作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2517-2532.doi: 10.3724/SP.J.1006.2022.14185
马鑫磊1,2(), 许瑞琪2, 索晓曼2, 李婧实1,2, 顾鹏鹏1,2, 姚锐1,2, 林小虎1,2,*(), 高慧1,2,*()
MA Xin-Lei1,2(), XU Rui-Qi2, SUO Xiao-Man2, LI Jing-Shi1,2, GU Peng-Peng1,2, YAO Rui1,2, LIN Xiao-Hu1,2,*(), GAO Hui1,2,*()
摘要:
III型过氧化物酶(Class III peroxidase, PRX)是植物中特有的过氧化物酶家族, 在植物生长发育以及非生物胁迫中发挥重要作用。谷子作为C4植物是禾本科抗逆研究的模式植物, 然而目前对于谷子中III型过氧化物酶家族基因功能鲜有报道。为探究谷子III型过氧化物酶基因家族(SitPRXs)在干旱胁迫和ABA诱导下的表达模式, 进行了全基因组表达分析。本研究利用生物信息学方法在谷子全基因组中鉴定出132个III型PRX基因家族成员, 并根据其在染色体上位置顺序依次命名为SitPRX1~SitPRX132。通过对谷子、拟南芥和水稻的系统进化分析将其分为5个亚家族, 基因结构和保守基序分析表明同一亚家族具有较高的保守性。基因复制分析显示, 17个SitPRX基因(13%)存在片段复制, 78个SitPRX基因(59%)存在串联复制, 串联复制事件在SitPRX基因扩增中起重要作用。谷子与拟南芥、水稻和玉米的物种间同源性分析显示谷子中大多数SitPRXs是在双子叶植物和单子叶植物分化后形成的。转录组分析显示, SitPRX基因家族成员在谷子幼苗、根、茎、叶以及圆锥花序中表达存在差异。启动子顺式作用元件分析显示, 79个SitPRXs含有与干旱胁迫响应相关的顺式作用元件, 进一步qRT-PCR分析显示, SitPRX12、SitPRX41、SitPRX81、SitPRX110和SitPRX126受PEG和ABA诱导表达, 表明这些基因可能通过ABA依赖的信号通路来调控和响应干旱胁迫, 可作为进一步研究III型PRX基因家族抗旱功能的候选基因。研究结果为全面解析SitPRX基因结构与生物学功能、抗旱分子机制以及分子育种提供了新信息, 以期为今后培育高效抗逆作物新品种提供思路。
[1] |
Salekdeh G H, Reynolds M, Bennett J, Boyer J. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci, 2009, 14: 488-496.
doi: 10.1016/j.tplants.2009.07.007 |
[2] |
Møller I M, Sweetlove L J. ROS signalling-specificity is required. Trends Plant Sci, 2010, 15: 370-374.
doi: 10.1016/j.tplants.2010.04.008 pmid: 20605736 |
[3] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016 |
[4] |
Cooke M S, Evans M D, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003, 17: 1195-1214.
doi: 10.1096/fj.02-0752rev |
[5] |
Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
doi: 10.1146/annurev.arplant.49.1.249 |
[6] | Knoops B, Loumaye E, Van Der Eecken V. Evolution of the peroxiredoxins. Subcell Biochem, 2007, 44: 27-40. |
[7] |
Hofmann B, Hecht H J, Flohé L. Peroxiredoxins. Biol Chem, 2002, 383: 347-364.
pmid: 12033427 |
[8] | Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res, 2003, 1: 682-689. |
[9] |
Lee T H, Kim S U, Yu S L, Kim S H, Park D S, Moon H B, Dho S H, Kwon K S, Kwon H J, Han Y H, Jeong S, Kang S W, Shin H S, Lee K K, Rhee S G, Yu D Y. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood, 2003, 101: 5033-5038.
doi: 10.1182/blood-2002-08-2548 |
[10] |
Dierick J F, Wenders F, Chainiaux F, Remacle J, Fisher A B, Toussaint O. Retrovirally mediated overexpression of peroxiredoxin Ⅵ increases the survival of WI-38 human diploid fibroblasts exposed to cytotoxic doses of tert-butylhydroperoxide and UVB. Biogerontology, 2003, 4: 125-131.
doi: 10.1023/A:1024154024602 |
[11] |
Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
pmid: 11382811 |
[12] |
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305-1319.
pmid: 11997377 |
[13] |
Piontek K, Smith A T, Blodig W. Lignin peroxidase structure and function. Biochem Soc Trans, 2001, 29: 111-116.
doi: 10.1042/bst0290111 |
[14] |
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
pmid: 12034502 |
[15] |
Zheng X, Huystee R B. Oxidation of tyrosine by peroxidase isozymes derived from peanut suspension culture medium and by isolated cell wall. Plant Cell Tissue Organ Cult, 1991, 25: 35-43.
doi: 10.1007/BF00033910 |
[16] |
Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
pmid: 15279994 |
[17] |
Intapruk C, Higashimura N, Yamamoto K, Okada N, Shinmyo A, Takano M. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana. Gene, 1991, 98: 237-241.
pmid: 2016063 |
[18] |
Barceló A R, Pomar F. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls. Phytochemistry, 2001, 57: 1105-1113.
pmid: 11430983 |
[19] |
Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M, Nagamura Y, Sasaki T, Ohashi Y. Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett, 2000, 471: 245-250.
pmid: 10767432 |
[20] |
Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
[21] |
Llorente F, López-Cobollo R M, Catalá R, Martínez-Zapater J M, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32: 13-24.
doi: 10.1046/j.1365-313X.2002.01398.x |
[22] |
Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene, 2019, 700: 149-162.
doi: 10.1016/j.gene.2019.02.103 |
[23] | Yang X, Yuan J, Luo W, Qin M, Yang J, Wu W, Xie X. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577. |
[24] | Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666. |
[25] | 彭方林, 王丽, 穆春, 王曦烨, 李迎迎, 王林嵩. 萝卜过氧化物酶基因Rsprx1对其抗氧化能力的影响. 贵州农业科学, 2014, 42(9): 40-42. |
Peng F L, Wang L, Mu C, Wang X Y, Li Y Y, Wang L S. Effect of peroxidase gene Rsprx1 on antioxidant ability in Raphanus sativus. Guizhou Agric Sci, 2014, 42(9): 40-42. (in Chinese with English abstract) | |
[26] | 高正银, 孙文杰, 宋晓云, 胡轼, 左开井. 雷蒙德棉第III类过氧化物酶全基因组鉴定和表达分析. 生物技术进展, 2019, 9: 490-501. |
Gao Z Y, Sun W J, Song X Y, Hu S, Zuo K J. Genome-wide identification and expression pattern analysis of class III peroxidase family in Gossypium raimondii. Curr Biotechnol, 2019, 9: 490-501. (in Chinese with English abstract) | |
[27] | Feng Y, Wei R, Liu A, Fan S, Che J, Zhang Z, Tian B, Yuan Y, Shi G, Shang H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ, 2021, 9: e10685. |
[28] |
Meng G, Fan W, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Phys Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004 |
[29] | 张瑞杰, 王喆, 连卜颖, 郭展, 魏东, 于世慧, 李红英, 刘晓东. 谷子ABC转运蛋白基因与抗旱关系的研究. 山西农业大学学报(自然科学版), 2018, 38(1): 11-15. |
Zhang R J, Wang Z, Lian B Y, Guo Z, Wei D, Yu S H, Li H Y, Liu X D. Study on the relationship between ABC transporter genes and drought tolerance in foxtail millet. Shanxi Agric Univ (Nat Sci Edn), 2018, 38(1): 11-15. (in Chinese with English abstract) | |
[30] | 张雁明, 刘晓东, 马建萍, 温琪汾, 韩渊怀. 谷子抗旱研究进展. 山西农业科学, 2013, 41: 282-285. |
Zhang Y M, Liu X D, Ma J P, Wen Q F, Han Y H. Research progress on drought resistance in foxtail millet (Setaria italica L.). Shanxi Agric Sci, 2013, 41: 282-285. (in Chinese with English abstract) | |
[31] | 武懿茂, 樊武哲, 李红英, 李雪垠. 谷子抗旱相关蛋白激酶基因家族鉴定及表达分析. 山西农业大学学报(自然科学版), 2020, 40(1): 1-10. |
Wu Y M, Fan W Z, Li H Y, Li X Y. Identification and expression of protein kinase gene family related to drought resistance in Setaria italica. Shanxi Agric Univ (Nat Sci Edn), 2020, 40(1): 1-10. (in Chinese with English abstract) | |
[32] |
Yang Z, Zhang H, Li X, Shen H, Gao J, Hou S, Zhang B, Mayes S, Bennett M, Ma J, Wu C, Sui Y, Han Y, Wang X. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[33] | Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep, 2017, 7: 10009. |
[34] |
Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512-1517.
pmid: 12956953 |
[35] | Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10. |
[36] | Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep, 2018, 8: 4855. |
[37] | Kim Y, Seo C W, Khan A L, Mun B G, Shahzad R, Ko J W, Yun B W, Park S K, Lee I J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol, 2018, 18: 254. |
[1] | 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925. |
[2] | 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657. |
[3] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[4] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[5] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[6] | 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷光合生产特征及产量的调控效应[J]. 作物学报, 2022, 48(11): 2840-2852. |
[7] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[8] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[9] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[10] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
[11] | 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604. |
[12] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
[13] | 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612. |
[14] | 陈雪娇,张旭东,韩治中,张鹏,贾志宽,连延浩,韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献[J]. 作物学报, 2018, 44(7): 1055-1066. |
[15] | 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432. |
|