欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1006-1015.doi: 10.3724/SP.J.1006.2023.24055

• • 上一篇    下一篇

基于BSA-seq技术对豌豆花色基因的精细定位

严昕1,**(), 项超2,**(), 刘荣1, 李冠1, 李孟伟1, 李正丽3, 宗绪晓1,*(), 杨涛1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2四川省农业科学院作物研究所, 四川成都 610066
    3贵州省农业科学院园艺研究所, 贵州贵阳 550006
  • 收稿日期:2022-03-10 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-22
  • 通讯作者: *杨涛, E-mail: yangtao02@caas.cn;宗绪晓, E-mail: zongxuxiao@caas.cn
  • 作者简介:严昕, E-mail: yanxin5290@163.com;
    项超, E-mail: xc2011cib@163.com
    **同等贡献
  • 基金资助:
    国家作物种质资源库-食用豆资源整合与共享项目(NCGRC-2021-07);普查收集食用豆资源鉴定评价与繁殖编目入库项目(19210867);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08-G11)

Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique

YAN Xin1,**(), XIANG Chao2,**(), LIU Rong1, LI Guan1, LI Meng-Wei1, LI Zheng-Li3, ZONG Xu-Xiao1,*(), YANG Tao1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Crop Sciences, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    3Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2022-03-10 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-22
  • Contact: *E-mail: yangtao02@caas.cn;E-mail: zongxuxiao@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Infrastructure for Crop Germplasm Resources Project from the Ministry of Science and Technology of China(NCGRC-2021-07);Project of Identification, Evaluation, Replication, and Preservation of Food Legumes Collected by the Survey and Collection Action on Crop Germplasm Resources(19210867);China Agriculture Research System of MOF and MARA(CARS-08-G11)

摘要:

BSA-seq技术在挖掘农艺性状相关的新基因中已被广泛应用, 随着豌豆首个参考基因组问世, 将BSA-seq技术结合豌豆基因组的基因定位策略势在必行。本研究利用紫花亲本G0004562、白花亲本G0002930以及F2群体, 通过BSA-seq技术对豌豆花色基因进行初步定位, 获得31.42 Mb定位区间, 再通过设计InDel分子标记分析进一步缩小定位区间, 最终将目标基因定位在包含19个基因的0.99 Mb区间内, 通过基因注释信息推测出Psat6g060480.1为豌豆花色候选基因。本研究结果验证了BSA-seq技术快速高效定位豌豆花色基因的可行性, 为利用该技术挖掘豌豆其他重要农艺性状相关基因奠定了基础。

关键词: 豌豆, BSA-seq, InDel, 基因定位

Abstract:

In recent years, BSA-seq technology has been widely used in the mining of new genes related to agronomic traits. With the development of the first reference genome of pea, it is imperative to combine BSA-seq method with genome-wide sequencing for gene mapping. In this study, we used purple flower parent G0004562, white flower parent G0002930, and F2 populations for preliminarily locate the target genes controlling flower color by BSA-seq technology, and a mapping region of 31.42 Mb was obtained. Then, the InDel molecular markers were designed to further narrow the mapping interval, and finally the target gene was located in the range of 0.99 Mb with 19 genes. Based on gene annotation, Psat6g060480.1 was considered as the candidate gene that controled the flower color. The results of this study verified the feasibility of gene mapping by BSA-seq technology in pea.

Key words: pea, BSA-seq, InDel, gene mapping

表1

F2群体中不同花色的植株数目"

杂交组合
Combination
紫花株数
No. of purple flower plant
白花株数
No. of white flower plant
期望值
Expectation ratio
卡方值
χ2
检验值
χ2(0.05,1)
G0004562×G0002930 941 321 3:1 0.13 3.84

表2

不同样品测序比对结果"

样品编号
Sample ID
全部reads数
Total_reads
与参考基因组比对
Mapped (%)
平均覆盖深度
Ave_depth
基因组覆盖度
Cov_ratio_1× (%)
碱基数质量值大于30
Q30 (%)
R125 584,524,436 99.78 21 83.02 92.96
R127 558,380,728 99.64 20 79.03 93.28
R135 882,730,682 99.73 30 86.34 92.70
R138 880,248,082 99.75 30 86.58 92.94

图1

关联值在染色体上的分布(SNP) A: ED关联分析结果。横坐标为染色体的分布, 每个点代表SNP位点的ED值。B: SNP-index关联分析结果。横坐标为染色体的分布, 每个点代表的ΔSNP-index值。"

图2

关联值在染色体上的分布(InDel) A: ED关联分析结果。横坐标为染色体的分布, 每个点代表InDel位点的ED值。B: SNP-index关联分析结果。横坐标为染色体的分布, 每个点代表的ΔInDel-index值。"

表3

不同关联分析方法获得的关联区域"

染色体位置
Chromosome ID
关联区域始位置
Start
关联区域终止位置
End
关联区域大小
Size (Mb)
关联区域内基因数量
Gene number
Chr6LG2 60,560,000 91,060,000 30.50 434
Chr6LG2 91,090,000 91,150,000 0.060 2
Chr6LG2 91,320,000 91,630,000 0.310 7
Chr6LG2 91,690,000 91,750,000 0.060 1
Chr6LG2 92,190,000 92,680,000 0.490 5
总共Total 31.42 449

表4

精细定位所用多态性分子标记"

位置
Position
引物名称
Primer name
正向引物
Forward sequence (5-3°)
反向引物
Reverse sequence (5-3°)
62,185,053 WDBH141-1 TGATTCCAAGGGCCAATGACA GCACGAAGCTAGCTAGTGAATAA
62,390,612 WDBH144-1 TTGTTCCACCACTGCAACCT TGGATTTACCCGCAGTTGGT
62,698,646 WDBH147-1 TGAAACGCCCCTTATTGAAGT TCTTCGAGTTCGGCTTTGCT
位置
Position
引物名称
Primer name
正向引物
Forward sequence (5-3°)
反向引物
Reverse sequence (5-3°)
64,421,149 WDBH172-1 ACCCAAAGCCACCAAAGAGAA TGACACAACTGTTTGACACCA
64,707,966 WDBH008-3 ATGAGGTGCCCCTATGTGAG TAATTGGTGGTGGTGAGATGGG
65,304,246 WDBH028-1 AGTCACGGCAATGGATGGAA ACATGTGCAAGCGACCTTCA
65,627,591 WDBH179-2 GGTGGGATGTATCTGCTGACC TCTGGTAGGAACACAAGTGGTTA
66,874,335 WDBH183-1 AACTGTGAGGAATGTCTATCCCA AGGTTTGCTCCCATTTGTCAC
66,960,275 WDBH013-2 GTTCGGTCTAGTGTGCTCGT TGCCAGCTGTACCATAGCAAA
67,036,795 WDBH194-1 ACTGTGTACACCCTTGCACT TCCATATTCTAGCCAACACCACC
67,579,583 WDBH187-1 CGGTCCAACTGAGATGGCAA TGGCTAGGGCTATAGGTATGAAGT
67,645,017 WDBH209-1 TGGGAGTTTGAAGTTGAGGGG TCCCTAAAATGAGGGAACTCAAA
67,998,027 WDBH084-1 GTGCAGGCTTGAGGGTTTTG TGTGTTCCCCAGTGTGTATCTC
68,240,556 WDBH200-1 TGTGGTGAGGAAATCGACGAA CCGAAACATGAGCGCGTAAC
68,307,829 WDBH113-1 TTTTCCTGTCCTGGCGTGAC AGGGTTGGGCGGTAATTCAA
68,309,277 WDBH090-1 GCTTCTTTGGCAGCGTTTGT TACACAATCCCGAGTCATGGT
68,551,555 WDBH029-1 TAGGGTTGCATGGGTTGCTT CACAAGTTGCTGCACACATTTC
68,566,772 WDBH220-1 CCATAGACTAAAGTTGAGACGAGC GATTGTGCCCCTGGAAGTGA
68,673,374 WDBH133-1 TCCCACAAGCCATGTCCAAA CGTGCACGAGAACGAAGGTT
69,494,713 WDBH129-1 CAGAACATGGCCAGGATCAATG TGCAGAGGCGTGTCTTTCAA
69,965,980 WDBH051-1 GAGATGCAGTGAAATCGCCG CAATTGGGGTGATGCACTCG
70,060,557 WDBH104-1 TCACCTCCATCATTTAAGCGGA ACATCGCGCGTCTCAATCTA
70,411,248 WDBH053-1 CCGATCCGCAGGTTGGAAAA GTGTGCAGACGAACCGATTT
72,140,477 WDBH059-1 AGTCCAATGGTCTGATAGCGT TTGTGCGAACCTCTTTCTGC
73,347,184 WDBH063-1 GAAAAACGCGAGCAGAGAGC TCCGAGTGGTCCGAGTATGT
75,496,657 WDBH032-1 ACGGAGGTCAGAGGCTACAA CGGCATAGGTTGACACATACG
75,976,029 WDBH080-1 TGGCCAATTCCCAAGCTCAA TTTGGGCTAGATGCGGAGAC
84,516,982 WDBH109-1 ACACGTTGATGAAAATGGGCG ATTTTGGTCTCCGACAGCGT
84,765,375 WDBH037-1 TTGCCCCTAGACGGTAGTGA TTTCCTGAGCCCACACATGG
86,084,668 WDBH011-2 CGGGTACCACGGGAATATACG GTTCGGCGGCGAATATGTTT
92,203,258 WDBH044-1 GCCACCTATTCGTCCATCGT AAGGGGACAAAGCACCCTTC

图3

精细定位豌豆花色基因的目标区域"

附表1

InDel标记检测到的交换单株统计结果"

InDel标记
InDel markers
F2交换单株F2 exchange individual plant
003 013 014 034 038 044 049 057 079 082 089 094 099 115 122 123 131 148 186 198 206 216 240 242 250 254 279 285 300 302 320
WDBH141-1 + + - + - + - - + + + + + - + + - - - - + - - + - - - - - + -
WDBH144-1 + + - + - + - - + + + + - + + - - - - + - - + - - - - - + -
WDBH147-1 + + - + - + - - + + + + + - + + - - - - + - - + - - - - - + -
WDBH172-1 + - - + - - - - - - - + - - + + - - - - + - - - - - - - - - -
WDBH008-3 + - - + - - - - - - - + - - + + - - - - + - - - - - - - - - -
WDBH028-1 + - - + - - - - - - - + - - + + - - - - + - - - - - - - - - -
WDBH179-2 + - - - - - - - - - - + - - - + - - - - + - - - - - - - - - -
WDBH183-1 + - - - - - - - - - - + - - - + - - - - + - - - - - - - - - -
WDBH013-2 + - - - - - - - - - - + - - - + - - - - + - - - - - - - - - -
WDBH194-1 + - - - - - - - - - - - - - - - - - - - + - - - - - - - - - -
WDBH187-1 + - - - - - - - - - - - - - - - - - - - + - - - - - - - - - -
WDBH209-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH084-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH200-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH113-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH090-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH029-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WDBH220-1 - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - -
WDBH133-1 - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - -
WDBH129-1 - - + - - - - + - - - - - - - - + + - - - - + - + - - - - - -
WDBH051-1 - - + - - - - + - - - - - - - - + + - - - - + - + - - - - - -
WDBH104-1 - - + - - - - + - - - - - - - - + + - + - - + - + - - - + - -
WDBH053-1 - - + - - - - + - - - - - - - - + + - + - - + - + - - - + - -
WDBH059-1 - - + - - - + + - - - - - + - - + + - + - - + - + - - + + - -
WDBH063-1 - - + - - - + + - - - - - + - - + + - + - - + - + - - + + - -
WDBH032-1 - - + - + - + + - - - - - + - - + + - + - + + - + - + + + - -
WDBH080-1 - - + - + - + + - - - - - + - - + + - + - + + - + - + + + - -
WDBH109-1 - - + - + - + + - - - - - + - - + + + + - + + - + - + + + - -
WDBH037-1 - - + - + - + + - - - - - + - - + + + + - + + - + - + + + - +
WDBH011-2 - - + - + - + + - - - - - + - - + + + + - + + - + + + + + - +
WDBH044-1 - - + - + - + + - - - - - + - - + + + + - + + - + + + + + - +

表5

定位区间内的基因及功能预测"

基因ID
Gene ID
起始位置
Start
终止位置
End
基因功能注释
Gene function annotation
Psat6g060000.1 67,641,138 67,657,547
Psat6g060040.1 67,824,817 67,825,137
Psat6g060080.1 67,833,124 67,835,423 41 kD的叶绿体茎环结合蛋白 Chloroplast stem-loop binding protein of 41 kD
Psat6g060120.1 67,836,103 67,837,783 RAN GTP酶激活蛋白1 RAN GTPase-activating protein 1
Psat6g060160.1 67,921,631 67,923,302
Psat6g060200.1 67,934,766 67,936,280
Psat6g060240.1 68,020,488 68,022,587 不活跃Patatin类蛋9 Probable inactive patatin-like protein 9
Psat6g060280.1 68,235,164 68,237,023 保卫细胞S型阴离子通道SLAC1 Guard cell S-type anion channel SLAC1
Psat6g060320.1 68,259,311 68,271,214 类Rac GTP结合蛋白RAC9 (前体)
Rac-like GTP-binding protein RAC9 (precursor)
Psat6g060360.1 68,302,270 68,302,889
Psat6g060400.1 68,305,575 68,309,198 五肽重复含蛋白 Pentatricopeptide repeat-containing protein
Psat6g060440.1 68,328,642 68,331,221
Psat6g060480.1 68,330,158 68,340,923 碱性螺旋-环-螺旋蛋白A Basic helix-loop-helix protein A
Psat6g060560.1 68,369,085 68,372,125 F-box蛋白 F-box protein
Psat6g060600.1 68,422,110 68,426,447 Sm类蛋白 LSM4 Sm-like protein LSM4
Psat6g060640.1 68,458,147 68,461,838 核糖体循环因子, 叶绿体(前体)
Ribosome-recycling factor, chloroplastic (precursor)
Psat6g060680.1 68,511,345 68,517,001 TIME FOR COFFEE蛋白 Protein TIME FOR COFFEE
Psat6g060720.1 68,549,094 68,551,796 Mut11蛋白 Protein Mut11
Psat6g060760.1 68,554,342 68,554,618
[1] Pandey A K, Rubiales D, Wang Y, Fang P, Sun T, Liu N, Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor Appl Genet, 2021, 134: 755-776.
doi: 10.1007/s00122-020-03751-5 pmid: 33433637
[2] Food and Agriculture Organization of the United Nations. Agriculture production data. https://www.fao.org/faostat/en/#compare.
[3] Fan Z, Zhao Y, Chai Q, Zhao C, Yu A, Coulter J A, Gan Y, Cao W. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Sci Rep, 2019, 9: 10954.
doi: 10.1038/s41598-019-47554-1 pmid: 31358903
[4] Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385
[5] Hecht V, Laurie R E, Vander Schoor J K, Ridge S, Knowles C L, Liew L C, Sussmilch F C, Murfet I C, MacKnight R C, Weller J L. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell, 2011, 23: 147-161.
doi: 10.1105/tpc.110.081042
[6] Sussmilch F C, Berbel A, Hecht V, Vander Schoor J K, Ferrándiz C, Madueño F, Weller J L. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell, 2015, 27: 1046-1060.
doi: 10.1105/tpc.115.136150
[7] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
doi: 10.1093/genetics/136.4.1457 pmid: 8013918
[8] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
doi: 10.1093/genetics/121.1.185 pmid: 2563713
[9] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245.
doi: 10.3724/SP.J.1006.2009.00239
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-345. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00239
[10] Wu L, Fredua-Agyeman R, Hwang S F, Chang K F, Conner R L, McLaren D L, Strelkov S E. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theor Appl Genet, 2021, 134: 2965-2990.
doi: 10.1007/s00122-021-03871-6
[11] Aznar-Fernández T, Barilli E, Cobos M J, Kilian A, Carling J, Rubiales D. Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci Rep, 2020, 10: 33.
doi: 10.1038/s41598-019-56987-7 pmid: 31913335
[12] Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-seq and RNA-seq. Royal Soc Open Sci, 2020, 7: 201081.
doi: 10.1098/rsos.201081
[13] Li R, Jiang H, Zhang Z, Zhao Y, Xie J, Wang Q, Zheng H, Hou L, Xiong X, Xin D, Hu Z, Liu C, Wu X, Chen Q. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. Int J Mol Sci, 2019, 21: 42.
doi: 10.3390/ijms21010042
[14] Pujol M, Alexiou K G, Fontaine A S, Mayor P, Miras M, Jahrmann T, Garcia-Mas J, Aranda M A. Mapping cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Front Plant Sci, 2019, 10: 1583.
doi: 10.3389/fpls.2019.01583
[15] Zheng Y, Xu F, Li Q, Wang G, Liu N, Gong Y, Li L, Chen Z H, Xu S. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing. Front Genet, 2018, 9: 615.
doi: 10.3389/fgene.2018.00615
[16] Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury J M, Batley J, Le Paslier M C, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930
[17] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[18] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[19] Source Forge. Picard. San Diego, CA, USA. http://sourceforge.net/projects/picard/.
[20] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[21] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672
[22] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[23] Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One, 2013, 8: e68529.
doi: 10.1371/journal.pone.0068529
[24] Deng Y, Jianqi L I, Songfeng W U, Zhu Y, Chen Y, Fuchu H E. Integrated nr database in protein annotation system and its localization. Comp Engin, 2006, 32: 71-72.
[25] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651
[26] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-D280.
doi: 10.1093/nar/gkh063 pmid: 14681412
[27] Tatusov R L, Galperin M Y, Natale D A, Koonin E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28: 33-36.
[28] Gillmor C S, Roeder A H, Sieber P, Somerville C, Lukowitz W. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS One, 2016, 11: e0146492.
doi: 10.1371/journal.pone.0146492
[29] Branca A, Paape T D, Zhou P, Briskine R, Farmer A D, Mudge J, Bharti A K, Woodward J E, May G D, Gentzbittel L, Ben C, Denny R, Sadowsky M J, Ronfort J, Bataillon T, Young N D, Tiffin P. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci USA, 2011, 108: E864-E870.
[30] Zhao M, Hu B, Fan Y, Ding G, Yang W, Chen Y, Chen Y, Xie J, Zhang F. Identification, analysis, and confirmation of seed storability-related loci in dongxiang wild rice (Oryza rufipogon Griff.). Genes (Basel), 2021, 12: 1831.
doi: 10.3390/genes12111831
[31] Liu D, Wei X, Sun D, Yang S, Su H, Wang Z, Zhao Y, Li L, Liang J, Yang L, Zhang X, Yuan Y. An SNP mutation of gene RsPP converts petal color from purple to white in radish (Raphanus sativus L.). Front Plant Sci, 2021, 12: 643579.
doi: 10.3389/fpls.2021.643579
[32] Qin L, Sun L, Wei L, Yuan J, Kong F, Zhang Y, Miao X, Xia G, Liu S. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant J, 2021, 105: 1010-1025.
doi: 10.1111/tpj.15083
[33] Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/j.1365-313X.2010.04465.x
[34] He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15: 9057-9091.
doi: 10.3390/molecules15129057 pmid: 21150825
[35] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532
[36] Deng J, Li J, Su M, Lin Z, Chen L, Yang P. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiol Biochem, 2021, 158: 518-523.
doi: 10.1016/j.plaphy.2020.11.038
[37] Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore K S, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol, 2016, 210: 905-921.
doi: 10.1111/nph.13816
[38] Hellens R P, Moreau C, Lin-Wang K, Schwinn K E, Thomson S J, Fiers M W, Frew T J, Murray S R, Hofer J M, Jacobs J M, Davies K M, Allan A C, Bendahmane A, Coyne C J, Timmerman- Vaughan G M, Ellis T H. Identification of Mendel’s white flower character. PLoS One, 2010, 5: e13230.
doi: 10.1371/journal.pone.0013230
[1] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[2] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[3] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[4] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[5] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[6] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[7] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[8] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 陶亚军, 朱静妍, 王军, 范方军, 许扬, 李文奇, 王芳权, 陈智慧, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻氮高效基因分子标记开发与基因型筛选[J]. 作物学报, 2022, 48(12): 3045-3056.
[11] 郭均瑶, 刘斌美, 杨惠杰, 秦超琦, 任艳, 姜鸿瑞, 陶亮之, 叶亚峰, 吴跃进. 水稻叶脉黄化突变体yml的遗传分析及基因定位[J]. 作物学报, 2022, 48(12): 3120-3129.
[12] 杨明, 李丹婷, 范德佳, 谭嵩娟, 程遐年, 刘裕强, 万建民. 广西野生稻Y11抗白背飞虱QTL定位[J]. 作物学报, 2022, 48(11): 2715-2723.
[13] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[14] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471.
[15] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .