欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2517-2532.doi: 10.3724/SP.J.1006.2022.14185

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析

马鑫磊1,2(), 许瑞琪2, 索晓曼2, 李婧实1,2, 顾鹏鹏1,2, 姚锐1,2, 林小虎1,2,*(), 高慧1,2,*()   

  1. 1河北省作物逆境生物学重点实验室, 河北秦皇岛 066004
    2河北科技师范学院农学与生物科技学院, 河北秦皇岛 066004
  • 收稿日期:2021-10-12 接受日期:2022-01-05 出版日期:2022-10-12 网络出版日期:2022-02-15
  • 通讯作者: 林小虎,高慧
  • 作者简介:第一作者联系方式: E-mail: maxinlei5966@126.com
  • 基金资助:
    国家“十三五”重点研发计划项目(2019YFD1001701-2);河北省现代农业产业技术体系创新团队(杂粮杂豆)项目(HBCT2018070404);河北省自然科学基金项目(C2019407089);河北省高等学校科学技术研究项目(QN2020154);河北省在读研究生创新能力培养资助项目(CXZZSS2021152)

Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress

MA Xin-Lei1,2(), XU Rui-Qi2, SUO Xiao-Man2, LI Jing-Shi1,2, GU Peng-Peng1,2, YAO Rui1,2, LIN Xiao-Hu1,2,*(), GAO Hui1,2,*()   

  1. 1Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
    2College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, Hebei, China
  • Received:2021-10-12 Accepted:2022-01-05 Published:2022-10-12 Published online:2022-02-15
  • Contact: LIN Xiao-Hu,GAO Hui
  • Supported by:
    National Key Research and Development Program of the 13th Five-Year Plan of China(2019YFD1001701-2);Modern Agricultural Industrial Technology System Innovation Team (Grain and Soybean) Project of Hebei Province(HBCT2018070404);National Natural Science Foundation of Hebei Province(C2019407089);Science and Technology Research Project of Higher Education in Hebei Province(QN2020154);Innovation Ability Training Project of Postgraduate Students in Hebei Province(CXZZSS2021152)

摘要:

III型过氧化物酶(Class III peroxidase, PRX)是植物中特有的过氧化物酶家族, 在植物生长发育以及非生物胁迫中发挥重要作用。谷子作为C4植物是禾本科抗逆研究的模式植物, 然而目前对于谷子中III型过氧化物酶家族基因功能鲜有报道。为探究谷子III型过氧化物酶基因家族(SitPRXs)在干旱胁迫和ABA诱导下的表达模式, 进行了全基因组表达分析。本研究利用生物信息学方法在谷子全基因组中鉴定出132个III型PRX基因家族成员, 并根据其在染色体上位置顺序依次命名为SitPRX1~SitPRX132。通过对谷子、拟南芥和水稻的系统进化分析将其分为5个亚家族, 基因结构和保守基序分析表明同一亚家族具有较高的保守性。基因复制分析显示, 17个SitPRX基因(13%)存在片段复制, 78个SitPRX基因(59%)存在串联复制, 串联复制事件在SitPRX基因扩增中起重要作用。谷子与拟南芥、水稻和玉米的物种间同源性分析显示谷子中大多数SitPRXs是在双子叶植物和单子叶植物分化后形成的。转录组分析显示, SitPRX基因家族成员在谷子幼苗、根、茎、叶以及圆锥花序中表达存在差异。启动子顺式作用元件分析显示, 79个SitPRXs含有与干旱胁迫响应相关的顺式作用元件, 进一步qRT-PCR分析显示, SitPRX12SitPRX41SitPRX81SitPRX110SitPRX126受PEG和ABA诱导表达, 表明这些基因可能通过ABA依赖的信号通路来调控和响应干旱胁迫, 可作为进一步研究III型PRX基因家族抗旱功能的候选基因。研究结果为全面解析SitPRX基因结构与生物学功能、抗旱分子机制以及分子育种提供了新信息, 以期为今后培育高效抗逆作物新品种提供思路。

关键词: III型过氧化物酶, 基因家族分析, 干旱胁迫响应, 谷子

Abstract:

Class III peroxidases (PRX) are a family of plant-specific peroxidases that play an important role in plant growth and development as well as in abiotic stresses. Foxtail millet (Setaria italica L.), as a C4 plant, is a model plant for stress resistance. However, the function of class III peroxidases family genes is rarely reported in foxtail millet. A genome-wide expression analysis was conducted to investigate the expression pattern of class III peroxidase gene family (SitPRXs) under drought stress and ABA induction. In this study, 132 members of the Class III PRX gene family were identified in the whole genome in foxtail millet by bioinformatics and named SitPRX1-SitPRX132 according to their chromosomal position. 132 members were classified into Mα, Mβ, Mγ, MIKCC, and MIKC* subfamilies by phylogenetic analysis of foxtail millet, Arabidopsis, and rice. Gene structure and conserved motif analysis indicated a high level of conservation in the same subfamily. Gene duplication analysis revealed fragmental duplication in 17 SitPRX genes (13%) and tandem duplication in 78 SitPRX genes (59%), thus tandem duplication events playing an important role in SitPRX gene amplification. Interspecies homology analysis with Arabidopsis, rice and maize revealed that most SitPRXs were formed after dicotyledonous and monocotyledonous plants diverged. Transcriptome analysis implied that members of the SitPRX gene family were differentially expressed in seedlings, roots, stems, and leaves, as well as in panicles in foxtail millet. Analysis of promoter cis-acting elements showed that 79 SitPRXs contained cis-acting elements associated with drought stress response, and further qRT-PCR analysis showed that SitPRX12, SitPRX41, SitPRX81, SitPRX110, and SitPRX126 were induced to be expressed by PEG and ABA, suggesting that these genes may be regulated through an ABA-dependent signalling pathway in response to drought stress and could be used as these genes may be candidates for further studies on the drought resistance function of the class III PRX gene family. These results of this study provide new information for the comprehensive analysis of the structure and biological functions of SitPRX genes, the molecular mechanism of drought resistance, and molecular breeding in foxtail millet, with a view of providing ideas for the breeding of new varieties of highly efficient stress-resistant crops in the future.

Key words: class III peroxidase, gene family analysis, drought stress response, Setaria italica

附表1

SitPRX基因家族qRT-PCR引物"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
SitPRX9 AGCCAACGCTGGTCTGATT TTCTGTGACATCCACCCGTC
SitPRX12 GGCCAGCCCTCGTTTTCTAT TTTGCTCTGCTCCGCTGTTT
SitPRX33 ACTGCTTCGTCAGGGGTTG GTCGTCGATCACCTCGAACG
SitPRX41 GTCCGTCGCACTTGAT AAGGCTGAGACGATGATC
SitPRX49 ACTACTCCAAGACATGCCCG ACTGATCCATCACATCCCTGC
SitPRX72 TGATGCCGTTGATCTGACCG TGTGGGCACCGACTAATGTT
SitPRX81 GTGTCGTCCAGTTCTACC CTCGGCAAGCGTTGAA
SitPRX87 ACGTGATTCGTCAGTGTGCC GGATGAGCCTTTCCCAGAGT
SitPRX110 GTCGTGGTCTTATCGGGAGC TCCAGCGTCGGATCTACTGA
SitPRX126 GAGCCCGTGAAGGAGGAGTT CCTCAGATGGTCAGAACCCTTA
SitEF1a-2 TGACTGTGCTGTCCTCATCA GTTGCAGCAGCAAATCATCT

附表2

SitPRX基因家族蛋白质理化性质"

基因名称
Gene name
序列名称
Sequence ID
染色体
Chr.
氨基酸
Size (aa)
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
脂肪系数
Aliphatic index
SitPRX1 Seita.1G022200 1 323 34.01297 4.65 46.44 86.19
SitPRX2 Seita.1G022300 1 320 33.99131 6.06 35.99 86.94
SitPRX3 Seita.1G022500 1 321 34.06693 6.93 35.87 94.92
SitPRX4 Seita.1G022900 1 323 32.94039 8.77 35.46 85.76
SitPRX5 Seita.1G023000 1 320 32.79593 5.16 34.89 87.69
SitPRX6 Seita.1G023100 1 325 33.59487 8.61 50.68 84.25
SitPRX7 Seita.1G079000 1 347 36.77990 8.08 43.59 83.00
SitPRX8 Seita.1G170200 1 342 36.70845 6.44 24.42 85.67
SitPRX9 Seita.1G192100 1 478 51.19841 5.18 50.25 67.80
SitPRX10 Seita.1G281400 1 331 35.85566 5.74 40.75 79.64
SitPRX11 Seita.1G380000 1 327 33.90540 7.10 43.36 83.49
SitPRX12 Seita.2G236400 2 343 37.36357 5.82 35.23 81.40
SitPRX13 Seita.2G266900 2 337 35.49031 6.00 33.43 80.53
SitPRX14 Seita.2G320200 2 357 38.91543 9.00 30.86 79.58
SitPRX15 Seita.2G371600 2 324 33.41573 9.27 41.70 84.51
SitPRX16 Seita.2G406700 2 413 44.45746 6.41 46.79 70.70
SitPRX17 Seita.2G407000 2 364 38.15130 5.98 44.02 79.95
SitPRX18 Seita.2G407100 2 372 39.60795 6.89 30.53 86.34
SitPRX19 Seita.2G407200 2 553 57.24306 7.56 78.21 59.89
SitPRX20 Seita.2G407400 2 350 37.48503 9.07 39.39 82.80
SitPRX21 Seita.2G411900 2 328 35.06796 6.33 38.71 82.77
SitPRX22 Seita.2G430900 2 317 33.14664 9.11 38.83 90.98
SitPRX23 Seita.2G431000 2 351 36.48558 6.57 35.11 94.93
SitPRX24 Seita.2G431100 2 312 33.15028 5.48 48.85 84.87
SitPRX25 Seita.2G431200 2 312 32.73764 5.67 44.13 84.55
SitPRX26 Seita.2G431300 2 318 33.09396 6.19 40.08 79.91
SitPRX27 Seita.2G431500 2 311 32.45267 6.97 39.19 87.97
SitPRX28 Seita.3G004800 3 323 33.71242 6.23 33.82 97.99
SitPRX29 Seita.3G004900 3 332 35.23111 6.89 42.79 90.33
SitPRX30 Seita.3G005100 3 348 36.75468 5.05 38.65 93.42
SitPRX31 Seita.3G005200 3 350 37.21731 5.65 42.99 91.23
SitPRX32 Seita.3G022600 3 333 35.59788 9.16 40.76 91.23
SitPRX33 Seita.3G052400 3 344 37.47289 8.51 32.37 91.10
基因名称
Gene name
序列名称
Sequence ID
染色体
Chr.
氨基酸
Size (aa)
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
脂肪系数
Aliphatic index
SitPRX34 Seita.3G052500 3 328 34.69369 8.34 32.54 83.63
SitPRX35 Seita.3G052600 3 321 33.78561 6.30 32.81 80.9
SitPRX36 Seita.3G052700 3 328 34.82772 8.33 32.72 83.35
SitPRX37 Seita.3G052800 3 325 33.93987 7.51 36.99 85.97
SitPRX38 Seita.3G052900 3 333 36.42036 6.26 38.96 79.97
SitPRX39 Seita.3G053000 3 334 35.86602 9.36 37.01 85.36
SitPRX40 Seita.3G053100 3 336 36.71877 7.13 42.16 78.96
SitPRX41 Seita.3G190300 3 345 37.79519 5.54 43.42 85.10
SitPRX42 Seita.3G190400 3 326 35.42539 6.25 34.41 79.05
SitPRX43 Seita.3G234900 3 318 34.02132 5.41 42.17 87.52
SitPRX44 Seita.3G235000 3 317 34.15256 5.68 46.78 87.76
SitPRX45 Seita.3G235100 3 324 34.70026 6.65 45.38 86.51
SitPRX46 Seita.3G270300 3 337 36.09192 7.52 34.24 83.59
SitPRX47 Seita.3G347500 3 344 35.56654 8.59 39.48 88.72
SitPRX48 Seita.4G105100 4 342 36.82120 8.78 38.15 81.40
SitPRX49 Seita.4G122600 4 378 41.42903 5.03 27.18 78.23
SitPRX50 Seita.4G134900 4 364 39.37921 7.09 34.97 94.64
SitPRX51 Seita.4G135000 4 328 35.59600 8.29 28.43 91.34
SitPRX52 Seita.4G135100 4 327 35.10916 6.45 28.98 88.44
SitPRX53 Seita.4G165000 4 331 35.97672 5.20 47.40 82.90
SitPRX54 Seita.4G165100 4 330 35.90367 5.20 48.44 83.42
SitPRX55 Seita.4G165200 4 333 36.09562 5.34 47.66 76.58
SitPRX56 Seita.4G176600 4 359 38.13847 9.37 37.13 87.10
SitPRX57 Seita.4G176800 4 312 33.60469 10.58 48.94 78.37
SitPRX58 Seita.4G247300 4 339 36.26934 8.95 36.81 78.94
SitPRX59 Seita.4G247400 4 319 34.40781 6.72 39.28 79.56
SitPRX60 Seita.4G247500 4 318 34.20550 5.93 39.72 76.76
SitPRX61 Seita.4G247600 4 319 34.11854 5.24 33.72 80.00
SitPRX62 Seita.5G029700 5 347 38.28653 5.96 33.92 92.51
SitPRX63 Seita.5G029800 5 348 38.20653 6.31 34.03 93.65
SitPRX64 Seita.5G030000 5 330 34.54058 4.73 33.19 82.00
SitPRX65 Seita.5G030100 5 317 33.48703 6.30 42.21 82.65
SitPRX66 Seita.5G030300 5 335 36.55180 9.82 36.56 89.13
SitPRX67 Seita.5G046600 5 347 36.50828 9.00 38.16 84.18
SitPRX68 Seita.5G053000 5 367 39.71532 8.83 47.85 86.65
SitPRX69 Seita.5G053100 5 338 36.02722 9.03 36.04 92.43
SitPRX70 Seita.5G053200 5 338 36.38048 7.61 34.48 90.65
SitPRX71 Seita.5G053300 5 347 38.32482 7.62 39.97 88.85
SitPRX72 Seita.5G122000 5 327 35.14673 5.97 42.75 84.77
SitPRX73 Seita.5G145500 5 321 33.72513 8.87 35.40 84.98
SitPRX74 Seita.5G155100 5 359 37.33727 6.11 35.90 84.37
SitPRX75 Seita.5G155200 5 370 38.68255 5.64 41.43 87.65
SitPRX76 Seita.5G155300 5 362 38.49054 6.44 37.28 83.62
SitPRX77 Seita.5G164800 5 344 36.95184 6.69 45.91 84.24
SitPRX78 Seita.5G170000 5 322 33.87709 9.27 36.20 90.09
SitPRX79 Seita.5G191900 5 337 36.27433 8.39 45.24 88.37
SitPRX80 Seita.5G293800 5 367 39.46438 5.10 43.22 78.45
SitPRX81 Seita.5G344000 5 343 37.01494 4.79 38.86 86.21
SitPRX82 Seita.5G462500 5 357 38.14559 6.11 34.90 94.87
SitPRX83 Seita.5G463200 5 356 37.71887 8.59 45.69 84.44
基因名称
Gene name
序列名称
Sequence ID
染色体
Chr.
氨基酸
Size (aa)
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
脂肪系数
Aliphatic index
SitPRX84 Seita.5G463300 6 362 39.21183 9.01 35.06 87.10
SitPRX85 Seita.6G090100 6 319 34.70663 5.30 35.00 85.92
SitPRX86 Seita.6G224300 6 334 36.59959 6.39 47.66 78.56
SitPRX87 Seita.6G239800 6 288 31.41981 7.02 35.54 84.44
SitPRX88 Seita.7G006800 7 330 35.41114 5.21 31.65 90.64
SitPRX89 Seita.7G023900 7 292 31.98142 6.67 42.64 76.95
SitPRX90 Seita.7G102200 7 342 36.98169 8.79 40.93 72.13
SitPRX91 Seita.7G128200 7 336 35.92006 9.45 44.80 85.03
SitPRX92 Seita.7G154400 7 495 50.08982 8.99 68.05 75.66
SitPRX93 Seita.7G247400 7 359 38.99986 8.75 44.15 85.32
SitPRX94 Seita.7G265300 7 320 33.99704 4.82 33.00 80.28
SitPRX95 Seita.7G271000 7 364 38.88408 6.98 41.86 80.19
SitPRX96 Seita.7G271100 7 362 38.69103 8.01 37.25 84.97
SitPRX97 Seita.7G271400 7 337 35.63451 6.92 37.98 85.19
SitPRX98 Seita.7G277800 7 331 34.16931 4.39 34.08 93.02
SitPRX99 Seita.7G283600 7 311 33.94250 7.13 45.64 78.55
SitPRX100 Seita.7G327600 7 321 33.66502 8.06 35.56 80.56
SitPRX101 Seita.7G327800 7 317 33.97633 8.32 34.29 78.52
SitPRX102 Seita.8G015100 8 331 34.92851 8.31 35.24 81.99
SitPRX103 Seita.8G015200 8 355 37.31111 8.71 40.05 80.82
SitPRX104 Seita.8G100100 8 339 35.55516 6.10 32.34 85.75
SitPRX105 Seita.8G106600 8 321 34.59168 8.90 45.52 82.99
SitPRX106 Seita.9G081300 9 324 34.07148 4.44 33.58 93.77
SitPRX107 Seita.9G081400 9 326 34.65617 5.28 36.89 84.48
SitPRX108 Seita.9G186200 9 345 37.93747 9.15 34.05 87.33
SitPRX109 Seita.9G186300 9 333 35.75638 9.36 59.24 96.37
SitPRX110 Seita.9G282900 9 327 35.40278 4.73 28.03 88.53
SitPRX111 Seita.9G298200 9 340 36.51632 4.92 38.22 86.15
SitPRX112 Seita.9G298300 9 343 36.40207 5.40 28.97 84.26
SitPRX113 Seita.9G298400 9 338 36.05723 4.52 34.97 82.28
SitPRX114 Seita.9G298500 9 342 36.79289 4.50 43.85 76.78
SitPRX115 Seita.9G316400 9 330 35.44946 8.90 37.57 89.33
SitPRX116 Seita.9G316500 9 325 34.91006 5.95 32.18 94.00
SitPRX117 Seita.9G316600 9 260 28.07594 8.94 43.80 81.04
SitPRX118 Seita.9G316700 9 329 35.34733 9.09 36.90 89.27
SitPRX119 Seita.9G342200 9 323 33.49696 7.55 34.67 83.10
SitPRX120 Seita.9G355500 9 330 34.04416 5.30 37.53 87.73
SitPRX121 Seita.9G392700 9 330 34.59363 7.06 38.68 84.88
SitPRX122 Seita.9G392800 9 343 36.74207 5.66 45.64 85.63
SitPRX123 Seita.9G393100 9 330 35.86731 9.12 42.48 82.52
SitPRX124 Seita.9G393200 9 322 34.4055 7.47 35.87 82.11
SitPRX125 Seita.9G411500 9 330 34.90751 8.08 40.40 86.48
SitPRX126 Seita.9G444200 9 250 27.32902 5.69 40.56 75.80
SitPRX127 Seita.9G477900 9 332 34.68019 5.54 31.09 91.17
SitPRX128 Seita.9G478000 9 392 42.26585 9.00 44.72 75.97
SitPRX129 Seita.9G478300 9 339 36.23680 4.83 44.50 82.18
SitPRX130 Seita.9G537300 9 498 52.30507 5.63 40.28 86.65
SitPRX131 Seita.9G562400 9 334 35.11090 5.62 42.16 81.92
SitPRX132 Seita.9G562600 9 331 34.28555 5.22 29.95 81.48

图1

拟南芥、水稻与谷子Class III PRX基因家族成员系统进化树 AtPRX: 拟南芥III型PRX基因(黄色星形); SitPRX: 谷子III型PRX基因(红色圆形); OsPRX: 水稻III型PRX基因(绿色圆形)。"

图2

SitPRX基因家族成员的基因结构和保守基序 Motif: 保守基序; UTR: 非翻译区; CDS: 编码区序列。"

图3

SitPRX基因家族成员在谷子染色体上的分布 Sit1~Sit9代表谷子1号至9号染色体。"

图4

SitPRX基因家族共线性分析"

图5

SitPRX基因家族成员与拟南芥、水稻和玉米PRX基因共线性分析 A: 谷子与拟南芥PRX基因共线性分析; B: 谷子与水稻PRX基因共线性分析; C: 谷子与玉米PRX基因共线性分析。"

图6

SitPRX基因家族成员组织表达谱 Seed为吸水3 d种子; Seedling为2周龄幼苗全株; Root为灌浆期根; Stem为灌浆期茎; Leaf 1为2周龄苗的第1片完全伸展的叶; Leaf 2为1月龄苗的第2片叶; Leaf 3为旗叶; Leaf 4为第4片叶; Panicle 1为未成熟的花序; Panicle 2为授粉期的花序; Panicle 3为灌浆期的花序。"

图7

SitPRX基因家族启动子顺式作用元件统计 Light-responsive: 光响应元件; Stress-responsive: 胁迫响应元件; Hormone-responsive: 激素响应元件。"

图8

SitPRX基因家族启动子顺式作用元件分析"

图9

SitPRX基因家族成员在干旱胁迫处理和ABA诱导下的表达模式 *表示PEG或ABA处理0.5 h、1 h、3 h与未处理(0 h)在0.05水平显著差异。"

[1] Salekdeh G H, Reynolds M, Bennett J, Boyer J. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci, 2009, 14: 488-496.
doi: 10.1016/j.tplants.2009.07.007
[2] Møller I M, Sweetlove L J. ROS signalling-specificity is required. Trends Plant Sci, 2010, 15: 370-374.
doi: 10.1016/j.tplants.2010.04.008 pmid: 20605736
[3] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016
[4] Cooke M S, Evans M D, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003, 17: 1195-1214.
doi: 10.1096/fj.02-0752rev
[5] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
doi: 10.1146/annurev.arplant.49.1.249
[6] Knoops B, Loumaye E, Van Der Eecken V. Evolution of the peroxiredoxins. Subcell Biochem, 2007, 44: 27-40.
[7] Hofmann B, Hecht H J, Flohé L. Peroxiredoxins. Biol Chem, 2002, 383: 347-364.
pmid: 12033427
[8] Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res, 2003, 1: 682-689.
[9] Lee T H, Kim S U, Yu S L, Kim S H, Park D S, Moon H B, Dho S H, Kwon K S, Kwon H J, Han Y H, Jeong S, Kang S W, Shin H S, Lee K K, Rhee S G, Yu D Y. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood, 2003, 101: 5033-5038.
doi: 10.1182/blood-2002-08-2548
[10] Dierick J F, Wenders F, Chainiaux F, Remacle J, Fisher A B, Toussaint O. Retrovirally mediated overexpression of peroxiredoxin Ⅵ increases the survival of WI-38 human diploid fibroblasts exposed to cytotoxic doses of tert-butylhydroperoxide and UVB. Biogerontology, 2003, 4: 125-131.
doi: 10.1023/A:1024154024602
[11] Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
pmid: 11382811
[12] Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305-1319.
pmid: 11997377
[13] Piontek K, Smith A T, Blodig W. Lignin peroxidase structure and function. Biochem Soc Trans, 2001, 29: 111-116.
doi: 10.1042/bst0290111
[14] Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
pmid: 12034502
[15] Zheng X, Huystee R B. Oxidation of tyrosine by peroxidase isozymes derived from peanut suspension culture medium and by isolated cell wall. Plant Cell Tissue Organ Cult, 1991, 25: 35-43.
doi: 10.1007/BF00033910
[16] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
pmid: 15279994
[17] Intapruk C, Higashimura N, Yamamoto K, Okada N, Shinmyo A, Takano M. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana. Gene, 1991, 98: 237-241.
pmid: 2016063
[18] Barceló A R, Pomar F. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls. Phytochemistry, 2001, 57: 1105-1113.
pmid: 11430983
[19] Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M, Nagamura Y, Sasaki T, Ohashi Y. Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett, 2000, 471: 245-250.
pmid: 10767432
[20] Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479
[21] Llorente F, López-Cobollo R M, Catalá R, Martínez-Zapater J M, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32: 13-24.
doi: 10.1046/j.1365-313X.2002.01398.x
[22] Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene, 2019, 700: 149-162.
doi: 10.1016/j.gene.2019.02.103
[23] Yang X, Yuan J, Luo W, Qin M, Yang J, Wu W, Xie X. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577.
[24] Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666.
[25] 彭方林, 王丽, 穆春, 王曦烨, 李迎迎, 王林嵩. 萝卜过氧化物酶基因Rsprx1对其抗氧化能力的影响. 贵州农业科学, 2014, 42(9): 40-42.
Peng F L, Wang L, Mu C, Wang X Y, Li Y Y, Wang L S. Effect of peroxidase gene Rsprx1 on antioxidant ability in Raphanus sativus. Guizhou Agric Sci, 2014, 42(9): 40-42. (in Chinese with English abstract)
[26] 高正银, 孙文杰, 宋晓云, 胡轼, 左开井. 雷蒙德棉第III类过氧化物酶全基因组鉴定和表达分析. 生物技术进展, 2019, 9: 490-501.
Gao Z Y, Sun W J, Song X Y, Hu S, Zuo K J. Genome-wide identification and expression pattern analysis of class III peroxidase family in Gossypium raimondii. Curr Biotechnol, 2019, 9: 490-501. (in Chinese with English abstract)
[27] Feng Y, Wei R, Liu A, Fan S, Che J, Zhang Z, Tian B, Yuan Y, Shi G, Shang H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ, 2021, 9: e10685.
[28] Meng G, Fan W, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Phys Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004
[29] 张瑞杰, 王喆, 连卜颖, 郭展, 魏东, 于世慧, 李红英, 刘晓东. 谷子ABC转运蛋白基因与抗旱关系的研究. 山西农业大学学报(自然科学版), 2018, 38(1): 11-15.
Zhang R J, Wang Z, Lian B Y, Guo Z, Wei D, Yu S H, Li H Y, Liu X D. Study on the relationship between ABC transporter genes and drought tolerance in foxtail millet. Shanxi Agric Univ (Nat Sci Edn), 2018, 38(1): 11-15. (in Chinese with English abstract)
[30] 张雁明, 刘晓东, 马建萍, 温琪汾, 韩渊怀. 谷子抗旱研究进展. 山西农业科学, 2013, 41: 282-285.
Zhang Y M, Liu X D, Ma J P, Wen Q F, Han Y H. Research progress on drought resistance in foxtail millet (Setaria italica L.). Shanxi Agric Sci, 2013, 41: 282-285. (in Chinese with English abstract)
[31] 武懿茂, 樊武哲, 李红英, 李雪垠. 谷子抗旱相关蛋白激酶基因家族鉴定及表达分析. 山西农业大学学报(自然科学版), 2020, 40(1): 1-10.
Wu Y M, Fan W Z, Li H Y, Li X Y. Identification and expression of protein kinase gene family related to drought resistance in Setaria italica. Shanxi Agric Univ (Nat Sci Edn), 2020, 40(1): 1-10. (in Chinese with English abstract)
[32] Yang Z, Zhang H, Li X, Shen H, Gao J, Hou S, Zhang B, Mayes S, Bennett M, Ma J, Wu C, Sui Y, Han Y, Wang X. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[33] Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep, 2017, 7: 10009.
[34] Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512-1517.
pmid: 12956953
[35] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
[36] Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep, 2018, 8: 4855.
[37] Kim Y, Seo C W, Khan A L, Mun B G, Shahzad R, Ko J W, Yun B W, Park S K, Lee I J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol, 2018, 18: 254.
[1] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
[2] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657.
[3] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[4] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[5] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[6] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷光合生产特征及产量的调控效应[J]. 作物学报, 2022, 48(11): 2840-2852.
[7] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[8] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[9] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[10] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[11] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[12] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[13] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[14] 陈雪娇,张旭东,韩治中,张鹏,贾志宽,连延浩,韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献[J]. 作物学报, 2018, 44(7): 1055-1066.
[15] 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[3] 赵翔;汪延良;王亚静;王西丽;张骁. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控[J]. 作物学报, 2008, 34(11): 1970 -1976 .
[4] 叶小利;李学刚;李加纳. 甘蓝型油菜种皮黑色素形成机理的研究[J]. 作物学报, 2002, 28(05): 638 -643 .
[5] 徐宁;程须珍;王素华;王丽侠;赵丹. 以地理来源分组和利用表型数据构建中国小豆核心种质[J]. 作物学报, 2008, 34(08): 1366 -1373 .
[6] 刘国栋;刘更另. 籼稻耐低钾基因型的筛选[J]. 作物学报, 2002, 28(02): 161 -166 .
[7] 陈利;张正圣;胡美纯;王威;张建;刘大军;郑靓;郑风敏;马靖. 陆地棉遗传图谱构建及产量和纤维品质性状QTL定位[J]. 作物学报, 2008, 34(07): 1199 -1205 .
[8] . 两熟棉田五种不同种植方式的棉花干物质积累与分配[J]. 作物学报, 1985, 11(02): 131 -137 .
[9] 郭天财;宋晓;马冬云;王永华;谢迎新;查菲娜;岳艳军;岳彩凤. 施氮水平对冬小麦旗叶光合特性的调控效应[J]. 作物学报, 2007, 33(12): 1977 -1981 .
[10] 方先文;姜东;戴廷波;荆奇;曹卫星. 小麦籽粒总淀粉及支链淀粉含量的遗传分析[J]. 作物学报, 2003, 29(06): 925 -929 .