欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3108-3119.doi: 10.3724/SP.J.1006.2022.14241

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

木薯PEPC基因家族成员鉴定及表达分析

李相辰1(), 沈旭3, 周新成2, 陈新2, 王海燕2(), 王文泉3()   

  1. 1黑龙江八一农垦大学农学院, 黑龙江大庆 163319
    2中国热带农业科学院热带生物技术研究所 / 农业农村部热带作物生物学与遗传资源利用重点实验室 / 海南热带农业资源研究院 / 海南省热带农业生物资源保护与利用重点实验室, 海南海口 571101
    3海南大学热带作物学院, 海南海口 570228
  • 收稿日期:2021-12-20 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-19
  • 通讯作者: 王海燕,王文泉
  • 作者简介:E-mail: l13j45q3k2a@126.com
  • 基金资助:
    海南省自然科学基金项目(320RC708);国家重点研发计划项目(2018YFD1000500);海南省重大科技计划项目(ZDKJ2021012)

Identification and relative expression levels of PEPC gene family members in cassava

LI Xiang-Chen1(), SHEN Xu3, ZHOU Xin-Cheng2, CHEN Xin2, WANG Hai-Yan2(), WANG Wen-Quan3()   

  1. 1College of Agricultural, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs / Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
    3College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China
  • Received:2021-12-20 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-19
  • Contact: WANG Hai-Yan,WANG Wen-Quan
  • Supported by:
    Natural Science Foundation of Hainan Province(320RC708);Project of the National Key Research and Development Program of China(2018YFD1000500);Major Science and Technology Plan of Hainan Province(ZDKJ2021012)

摘要:

磷酸烯醇式丙酮酸羧化酶(PEPC)是C4植物光合作用的关键酶, 而木薯是C3-C4型植物, MePEPC在栽培种的表达量显著高于野生型, 迄今尚未有人对MePEPC进行过系统研究。为了解木薯中MePEPC家族成员的基本信息, 本文运用生物信息学方法在木薯全基因组中确认了5个MePEPC基因家族成员, 并对MePEPC基因家族进行基本理化性质分析、亚细胞定位预测、进化树分析、染色体定位、二级结构预测、基因结构域及启动子顺式作用元件预测。结果表明, 鉴定到5个MePEPC基因家族成员, 分布在5条染色体上, 其中分布在3号染色体的MePEPC2发生可变剪切, 序列提前终止, 发生功能缺失。系统进化树表明, MePEPC可分为2个亚家族(植物型和细菌型), 同组成员基因结构和功能域相似。MePEPC家族成员启动子区域含有不同数量的光响应元件、激素响应元件及胁迫响应元件, 表明MePEPC基因家族成员可能参与不同的生长发育调节过程。表达谱显示, MePEPC1MePEPC4MePEPC5具有较高表达, 且在不同光照时间、不同发育时期、干旱及ABA胁迫下呈现出不同的表达模式, 而MePEPC2MePEPC3表达量极低, 几乎不表达。以上研究为深入研究MePEPC基因家族在木薯中的功能提供了基础数据, 为木薯高光效育种提供候选基因。

关键词: 木薯, 磷酸烯醇式丙酮酸羧化酶, 表达谱, 干旱, ABA, 昼夜节律

Abstract:

Phosphoenolpyruvate carboxylase (PEPC) is the key enzyme of photosynthesis in C4 plants. Cassava is a C3-C4 plant, and the relative expression levels of MePEPC genes in cultivated species are significantly higher than wild type. So far, systematic studies on MePEPC have not been done. To investigate the basic information of MePEPC family in cassava, five MePEPCs members were identified in the whole genome of cassava by bioinformatics method. The MePEPC family of cassava were comprehensively analyzed by bioinformatics software, including basic physical and chemical properties analysis, prediction of subcellular localization, evolutionary tree analysis, chromosome localization, gene and protein structure, and promoter cis-element prediction. The results showed that five MePEPC family members were identified and distributed on five chromosomes, respectively. Among them, MePEPC2 was distributed on chromosome 3 with underwent variable splicing, early termination of sequence, and loss of function. The phylogenetic tree revealed that MePEPC family could be divided into two subfamilies (plant type and bacterial type), and the distribution of exons of the same group were similar. The promoter region of MePEPC members contained different numbers of light corresponding elements, hormone corresponding elements, and stress response elements, indicating that different MePEPC member may participate in different growth and development regulation processes. The relative expression levels of MePEPC1, MePEPC4, and MePEPC5 were relatively higher, and the different expression patterns were in different light time, different development stages, drought and ABA stress. The relative expression levels of MePEPC2 and MePEPC3 were lower and almost invisible. This study provides basic data for in-depth study of the function of MePEPC family in cassava and candidate genes for cassava high light efficiency breeding.

Key words: cassava, phosphoenolpyruvate carboxylase, relative expression profile, drought, ABA, circadian rhythm

表1

试验所用引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Purpose
MePEPC1F GTCGACATGGCTGCTAGGAATCTGGA 扩增全长Full length amplification
MePEPC1R GGTACCACCAGTGTTTTGCATGCCA
MePEPC2F GTCGACATGCAACCTAAGAATGTTGAGAAG 扩增全长Full length amplification
MePEPC2R GGTACCACCAGTATTCTGCATTCCAGC
MePEPC3F GTCGACATGACGGATACAACAGATGATATAGC 扩增全长Full length amplification
MePEPC3R GGTACCACCTGTGTTCCTCATCCCAG
MePEPC4F GTCGACATGGAGAAACTTGAAAGGATTCG 扩增全长Full length amplification
MePEPC4R ACTAGTACCCGTGTTTCTCATCCCA
MePEPC5F GTCGACATGCAACCTCGGAATCTTGAG 扩增全长Full length amplification
MePEPC5R GGTACCACCAGTGTTCTGCATTCCAG
Actin-F TCTTCTCAACTGAGGAGCTGCT RT-qPCR
Actin-R CCTTCGTCTGGACCTTGCTG
qMePEPC1F ATACGAGCAGAAGTGAAGGTG RT-qPCR
qMePEPC1R CTTATTCTTCTCGTGTGGTTCAC
qMePEPC2F ATATCGTCGAAGGCAAAAGTTG RT-qPCR
qMePEPC2R TGCCAAGCAATTACGAATCCTT
qMePEPC3F GTCCACCTCTCCACTGCT RT-qPCR
qMePEPC3R TGTTGTATCCGTCATTGTACCC
qMePEPC4F GTGGCAGGGATAGAGGATACG RT-qPCR
qMePEPC4R CTGGAGAAACTTCACCCTGTAAT
qMePEPC5F GGAGATCCCAGAGGAGGG RT-qPCR
qMePEPC5R GTCCTGTCGGCGTTCTTC

表2

木薯PEPC蛋白基本理化性质"

基因号
Gene ID
基因名称
Gene name
氨基酸
Amino acid
分子量
Molecular weight
等电点
pI
亲水系数
Hydrophilic coefficient
染色体
Chr.
染色体起始
Chr. start
染色体终止
Chr. end
亚细胞定位
Subcellular
localization
Manes.02G091300.1 MePEPC1 965 110,369.29 5.93 -0.421 2 6,822,458 6,829,902 细胞质Cytoplasm
Manes.03G101900.1 MePEPC2 295 33,742.35 5.26 -0.552 3 17,850,224 17,852,291 细胞质Cytoplasm
Manes.06G074600.1 MePEPC3 1020 114,385.76 6.51 -0.377 6 18,870,252 18,894,812 细胞质Cytoplasm
Manes.14G095900.1 MePEPC4 964 110,296.13 5.75 -0.412 14 7,740,112 7,757,686 细胞质Cytoplasm
Manes.15G093700.1 MePEPC5 965 110,554.63 6.05 -0.389 15 6,906,159 6,916,528 细胞质Cytoplasm

图1

木薯PEPC家族在染色体上的分布"

表3

木薯PEPC家族蛋白二级结构分析"

基因名称
Gene name
α-螺旋
Alpha helix
延伸链
Extended strand
β-转角
Beta turn
无规卷曲
Random coil
二级结构原件
Secondary structural elements
MePEPC1 62.38 5.91 4.15 27.56
MePEPC2 62.71 4.75 3.73 28.81
MePEPC3 56.45 6.36 4.46 32.73
MePEPC4 55.88 6.67 4.02 33.43
MePEPC5 61.93 6.02 4.25 27.8

图2

木薯、玉米、谷子、水稻、拟南芥、大豆PEPC蛋白家族成员系统进化树"

图3

MePEPC基因结构及保守基序 A: MePEPCs基因结构; B: MePEPCs的保守基序。"

表4

木薯PEPC基因家族成员启动子区域顺式元件分析"

名称Name PEPC1 PEPC2 PEPC3 PEPC4 PEPC5
光响应元件Light response element 6 16 12 13 12
脱落酸响应元件ABRE 1 4 2 1 2
生长素响应元件AuxRR-core 1
生长素响应元件TGA-element 1 2 1
水杨酸响应元件TCA-element 1 1
赤霉素响应元件P-box 1 1 1
茉莉酸甲酯响应元件TGACG-motif 3 1 1
干旱响应元件MBS 1 1 1
低温响应元件LTR 2 1
细胞周期响应元件MSA-like 1
昼夜节律响应元件Circadian 1
厌氧响应元件GC-motif 1
缺氧响应元件ARE 1 1 2
创伤响应元件WUN-motif 1
分生组织响应元件CAT-box 1 1 1

图4

MePEPC1、MePEPC4和MePEPC5的亚细胞定位"

图5

木薯PEPC家族在不同组织中的相对表达量 每个处理设置3个生物学重复, 相对表达量的数值是3个生物学重复的平均值±STDEV。不同小写字母表示同一处理中基因表达量间存在显著性差异(P ≤ 0.05)。"

图6

不同光照条件下MePEPC的相对表达量 横坐标第1行是时间点, 第2行是时间点对应的光强。每个处理设置3个生物学重复, 相对表达量的数值是3个生物学重复的平均值±STDEV。不同小写字母表示同一处理中基因表达量间存在显著性差异(P ≤ 0.05)"

图7

干旱胁迫下木薯MePEPC家族在叶与根中的相对表达量 A: SC124叶片; B: Arg7叶片; C: SC124根; D: Arg7根。每个处理设置3个生物学重复, 相对表达量的数值是3个生物学重复的平均值±STDEV。不同小写字母表示同一处理中基因表达量间存在显著性差异(P ≤ 0.05)。"

图8

ABA胁迫下MePEPC1、MePEPC4、MePEPC5在叶与根中的相对表达量 A: 叶; B: 根。每个处理设置3个生物学重复, 相对表达量的数值是3个生物学重复的平均值±STDEV。不同小写字母表示同一处理中基因表达量间存在显著性差异(P ≤ 0.05)。"

[1] El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501.
pmid: 15669146
[2] El-Sharkawy M A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica, 2006, 44: 481-512.
doi: 10.1007/s11099-006-0063-0
[3] 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48.
Jiang H P, Ni Y F, Zhu F S. Development mode and strategies of China’s cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
doi: 10.1177/003072707901000107
[4] Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesada K, Sugiyama T, Katsuki H. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucleic Acids Res, 1986, 14: 1615-1628.
pmid: 3005978
[5] 袁秀云, 田云芳, 张燕, 马杰, 崔波. 油用牡丹PEPC基因的克隆及表达分析. 中国油料作物学报, 2019, 41: 878-886.
Yuan X Y, Tian Y F, Zhang Y, Ma J, Cui B. Cloning and expression analysis of PEPC gene from Paeonia ostii. Chin J Oil Crop Sci, 2019, 41: 878-886. (in Chinese with English abstract)
[6] 彭文丽, 杨成坤, 崔志富, 赵成志, 王红. 榴莲PEPC基因家族全基因组鉴定及表达分析. 分子植物育种, 2022, 20: 76-85.
Peng W L, Yang C K, Cui Z F, Zhao C Z, Wang H. Genome-wide identification and expression analysis of PEPC gene family in durian. Mol Plant Breed, 2022, 20: 76-85 (in Chinesewith English abstract)
[7] Shen WJ, Chen G X, Xu J G, Jiang Y, Liu L, Gao Z P, Ma J, Chen X, Chen T H, Lyu C F. Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica, 2015, 53: 436-446.
doi: 10.1007/s11099-015-0111-8
[8] 焦进安. 植物磷酸烯醇式丙酮酸羧化酶的多生理功能. 植物生理学通讯, 1987, (1): 40-43.
Jiao J A. Multiple functions of phosphoenolpyruvate carboxylase in plants. Plant Physiol J, 1987, (1): 40-43. (in Chinese)
[9] Cousins A B, Baroli I, Badger M R, Ivakov A, Lea P J, Leegood R C, Caemmerer S. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol, 2007, 145: 1006-1017.
pmid: 17827274
[10] O'Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436: 15-34.
doi: 10.1042/BJ20110078 pmid: 21524275
[11] O’Leary B, Fedosejevs E T, Hill A T, Bettridge J, Park J, Rao S K, Leach C A, Plaxton W C. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. J Exp Bot, 2011, 62: 5485-5495.
doi: 10.1093/jxb/err225
[12] Doubnerová H V, Miedzińska L, Dobrá J, Vankova R, Ryšlavá H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. J Plant Physiol, 2014, 171: 19-25.
doi: 10.1016/j.jplph.2013.10.017
[13] Cheng G, Wang L, Lan H Y. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microbiol Technol, 2016, 83: 57-67.
doi: 10.1016/j.enzmictec.2015.11.006
[14] 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响. 植物学报, 2020, 55: 677-692.
Song N X, Xie Y F, Li X. Effects of epigenetic mechanisms on C4 phosphoenolpyruvate carboxylase transgenic rice (Oryza sativa) seed germination under drought stress. Chin Bull Bot, 2020, 55: 677-692. (in Chinese with English abstract)
[15] 闫贵欣, 陈碧云, 许鲲, 高桂珍, 吕培军, 伍晓明, 李锋, 李俊. 甘蓝型油菜ACCase、DGAT2和PEPC基因对氮素用量的应答. 植物营养与肥料学报, 2012, 18: 1370-1377.
Yan G X, Chen B Y, Xu K, Gao G Z, Lyu P J, Wu X M, Li F, Li J. Response of ACCase, DGAT2 and PEPC genes in developing seeds of Brassica napus L. to different nitrogen levels. J Plant Nutr Fert, 2012, 18: 1370-1377 (in Chinese with English abstract).
[16] 赵晋锋, 杜艳伟, 王高鸿, 李颜方, 赵根有, 王振华, 王玉文, 余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性. 作物学报, 2020, 46: 700-711.
doi: 10.3724/SP.J.1006.2020.94107
Zhao J F, Du Y W, Wang G H, Li Y G, Zhao G Y, Wang Z H, Wang Y W, Yu A L. Identification of PEPC genes from foxtail millet and its response to abiotic stress. Acta Agron Sin, 2020, 46: 700-711. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94107
[17] Muramatsu M, Suzuki R, Yamazaki T, Miyao M. Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme. Plant Cell Physiol, 2015, 56: 468-480.
doi: 10.1093/pcp/pcu189 pmid: 25505033
[18] Sánchez R, Cejudo F J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003, 132: 949-957.
doi: 10.1104/pp.102.019653
[19] 马海洋, 赵秋芳, 陈曙, 石伟琦, 冼皑敏. 菠萝PEPC基因家族生物信息学分析. 热带作物学报, 2020, 41: 97-103.
Ma H Y, Zhao Q F, Chen S, Shi W Q, Xian A M. Bioinformatics analysis of PEPC gene family in pineapple. Chin J Tropical Crops, 2020, 41: 97-103. (in Chinese with English abstract)
[20] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275
[21] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[22] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[23] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999, 27: 297-300.
[24] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[25] Wang W Q, Feng B X, Xiao J F, Xia Z Q, Zhou X C, Li P H, Zhang W X, Wang Y, Moller B L, Zhang P, Luo M C, Xiao G, Liu J X, Yang J, Chen S B, Rabinowicz P D, Chen X, Zhang H B, Ceballos H, Lou Q F, Zou M L, Carvalho L J, Zeng C Y, Xia J, Sun S X, Fu Y H, Wang H Y, Lu C, Ruan M B, Zhou S G, Wu Z C, Liu H, Kannangara R M, Jørgensen K, Neale R L, Bonde M, Heinz N, Zhu W L, Wang S J, Zhang Y, Pan K, Wen M F, Ma P A, Li Z X, Hu M Z, Liao W B, Hu W B, Zhang S K, Pei J L, Guo A P, Guo J C, Zhang J M, Zhang Z W, Ye J Q, Ou W J, Ma Y Q, Liu X Y, Tallon L J, Galens K, Ott S, Huang J, Xue J J, An F F, Yao Q Q, Lu X J, Fregene M, López-Lavalle L A, Wu J J, You F M, Chen M L, Hu S N, Wu G J, Zhong S L, Ling P, Chen Y Y, Wang Q H, Liu G D, Liu B, Li K M, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun, 2014, 5: 5110.
doi: 10.1038/ncomms6110 pmid: 25300236
[26] Xia Z Q, Chen X, Lu C, Zou M L, Wang S J, Zhang Y, Pan K, Zhou X C, Wang H Y, Wang W Q. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta). Front Agric Sci Eng, 2016, 3: 295-307.
[27] Wilson M C, Mutka A M, Hummel A W, Berry J, Chauhan R D, Vijayaraghavan A, Taylor N J, Voytas D F, Chitwood D H, Bart R S. Gene expression atlas for the food security crop cassava. New Phytol, 2017, 213: 1632-1641.
doi: 10.1111/nph.14443 pmid: 28116755
[28] Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol, 2004, 55: 69-84.
pmid: 15725057
[29] 潘丽娟, 陈娜, 陈明娜, 王通, 王冕, 陈静, 杨珍, 万勇善, 禹山林, 迟晓元, 刘风珍. 花生AhPEPC1基因抑制表达的转基因后代转录组分析. 作物学报, 2019, 45: 993-1001.
doi: 10.3724/SP.J.1006.2019.84122
Pan L J, Chen N, Chen M N, Wang T, Wang M, Chen J, Yang Z, Wan Y S, Yu S L, Chi X Y, Liu F Z. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene. Acta Agron Sin, 2019, 45: 993-1001 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84122
[30] Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA, 2010; 107: 5226-5231.
doi: 10.1073/pnas.0913127107
[31] 李小博. 玉米C4光合途径关键酶基因PEPC、PPDK、NADP-ME对C3植物拟南芥光合特性影响效应的研究. 南京农业大学硕士学位论文, 江苏南京, 2016.
Li X B. Photosynthetic Property of the Transgenic Arabidopsis Expressing Maize C4-type PEPC, PPDK and NADP-ME Genes. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract)
[32] 郭金生, 曹丽茹, 张新, 张前进, 魏良明, 王振华, 鲁晓民. 外源ABA对干旱胁迫下玉米叶片光合能力及气孔开度的影响. 中国农学通报, 2019, 35(13): 31-35.
Guo J S, Cao L R, Zhang X, Zhang Q J, Wei L M, Wang Z H, Lu X M. Effects on photosynthetic capacity and stomatal opening of maize leaves: exogenous ABA under drought stress. Chin Agric Sci Bull, 2019, 35(13): 31-35. (in Chinese with English abstract)
[33] Carmo-Silva A E, da Silva A B, Keys A J, Parry M A, Arrabaça M C. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Photosynth Res, 2008, 97: 223-233.
doi: 10.1007/s11120-008-9329-7
[34] Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209.
doi: 10.1016/j.plantsci.2007.02.016
[35] Sánchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909.
doi: 10.1007/s00425-005-0144-5
[36] 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3): 169-176.
Shen S Y, Wu Y X, Zheng Y S. Review on drought response in plants from phenotype to molecular. Curr Biotechnol, 2017, 7(3): 169-176. (in Chinese with English abstract)
[1] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[2] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[6] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517-2532.
[10] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[11] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[14] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[15] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .