作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3108-3119.doi: 10.3724/SP.J.1006.2022.14241
李相辰1(), 沈旭3, 周新成2, 陈新2, 王海燕2(), 王文泉3()
LI Xiang-Chen1(), SHEN Xu3, ZHOU Xin-Cheng2, CHEN Xin2, WANG Hai-Yan2(), WANG Wen-Quan3()
摘要:
磷酸烯醇式丙酮酸羧化酶(PEPC)是C4植物光合作用的关键酶, 而木薯是C3-C4型植物, MePEPC在栽培种的表达量显著高于野生型, 迄今尚未有人对MePEPC进行过系统研究。为了解木薯中MePEPC家族成员的基本信息, 本文运用生物信息学方法在木薯全基因组中确认了5个MePEPC基因家族成员, 并对MePEPC基因家族进行基本理化性质分析、亚细胞定位预测、进化树分析、染色体定位、二级结构预测、基因结构域及启动子顺式作用元件预测。结果表明, 鉴定到5个MePEPC基因家族成员, 分布在5条染色体上, 其中分布在3号染色体的MePEPC2发生可变剪切, 序列提前终止, 发生功能缺失。系统进化树表明, MePEPC可分为2个亚家族(植物型和细菌型), 同组成员基因结构和功能域相似。MePEPC家族成员启动子区域含有不同数量的光响应元件、激素响应元件及胁迫响应元件, 表明MePEPC基因家族成员可能参与不同的生长发育调节过程。表达谱显示, MePEPC1、MePEPC4和MePEPC5具有较高表达, 且在不同光照时间、不同发育时期、干旱及ABA胁迫下呈现出不同的表达模式, 而MePEPC2和MePEPC3表达量极低, 几乎不表达。以上研究为深入研究MePEPC基因家族在木薯中的功能提供了基础数据, 为木薯高光效育种提供候选基因。
[1] |
El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501.
pmid: 15669146 |
[2] |
El-Sharkawy M A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica, 2006, 44: 481-512.
doi: 10.1007/s11099-006-0063-0 |
[3] | 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48. |
Jiang H P, Ni Y F, Zhu F S. Development mode and strategies of China’s cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
doi: 10.1177/003072707901000107 |
|
[4] |
Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesada K, Sugiyama T, Katsuki H. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucleic Acids Res, 1986, 14: 1615-1628.
pmid: 3005978 |
[5] | 袁秀云, 田云芳, 张燕, 马杰, 崔波. 油用牡丹PEPC基因的克隆及表达分析. 中国油料作物学报, 2019, 41: 878-886. |
Yuan X Y, Tian Y F, Zhang Y, Ma J, Cui B. Cloning and expression analysis of PEPC gene from Paeonia ostii. Chin J Oil Crop Sci, 2019, 41: 878-886. (in Chinese with English abstract) | |
[6] | 彭文丽, 杨成坤, 崔志富, 赵成志, 王红. 榴莲PEPC基因家族全基因组鉴定及表达分析. 分子植物育种, 2022, 20: 76-85. |
Peng W L, Yang C K, Cui Z F, Zhao C Z, Wang H. Genome-wide identification and expression analysis of PEPC gene family in durian. Mol Plant Breed, 2022, 20: 76-85 (in Chinesewith English abstract) | |
[7] |
Shen WJ, Chen G X, Xu J G, Jiang Y, Liu L, Gao Z P, Ma J, Chen X, Chen T H, Lyu C F. Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica, 2015, 53: 436-446.
doi: 10.1007/s11099-015-0111-8 |
[8] | 焦进安. 植物磷酸烯醇式丙酮酸羧化酶的多生理功能. 植物生理学通讯, 1987, (1): 40-43. |
Jiao J A. Multiple functions of phosphoenolpyruvate carboxylase in plants. Plant Physiol J, 1987, (1): 40-43. (in Chinese) | |
[9] |
Cousins A B, Baroli I, Badger M R, Ivakov A, Lea P J, Leegood R C, Caemmerer S. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol, 2007, 145: 1006-1017.
pmid: 17827274 |
[10] |
O'Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436: 15-34.
doi: 10.1042/BJ20110078 pmid: 21524275 |
[11] |
O’Leary B, Fedosejevs E T, Hill A T, Bettridge J, Park J, Rao S K, Leach C A, Plaxton W C. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. J Exp Bot, 2011, 62: 5485-5495.
doi: 10.1093/jxb/err225 |
[12] |
Doubnerová H V, Miedzińska L, Dobrá J, Vankova R, Ryšlavá H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. J Plant Physiol, 2014, 171: 19-25.
doi: 10.1016/j.jplph.2013.10.017 |
[13] |
Cheng G, Wang L, Lan H Y. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microbiol Technol, 2016, 83: 57-67.
doi: 10.1016/j.enzmictec.2015.11.006 |
[14] | 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响. 植物学报, 2020, 55: 677-692. |
Song N X, Xie Y F, Li X. Effects of epigenetic mechanisms on C4 phosphoenolpyruvate carboxylase transgenic rice (Oryza sativa) seed germination under drought stress. Chin Bull Bot, 2020, 55: 677-692. (in Chinese with English abstract) | |
[15] | 闫贵欣, 陈碧云, 许鲲, 高桂珍, 吕培军, 伍晓明, 李锋, 李俊. 甘蓝型油菜ACCase、DGAT2和PEPC基因对氮素用量的应答. 植物营养与肥料学报, 2012, 18: 1370-1377. |
Yan G X, Chen B Y, Xu K, Gao G Z, Lyu P J, Wu X M, Li F, Li J. Response of ACCase, DGAT2 and PEPC genes in developing seeds of Brassica napus L. to different nitrogen levels. J Plant Nutr Fert, 2012, 18: 1370-1377 (in Chinese with English abstract). | |
[16] |
赵晋锋, 杜艳伟, 王高鸿, 李颜方, 赵根有, 王振华, 王玉文, 余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性. 作物学报, 2020, 46: 700-711.
doi: 10.3724/SP.J.1006.2020.94107 |
Zhao J F, Du Y W, Wang G H, Li Y G, Zhao G Y, Wang Z H, Wang Y W, Yu A L. Identification of PEPC genes from foxtail millet and its response to abiotic stress. Acta Agron Sin, 2020, 46: 700-711. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94107 |
|
[17] |
Muramatsu M, Suzuki R, Yamazaki T, Miyao M. Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme. Plant Cell Physiol, 2015, 56: 468-480.
doi: 10.1093/pcp/pcu189 pmid: 25505033 |
[18] |
Sánchez R, Cejudo F J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003, 132: 949-957.
doi: 10.1104/pp.102.019653 |
[19] | 马海洋, 赵秋芳, 陈曙, 石伟琦, 冼皑敏. 菠萝PEPC基因家族生物信息学分析. 热带作物学报, 2020, 41: 97-103. |
Ma H Y, Zhao Q F, Chen S, Shi W Q, Xian A M. Bioinformatics analysis of PEPC gene family in pineapple. Chin J Tropical Crops, 2020, 41: 97-103. (in Chinese with English abstract) | |
[20] |
Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275 |
[21] |
Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036 |
[22] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[23] | Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999, 27: 297-300. |
[24] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[25] |
Wang W Q, Feng B X, Xiao J F, Xia Z Q, Zhou X C, Li P H, Zhang W X, Wang Y, Moller B L, Zhang P, Luo M C, Xiao G, Liu J X, Yang J, Chen S B, Rabinowicz P D, Chen X, Zhang H B, Ceballos H, Lou Q F, Zou M L, Carvalho L J, Zeng C Y, Xia J, Sun S X, Fu Y H, Wang H Y, Lu C, Ruan M B, Zhou S G, Wu Z C, Liu H, Kannangara R M, Jørgensen K, Neale R L, Bonde M, Heinz N, Zhu W L, Wang S J, Zhang Y, Pan K, Wen M F, Ma P A, Li Z X, Hu M Z, Liao W B, Hu W B, Zhang S K, Pei J L, Guo A P, Guo J C, Zhang J M, Zhang Z W, Ye J Q, Ou W J, Ma Y Q, Liu X Y, Tallon L J, Galens K, Ott S, Huang J, Xue J J, An F F, Yao Q Q, Lu X J, Fregene M, López-Lavalle L A, Wu J J, You F M, Chen M L, Hu S N, Wu G J, Zhong S L, Ling P, Chen Y Y, Wang Q H, Liu G D, Liu B, Li K M, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun, 2014, 5: 5110.
doi: 10.1038/ncomms6110 pmid: 25300236 |
[26] | Xia Z Q, Chen X, Lu C, Zou M L, Wang S J, Zhang Y, Pan K, Zhou X C, Wang H Y, Wang W Q. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta). Front Agric Sci Eng, 2016, 3: 295-307. |
[27] |
Wilson M C, Mutka A M, Hummel A W, Berry J, Chauhan R D, Vijayaraghavan A, Taylor N J, Voytas D F, Chitwood D H, Bart R S. Gene expression atlas for the food security crop cassava. New Phytol, 2017, 213: 1632-1641.
doi: 10.1111/nph.14443 pmid: 28116755 |
[28] |
Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol, 2004, 55: 69-84.
pmid: 15725057 |
[29] |
潘丽娟, 陈娜, 陈明娜, 王通, 王冕, 陈静, 杨珍, 万勇善, 禹山林, 迟晓元, 刘风珍. 花生AhPEPC1基因抑制表达的转基因后代转录组分析. 作物学报, 2019, 45: 993-1001.
doi: 10.3724/SP.J.1006.2019.84122 |
Pan L J, Chen N, Chen M N, Wang T, Wang M, Chen J, Yang Z, Wan Y S, Yu S L, Chi X Y, Liu F Z. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene. Acta Agron Sin, 2019, 45: 993-1001 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84122 |
|
[30] |
Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA, 2010; 107: 5226-5231.
doi: 10.1073/pnas.0913127107 |
[31] | 李小博. 玉米C4光合途径关键酶基因PEPC、PPDK、NADP-ME对C3植物拟南芥光合特性影响效应的研究. 南京农业大学硕士学位论文, 江苏南京, 2016. |
Li X B. Photosynthetic Property of the Transgenic Arabidopsis Expressing Maize C4-type PEPC, PPDK and NADP-ME Genes. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract) | |
[32] | 郭金生, 曹丽茹, 张新, 张前进, 魏良明, 王振华, 鲁晓民. 外源ABA对干旱胁迫下玉米叶片光合能力及气孔开度的影响. 中国农学通报, 2019, 35(13): 31-35. |
Guo J S, Cao L R, Zhang X, Zhang Q J, Wei L M, Wang Z H, Lu X M. Effects on photosynthetic capacity and stomatal opening of maize leaves: exogenous ABA under drought stress. Chin Agric Sci Bull, 2019, 35(13): 31-35. (in Chinese with English abstract) | |
[33] |
Carmo-Silva A E, da Silva A B, Keys A J, Parry M A, Arrabaça M C. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Photosynth Res, 2008, 97: 223-233.
doi: 10.1007/s11120-008-9329-7 |
[34] |
Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209.
doi: 10.1016/j.plantsci.2007.02.016 |
[35] |
Sánchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909.
doi: 10.1007/s00425-005-0144-5 |
[36] | 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3): 169-176. |
Shen S Y, Wu Y X, Zheng Y S. Review on drought response in plants from phenotype to molecular. Curr Biotechnol, 2017, 7(3): 169-176. (in Chinese with English abstract) |
[1] | 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238. |
[2] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[3] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[4] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[5] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[6] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[7] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517-2532. |
[10] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[11] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[12] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[13] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[14] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[15] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
|