作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1006-1015.doi: 10.3724/SP.J.1006.2023.24055
严昕1,**(), 项超2,**(), 刘荣1, 李冠1, 李孟伟1, 李正丽3, 宗绪晓1,*(), 杨涛1,*()
YAN Xin1,**(), XIANG Chao2,**(), LIU Rong1, LI Guan1, LI Meng-Wei1, LI Zheng-Li3, ZONG Xu-Xiao1,*(), YANG Tao1,*()
摘要:
BSA-seq技术在挖掘农艺性状相关的新基因中已被广泛应用, 随着豌豆首个参考基因组问世, 将BSA-seq技术结合豌豆基因组的基因定位策略势在必行。本研究利用紫花亲本G0004562、白花亲本G0002930以及F2群体, 通过BSA-seq技术对豌豆花色基因进行初步定位, 获得31.42 Mb定位区间, 再通过设计InDel分子标记分析进一步缩小定位区间, 最终将目标基因定位在包含19个基因的0.99 Mb区间内, 通过基因注释信息推测出Psat6g060480.1为豌豆花色候选基因。本研究结果验证了BSA-seq技术快速高效定位豌豆花色基因的可行性, 为利用该技术挖掘豌豆其他重要农艺性状相关基因奠定了基础。
[1] |
Pandey A K, Rubiales D, Wang Y, Fang P, Sun T, Liu N, Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor Appl Genet, 2021, 134: 755-776.
doi: 10.1007/s00122-020-03751-5 pmid: 33433637 |
[2] | Food and Agriculture Organization of the United Nations. Agriculture production data. https://www.fao.org/faostat/en/#compare. |
[3] |
Fan Z, Zhao Y, Chai Q, Zhao C, Yu A, Coulter J A, Gan Y, Cao W. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Sci Rep, 2019, 9: 10954.
doi: 10.1038/s41598-019-47554-1 pmid: 31358903 |
[4] |
Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385 |
[5] |
Hecht V, Laurie R E, Vander Schoor J K, Ridge S, Knowles C L, Liew L C, Sussmilch F C, Murfet I C, MacKnight R C, Weller J L. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell, 2011, 23: 147-161.
doi: 10.1105/tpc.110.081042 |
[6] |
Sussmilch F C, Berbel A, Hecht V, Vander Schoor J K, Ferrándiz C, Madueño F, Weller J L. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell, 2015, 27: 1046-1060.
doi: 10.1105/tpc.115.136150 |
[7] |
Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
doi: 10.1093/genetics/136.4.1457 pmid: 8013918 |
[8] |
Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
doi: 10.1093/genetics/121.1.185 pmid: 2563713 |
[9] |
王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245.
doi: 10.3724/SP.J.1006.2009.00239 |
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-345. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00239 |
|
[10] |
Wu L, Fredua-Agyeman R, Hwang S F, Chang K F, Conner R L, McLaren D L, Strelkov S E. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theor Appl Genet, 2021, 134: 2965-2990.
doi: 10.1007/s00122-021-03871-6 |
[11] |
Aznar-Fernández T, Barilli E, Cobos M J, Kilian A, Carling J, Rubiales D. Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci Rep, 2020, 10: 33.
doi: 10.1038/s41598-019-56987-7 pmid: 31913335 |
[12] |
Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-seq and RNA-seq. Royal Soc Open Sci, 2020, 7: 201081.
doi: 10.1098/rsos.201081 |
[13] |
Li R, Jiang H, Zhang Z, Zhao Y, Xie J, Wang Q, Zheng H, Hou L, Xiong X, Xin D, Hu Z, Liu C, Wu X, Chen Q. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. Int J Mol Sci, 2019, 21: 42.
doi: 10.3390/ijms21010042 |
[14] |
Pujol M, Alexiou K G, Fontaine A S, Mayor P, Miras M, Jahrmann T, Garcia-Mas J, Aranda M A. Mapping cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Front Plant Sci, 2019, 10: 1583.
doi: 10.3389/fpls.2019.01583 |
[15] |
Zheng Y, Xu F, Li Q, Wang G, Liu N, Gong Y, Li L, Chen Z H, Xu S. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing. Front Genet, 2018, 9: 615.
doi: 10.3389/fgene.2018.00615 |
[16] |
Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury J M, Batley J, Le Paslier M C, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930 |
[17] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[18] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[19] | Source Forge. Picard. San Diego, CA, USA. http://sourceforge.net/projects/picard/. |
[20] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[21] |
Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672 |
[22] |
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975 |
[23] |
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One, 2013, 8: e68529.
doi: 10.1371/journal.pone.0068529 |
[24] | Deng Y, Jianqi L I, Songfeng W U, Zhu Y, Chen Y, Fuchu H E. Integrated nr database in protein annotation system and its localization. Comp Engin, 2006, 32: 71-72. |
[25] |
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651 |
[26] |
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-D280.
doi: 10.1093/nar/gkh063 pmid: 14681412 |
[27] | Tatusov R L, Galperin M Y, Natale D A, Koonin E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28: 33-36. |
[28] |
Gillmor C S, Roeder A H, Sieber P, Somerville C, Lukowitz W. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS One, 2016, 11: e0146492.
doi: 10.1371/journal.pone.0146492 |
[29] | Branca A, Paape T D, Zhou P, Briskine R, Farmer A D, Mudge J, Bharti A K, Woodward J E, May G D, Gentzbittel L, Ben C, Denny R, Sadowsky M J, Ronfort J, Bataillon T, Young N D, Tiffin P. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci USA, 2011, 108: E864-E870. |
[30] |
Zhao M, Hu B, Fan Y, Ding G, Yang W, Chen Y, Chen Y, Xie J, Zhang F. Identification, analysis, and confirmation of seed storability-related loci in dongxiang wild rice (Oryza rufipogon Griff.). Genes (Basel), 2021, 12: 1831.
doi: 10.3390/genes12111831 |
[31] |
Liu D, Wei X, Sun D, Yang S, Su H, Wang Z, Zhao Y, Li L, Liang J, Yang L, Zhang X, Yuan Y. An SNP mutation of gene RsPP converts petal color from purple to white in radish (Raphanus sativus L.). Front Plant Sci, 2021, 12: 643579.
doi: 10.3389/fpls.2021.643579 |
[32] |
Qin L, Sun L, Wei L, Yuan J, Kong F, Zhang Y, Miao X, Xia G, Liu S. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant J, 2021, 105: 1010-1025.
doi: 10.1111/tpj.15083 |
[33] |
Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/j.1365-313X.2010.04465.x |
[34] |
He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15: 9057-9091.
doi: 10.3390/molecules15129057 pmid: 21150825 |
[35] |
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532 |
[36] |
Deng J, Li J, Su M, Lin Z, Chen L, Yang P. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiol Biochem, 2021, 158: 518-523.
doi: 10.1016/j.plaphy.2020.11.038 |
[37] |
Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore K S, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol, 2016, 210: 905-921.
doi: 10.1111/nph.13816 |
[38] |
Hellens R P, Moreau C, Lin-Wang K, Schwinn K E, Thomson S J, Fiers M W, Frew T J, Murray S R, Hofer J M, Jacobs J M, Davies K M, Allan A C, Bendahmane A, Coyne C J, Timmerman- Vaughan G M, Ellis T H. Identification of Mendel’s white flower character. PLoS One, 2010, 5: e13230.
doi: 10.1371/journal.pone.0013230 |
[1] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
[2] | 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230. |
[3] | 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646. |
[4] | 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133. |
[5] | 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913. |
[6] | 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842. |
[7] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[8] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 陶亚军, 朱静妍, 王军, 范方军, 许扬, 李文奇, 王芳权, 陈智慧, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻氮高效基因分子标记开发与基因型筛选[J]. 作物学报, 2022, 48(12): 3045-3056. |
[11] | 郭均瑶, 刘斌美, 杨惠杰, 秦超琦, 任艳, 姜鸿瑞, 陶亮之, 叶亚峰, 吴跃进. 水稻叶脉黄化突变体yml的遗传分析及基因定位[J]. 作物学报, 2022, 48(12): 3120-3129. |
[12] | 杨明, 李丹婷, 范德佳, 谭嵩娟, 程遐年, 刘裕强, 万建民. 广西野生稻Y11抗白背飞虱QTL定位[J]. 作物学报, 2022, 48(11): 2715-2723. |
[13] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[14] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. |
[15] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
|