
[30] |
Schoonbeek H, Wang H H, Stefanato F L, Craze M, Bowden S, Wallington E, Zipfel C, Ridout C J. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol, 2015, 206: 606-613.
doi: 10.1111/nph.13356 pmid: 25760815 |
[31] |
Macho A P, Zipfel C. Plant PRRs and the activation of innate immune signaling. Mol Cell, 2014, 54: 263-372.
doi: 10.1016/j.molcel.2014.03.028 pmid: 24766890 |
[32] |
Greeff C, Roux M, Mundy J, Petersen M. Receptor-like kinase complexes in plant innate immunity. Front Plant Sci, 2012, 3: 209.
doi: 10.3389/fpls.2012.00209 pmid: 22936944 |
[33] |
Liu P L, Du L, Huang Y, Gao S M, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47.
doi: 10.1186/s12862-017-0891-5 |
[34] |
McLellan H, Boevink P C, Armstrong M R, Pritchard L, Gomez S, Morales J, Whisson S C, Beynon J L, Birch P R J. An RxLR effector from Phytophthora infestans prevents relocalisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog, 2013, 9: e1003670.
doi: 10.1371/journal.ppat.1003670 |
[35] | 王海霞. 类受体激酶StLRPK1、StSERK3A/BAK和磷酸酶StBSLs在马铃薯晚疫病抗性免疫应答中的作用. 华中农业大学博士学位论文, 湖北武汉, 2018. |
Wang H X. Investigation of Receptor Kinase StLRPK1, StSERK3A/BAK1 and Phosphotase StBSLs Functions in Potato Immunity Against Late Blight. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract) | |
[36] | 郑佳仪. 马铃薯高抗晚疫病资源筛选与抗病相关基因挖掘. 中国农业科学院硕士学位论文, 北京, 2020. |
Zheng J Y. Identification of High Resistance Potato Resource to Late Blight and Mining of Resistance Related Genes. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract) |
[1] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[2] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[3] | 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析[J]. 作物学报, 2022, 48(11): 2733-2748. |
[4] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[5] | 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030. |
[6] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[7] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[8] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[9] | 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024. |
[10] | 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689. |
[11] | 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660. |
[12] | 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175. |
[13] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
[14] | 邢芦蔓, 吕伟增, 雷薇, 梁雨欢, 卢洋, 陈军营. 玉米种胚HSP20基因对人工老化处理的响应[J]. 作物学报, 2018, 44(11): 1733-1742. |
[15] | 李永辉,陈琳琳,孙炳剑,王利民,邢小萍,袁虹霞,丁胜利*,李洪连*. 假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J]. 作物学报, 2017, 43(11): 1632-1642. |
|