欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3120-3129.doi: 10.3724/SP.J.1006.2022.12077

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶脉黄化突变体yml的遗传分析及基因定位

郭均瑶1,2(), 刘斌美1,2, 杨惠杰1,2, 秦超琦2, 任艳2, 姜鸿瑞2, 陶亮之2, 叶亚峰2, 吴跃进1,2()   

  1. 1安徽大学物质科学与信息技术研究院, 安徽合肥 230031
    2中国科学院合肥物质科学研究院, 安徽合肥 230031
  • 收稿日期:2021-11-06 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-19
  • 通讯作者: 吴跃进
  • 作者简介:E-mail: 154519697@qq.com
  • 基金资助:
    安徽省自然科学基金项目(2108085MC99);合肥市“借转补”科技专项(J2020G45);安徽省科技重大专项(202003c08020006)

Genetic analysis and gene mapping of the yellow midrib leaf mutant (yml) in rice (Oryza sativa L.)

GUO Jun-Yao1,2(), LIU Bin-Mei1,2, YANG Hui-Jie1,2, QIN Chao-Qi2, REN Yan2, JIANG Hong-Rui2, TAO Liang-Zhi2, YE Ya-Feng2, WU Yue-Jin1,2()   

  1. 1Institutes of Physical Science and Information Technology, Anhui University, Hefei 230031, Anhui, China
    2Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui, China
  • Received:2021-11-06 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-19
  • Contact: WU Yue-Jin
  • Supported by:
    Natural Science Foundation of Anhui Province(2108085MC99);Hefei Science and Technology Project(J2020G45);Anhui Science and Technology Major Project(202003c08020006)

摘要:

水稻(Oryza sativa L.)是重要的粮食作物之一, 其产量一直备受关注。水稻叶片是光合作用的重要场所, 叶脉是叶片中具有支撑和运输功能的组织。同时, 叶脉中存在的光合色素也能提供一定的光合作用。本研究采用重离子束诱变籼稻9311获得的叶脉黄化突变体yml进行遗传分析及基因定位研究。该突变体在抽穗期开花后5 d左右, 开始出现叶脉黄化表型, 并于抽穗后期黄化性状明显, 并持续至成熟期。在分蘖期, 突变体与野生型相比, 光合色素含量无显著差异。但在抽穗后期, 突变体叶片及叶脉中光合色素含量显著降低, 导致光合效率明显降低, 净光合速率仅为野生型的50.37%。成熟期突变体的株高、穗长、有效穗数、每穗实粒数、结实率、千粒重均显著低于野生型。通过遗传分析, 确定该突变性状由一对隐性基因控制。利用图位克隆技术, 将该基因定位于6号染色体。进一步通过简单重复序列(SSR)及插入缺失(InDel)标记, 将该基因位置缩小至InDel5与RM3431之间, 物理距离约为700 kb。本研究为后续突变体基因的克隆和功能分析提供了研究基础。

关键词: 水稻, 叶脉, 黄化, 光合特性, 基因定位

Abstract:

Rice (Oryza sativa L.) is an important food crop, and its yield has been concerned for a long time. Rice leaves are the essential sites for photosynthesis, and leaf midrib is the tissue with the function of supporting and transporting. Meanwhile, the photosynthetic pigments present in leaf midrib can also provide a certain amount of photosynthesis. In this study, the yellow midrib leaf (yml) mutant obtained by the heavy ion beam implantation on indica rice 9311 was applied for genetic analysis and gene mapping. The mutant began to had the yellowing phenotype of leaf midrib about 5 days after flowering at heading stage, and the yellowing character was obvious at the late heading stage, and this change could last until the mature stage. At tillering stage, there was no significant difference in photosynthetic pigment content between the mutant and the wild type. However, compared with wild type at the late heading stage, the photosynthetic pigment content in the leaves and midribs of the mutant was significantly lower. Consequently, the photosynthetic efficiency of the mutant was substantially reduced, and the net photosynthetic rate was only 50.37% of wild type. At mature stage, plant height, panicle length, effective panicle, filled grain number per panicle, seed setting rate, and the 1000-grain weight of mutants were significantly lower than wild type. Genetic analysis revealed that this mutant character was controlled by a pair of recessive genes. By using map-based cloning technique, this gene was located on chromosome 6. Moreover, the gene was further located between InDel5 and RM3431 with a physical distance of approximately 700 kb by using simple repeat sequence (SSR) and insertional deletion (InDel) markers. This study provides a research basis for the subsequent cloning and functional analyses of the mutant gene.

Key words: Oryza sativa L., midrib, yellow, photosynthetic, gene mapping

图1

野生型(9311)与突变体yml的表型特征 A: 抽穗期野生型(9311)与突变体yml植株, 标尺为10 cm; B: 抽穗期野生型(9311)与突变体yml的剑叶, 标尺为5 cm; C: 野生型(9311)与突变体yml的穗, 标尺为5 cm。"

表1

野生型(9311)和突变体(yml)农艺性状分析"

材料
Material name
株高
Plant height
(cm)
穗长
Panicle length
(cm)
有效穗数
Effective
panicle
每穗实粒数
Filled grain number
per panicle
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
9311 127.33±4.29 22.42±2.17 9.67±1.53 158.62±27.98 71.16±9.55 28.06±2.16
yml 97.41±4.15** 20.67±2.79* 4.67±0.58** 105.00±30.58** 43.20±9.02** 23.10±0.41**

图2

不同时期野生型(9311)与突变体yml叶片与叶中脉光合色素含量以及各光合色素含量比值 A: 分蘖期野生型(9311)与突变体yml叶片光合色素含量; B: 分蘖期野生型(9311)与突变体yml叶中脉光合色素含量; C: 抽穗期野生型(9311)与突变体yml叶片光合色素含量; D: 抽穗期野生型(9311)与突变体yml叶中脉光合色素含量; E: 分蘖期野生型(9311)与突变体yml叶片中类胡萝卜素与总叶绿素比值; F: 抽穗期野生型(9311)与突变体yml叶片中类胡萝卜素与总叶绿素比值。*: P < 0.05; **: P < 0.01。"

表2

野生型(9311)和突变体(yml)叶片的光合特性"

材料
Material
净光合速率
Photosynthetic rate
(μmol CO2 m-2 s-1)
蒸腾速率
Transpiration rate
(mol H2O m-2 s-1)
气孔导度
Stomatal conductance
(mmol H2O m-2 s-1)
胞间二氧化碳浓度
Intercellular CO2 concentration
(μmol CO2 L-1)
9311 14.95 ±0.74 3.96±0.33 279.97±3.72 338.00±7.21
yml 7.53±0.15** 5.96±0.34** 227.47±15.88** 390.00±9.54**

图3

yml基因初定位电泳图 M: 9311; W: 日本晴; M: DL2000 marker."

图4

yml基因在6号染色体上连锁图谱"

表3

根据籼稻品种9311与粳稻品种日本晴的序列差异新设计的InDel标记"

引物名称
Prime name
引物序列
Prime sequence
(5'-3')
物理位置
Physical position
(bp)
9311 PCR
产物大小
PCR product size of 9311
(bp)
日本晴PCR
产物大小
PCR product size of Nipponbare
(bp)
中花11 PCR
产物大小
PCR product size of Zhonghua 11 (bp)
InDel 3 F: CTGGCGGTCGAATTTCTTTA
R: GGCAAATTTCAGCCACAGAT
7,245,119-7,245,342 160 124 124
InDel 5 F: CAATCAGAATCTGCTTGCCA
R: ACACACATGGCAGGTCACAT
8,059,757-8,059,997 255 241 241
InDel 13 F: CAGCCACACATTTGGAACCA
R: CTGCAAAGGATCTTGATCCG
7,813,844-7,814,076 206 233 233

表4

定位区间内相关基因及功能预测"

基因名称
Gene name
推测功能
Putative function
LOC_Os06g14420 Hydrolase, NUDIX family, domain containing protein, expressed
LOC_Os06g14650 Zinc finger, C3HC4 type domain containing protein, expressed
LOC_Os06g14670 ODORANT1, putative, expressed
LOC_Os06g14700 Myb-like DNA-binding domain containing protein, expressed
LOC_Os06g14710 Myb-like DNA-binding domain containing protein, expressed
LOC_Os06g14750 Phosphatidylinositol-4-phosphate 5-kinase family protein, putative, expressed
LOC_Os06g15380 Acylphosphatase, putative, expressed
LOC_Os06g15390 Acylphosphatase, putative, expressed
LOC_Os06g15410 Angel, putative, expressed
[1] Sheehy J E, Ferrer A B, Mitchell P L, Elmido-Mabilangan A, Pablico P, Dionora M. How the rice crop works and why it needs a new engine. In: In: Sheehy J E, Mitchell P L, Hardy B, eds. Charting New Pathways to C4 Rice. Singapore: World Scientific Publishing Company, 2008. pp 3-26.
[2] 欧阳杰, 王楚桃, 何光华, 钟世良, 李顺武, 李贤勇. 水稻灌浆中后期功能叶中叶绿素含量及其变化趋势与谷物产量关系研究. 西南农业学报, 2012, 25: 1201-1204.
Ou-Yang J, Wang C T, He G H, Zhong S L, Li S W, Li X Y. Study on relationship between different functional leaf chlorophyl Ⅱ content and its trends in mid and late period of rice filling and grain yield. Southwest China J Agric Sci, 2012, 25: 1201-1204. (in Chinese with English abstract)
[3] 杨宙, 黄仁良, 何虎, 刘建华, 曹丰生. 一个新的水稻无中叶脉突变体的表型分析和基因定位. 江西农业学报, 2020, 32(2): 24-28.
Yang Z, Huang R L, He H, Liu J H, Cao F S. Phenotypic analysis and gene mapping of new midrib-deficient mutant in rice. Acta Agric Jiangxi, 2020, 32(2): 24-28 (in Chinese with English abstract).
[4] 郑梦迪, 王春阳, 张寒, 张彦, 汪兴军. 植物叶缘和叶脉发育调控的研究进展. 生物资源, 2019, 41(1): 22-27.
Zheng M D, Wang C Y, Zhang H, Zhang Y, Wang X J. Advances in plant leaf margin and venation pattern regulation mechanism. Biotic Res, 2019, 41(1): 22-27. (in Chinese with English abstract)
[5] 徐敏丽. 水稻两优培九中脉光合特性及蛋白质差异分析. 南京师范大学硕士学位论文, 江苏南京, 2017.
Xu M L. Analysis of Photosynthetic Properties and Protein Differences in Mid-vein of Rice LYP9. MS Thesis of Nanjing Normal University, Nanjing, Jiangsu, China, 2017. (in Chinese with English abstract)
[6] 沈唯军. 水稻中脉中特殊的光合作用和强光响应信号系统. 南京师范大学博士学位论文, 江苏南京, 2014.
Shen W J. Specific Photosynthetic and Intense Light Response Signaling Systems in Mid-vein of Rice (Oryza sativa). PhD Dissertation of Nanjing Normal University, Nanjing, Jiangsu, China, 2014. (in Chinese with English abstract)
[7] 李君霞, 秦娜, 朱灿灿, 王春义, 代书桃, 宋迎辉, 陈宇翔. 谷子黄叶色突变体光合特性研究. 核农学报, 2021, 35: 1964-1970.
doi: 10.11869/j.issn.100-8551.2021.09.1964
Li J X, Qin N, Zhu C C, Wang C Y, Dai S T, Song Y H, Chen Y X. Study on photosynthetic characteristics of foxtail millet mutant with yellow leaf colour. Acta Agric Nucl Sin, 2021, 35: 1964-1970. (in Chinese with English abstract)
[8] Zhang H, Liu L L, Cai M H, Zhu S S, Zhao J Y, Zheng T H, Xu X Y, Zeng Z Q, Niu J, Jiang L, Chen S H, Wan J M. A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice. Plant Mol Biol Rep, 2015, 33: 1975-1987.
doi: 10.1007/s11105-015-0889-3
[9] 简磊, 王仲康, 曾冬冬, 秦冉, 石春海, 金晓丽. 水稻白化转绿突变体albg的鉴定和基因精细定位. 核农学报, 2017, 31: 2289-2297.
doi: 10.11869/j.issn.100-8551.2017.12.2289
Jian L, Wang Z K, Zeng D D, Qin R, Shi C H, Jin X L. Characterization and fine mapping of a green-revertible albino (albg) mutant in rice. Acta Agric Nucl Sin, 2017, 31: 2289-2297. (in Chinese with English abstract)
[10] Zhao M H, Li X, Zhang X X, Zhang H, Zhang X Y. Mutation mechanism of leaf color in plants: a review. Forests, 2020, 11: 851.
doi: 10.3390/f11080851
[11] Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1980, 20: 663-668.
doi: 10.2135/cropsci1980.0011183X002000050030x
[12] Falbel T G, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. Physiol Plant, 1996, 97: 311-320.
doi: 10.1034/j.1399-3054.1996.970214.x
[13] Sheng P, Tan J, Jin M, Wu F, Zhou K, Ma W, Heng Y, Wang J, Guo X, Zhang X. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Rep, 2014, 33: 1581-1594.
doi: 10.1007/s00299-014-1639-y pmid: 24917171
[14] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, Qian Q, Zhang G H. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. J Plant Growth Regul, 2016, 78: 345-356.
[15] Kusumi K, Mizutani A, Nishimura M, Iba K. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12: 1241-1250.
doi: 10.1046/j.1365-313x.1997.12061241.x
[16] Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039-1050.
doi: 10.1111/j.1365-313X.2011.04755.x
[17] 李红昌, 钱前, 王赟, 李晓波, 朱立煌, 徐吉臣. 水稻白穗突变体基因的鉴定和染色体定位. 科学通报, 2003, 48: 268-270.
Li H C, Qian Q, Wang Y, Li X B, Zhu L H, Xu J C. Identification and chromosomal localization of white spike mutant genes in rice. Chin Sci Bull, 2003, 48: 268-270 (in Chinese with English abstract).
doi: 10.1360/csb2003-48-3-268
[18] 李娜, 储黄伟, 文铁桥, 张大兵. 水稻白色中脉Oswm突变体的遗传分析与基因定位. 上海农业学报, 2007, 23(1): 1-4.
Li N, Chu H W, Wen T Q, Zhang D B. Genetic analysis and mapping of rice white midrib mutant Oswm. Acta Agric Shanghai, 2007, 23(1): 1-4. (in Chinese with English abstract)
[19] 胡景涛, 张甲, 李园园, 付崇允, 郑静, 陈家彬, 胡燕, 李仕贵. 水稻白色中脉Oswm2的遗传分析与分子标记定位. 遗传, 2008, 30: 1201-1206.
Hu J T, Zhang J, Li Y Y, Fu C Y, Zheng J, Chen J B, Hu Y, Li S G. Genetic analysis and mapping of a rice white midrib mutant Oswm2. Hereditas, 2008, 30: 1201-1206. (in Chinese with English abstract)
[20] 朱小燕, 徐芳芳, 桑贤春, 蒋钰东, 代高猛, 王楠, 张长伟, 何光华. 水稻叶脉白化突变体wpsm的遗传分析与基因定位. 作物学报, 2013, 39: 1409-1415.
Zhu X Y, Xu F F, Sang Y C, Jiang Y D, Dai G M, Wang N, Zhang C W, He G H. Genetic analysis and gene mapping of a rice white midrib mutant wpsm. Acta Agron Sin, 2013, 39: 1409-1415. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01409
[21] Akhter D, Qin R, Nath U K, Alamin M, Jin X L, Shi C H. The brown midrib leaf (bml) mutation in rice (Oryza sativa L.) causes premature leaf senescence and the induction of defense responses. Genes, 2018, 9: 203.
doi: 10.3390/genes9040203
[22] Sattler S E, Funnell-Harris D L, Pedersen J F. Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci, 2010, 178: 229-238.
doi: 10.1016/j.plantsci.2010.01.001
[23] 杨敏文. 化学科技活动一则: 分光光度法测定叶片叶绿素a、叶绿素b和类胡萝卜素含量. 化学教学, 2002, (8): 44-45.
Yang M W. A chemical technology activity: Spectrophotometric determination of chlorophyll a, chlorophyll b and carotenoids in leaves. Edu Chem, 2002, (8): 44-45. (in Chinese)
[24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
pmid: 7433111
[25] Kraszewska E. The plant Nudix hydrolase family. Acta Biochim Pol, 2008, 55: 663-671.
pmid: 19081844
[26] Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H, Ohta H, Masuda T, Takamiya K. ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol, 2004, 45: 960-967.
pmid: 15356321
[27] Kong W Y, Yu X W, Chen H Y, Liu L L, Xiao Y J, Wang Y L, Wang C L, Lin Y, Yu Y, Wang C M, Jiang L, Zhai H Q, Zhao Z G, Wan J M. The catalytic subunit of magnesium-protoporphyrin Ⅸ monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Mol Biol, 2016, 92: 177-191.
doi: 10.1007/s11103-016-0513-4
[28] 胡彬华, 王平, 杜安平, 李辉, 王闵霞, 白玉露, 冀占东, 蒲志刚. 水稻淡黄叶突变体pyl3的鉴定和基因定位. 核农学报, 2021, 35: 2696-2703.
doi: 10.11869/j.issn.100-8551.2021.12.2696
Hu B H, Wang P, Du A P, Li H, Wang M X, Bai Y L, Ji Z D, Pu Z G. Characterization and gene mapping of pyl3 mutant in rice. Acta Agric Nucl Sin, 2021, 35: 2696-2703. (in Chinese with English abstract)
[29] 施勇烽, 贺彦, 郭丹, 吕向光, 黄奇娜, 吴建利. 水稻淡绿叶突变体HM133的遗传分析与基因定位. 中国水稻科学, 2016, 30: 603-610.
doi: 10.16819/j.1001-7216.2016.6033
Shi Y F, He Y, Guo D, Lyu X G, Huang Q N, Wu J L. Genetic analysis and gene mapping of a pale green leaf mutant HM133 in rice. Chin J Rice Sci, 2016, 30: 603-610. (in Chinese with English abstract)
[30] Pogson B J, Albrecht V. Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol, 2011, 155: 1545-1551.
doi: 10.1104/pp.110.170365 pmid: 21330494
[31] Mei J, Li F, Liu X, Hu G, Fu Y, Liu W. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. Plant Sci, 2017, 256: 39-45.
doi: 10.1016/j.plantsci.2016.12.005
[32] Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002, 128: 439-453.
pmid: 11842148
[33] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532
[34] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083.
doi: 10.2307/3870058
[35] Gu C, Liao L, Zhou H, Wang L, Deng X, Han Y P. Constitutive activation of an anthocyanin regulatory gene PcMYB10.6 is related to red coloration in Purple-Foliage Plum. PLoS One, 2015, 10: e0135159.
[36] 杨颜榕, 黄纤纤, 赵亚男, 汤佳玉, 刘喜. 水稻叶色基因克隆与分子机制研究进展. 植物遗传资源学报, 2020, 21: 794-803.
Yang Y R, Huang Q Q, Zhao Y N, Tang J Y, Liu X. Advances on gene isolation and molecular mechanism of rice leaf color genes. J Plant Genet Res, 2020, 21: 794-803. (in Chinese with English abstract)
[37] Liu X, Huang Q Q, Yang Y R, Tang J, Zhang J. Characterization and map-based cloning of the novel rice yellow leaf mutant yl3. J Plant Biol, 2021, 64: 35-44.
doi: 10.1007/s12374-020-09275-1
[38] Chen D, Qiu Z N, He L, Hou L L, Li M, Zhang G H, Wang X Q, Chen G, Hu J, Gao Z Y, Dong G J, Ren D Y, Shen L, Zhang Q, Guo L B, Qian Q, Zeng D, Zhu L. The rice LRR-like1 protein yellow and premature dwarf 1 is involved in leaf senescence induced by high light. J Exp Bot, 2021, 72: 1589-1605.
doi: 10.1093/jxb/eraa532 pmid: 33200773
[39] Zhu Y, Yan P, Dong S L, Hu Z J, Wang Y, Yang J S, Xin X Y, Luo X J. Map-based cloning and characterization of YGL22, a new yellow-green leaf gene in rice (Oryza sativa). Crop Sci, 2021, 61: 529-538.
doi: 10.1002/csc2.20347
[40] Yu N, Liu Q, Zhang Y, Zeng B, Chen Y Y, Cao Y R, Zhang Y, Rani M H, Cheng S H, Cao L Y. CS3, a Ycf54 domain- containing protein, affects chlorophyll biosynthesis in rice (Oryza sativa L.). Plant Sci, 2019, 283: 11-22.
doi: 10.1016/j.plantsci.2019.01.022
[1] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[2] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[3] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[4] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[5] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[6] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[7] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[8] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[9] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[10] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[11] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[12] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[13] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[14] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[15] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .