欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1423-1432.doi: 10.3724/SP.J.1006.2018.01423

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

以抗除草剂Bar基因稳定转化谷子技术研究

陈倩楠1,2,王轲1,汤沙1,杜丽璞1,智慧1,贾冠清1,赵宝华2,叶兴国1,刁现民1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2河北师范大学生命科学学院, 河北石家庄 050024
  • 收稿日期:2017-11-23 接受日期:2018-07-20 出版日期:2018-10-10 网络出版日期:2018-08-01
  • 通讯作者: 刁现民
  • 基金资助:
    本研究由国家自然科学基金项目(31501324);本研究由国家自然科学基金项目(31522040);中国农业科学院基本科研业务费(Y2017JC15);中国农业科学院基本科研业务费(CAAS-XTCX2016001-5);中国农业科学院基本科研业务费(CAAS-XTCX2016002);国家现代农业产业技术体系建设专项(CARS-06-13.5-A04);中国农业科学院创新工程杂粮团队项目资助

Use of Bar Gene for the Stable Transformation of Herbicide-resistant Foxtail Millet Plants

Qian-Nan CHEN1,2,Ke WANG1,Sha TANG1,Li-Pu DU1,Hui ZHI1,Guan-Qing JIA1,Bao-Hua ZHAO2,Xing-Guo YE1,Xian-Min DIAO1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2017-11-23 Accepted:2018-07-20 Published:2018-10-10 Published online:2018-08-01
  • Contact: Xian-Min DIAO
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31501324);This study was supported by the National Natural Science Foundation of China(31522040);the Fundamental Research Funds of CAAS(Y2017JC15);the Fundamental Research Funds of CAAS(CAAS-XTCX2016001-5);the Fundamental Research Funds of CAAS(CAAS-XTCX2016002);the China Agriculture Research System(CARS-06-13.5-A04);the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

摘要:

农杆菌介导的谷子遗传转化效率一直是制约谷子功能基因研究及转基因育种效率的主要因素。本研究以冀谷11谷子幼穗为外植体, 选取0.5~1.0 cm的幼穗, 切成0.5 cm左右的小段, 置改良后的MS培养基上诱导15~20 d形成胚性愈伤组织3120块。愈伤组织侵染转化前用侵染液悬浮浸泡, 并经45°C热激预处理3 min, 可以有效提高26.1%的瞬时遗传转化效率。将转化后的愈伤组织经草丁膦(PPT)筛选后获得513块抗性愈伤组织, 抗性愈伤组织获得率为16.4%。抗性愈伤组织经分化、壮苗培养后获得7株抗性植株, 经PCR和Southern杂交检测得到6株T0代转基因阳性株, 对T3代转化植株叶片进行PPT抗性分析, 并结合Bar蛋白抗体试纸条鉴定, 表明Bar基因已稳定整合到谷子基因组中。本研究建立了农杆菌介导转化谷子优良品种的遗传转化体系, 对提高谷子转基因育种效率和谷子模式研究系统的建立有重要意义。

关键词: 谷子, 根癌农杆菌, 遗传转化, 热激, 抗除草剂

Abstract:

Efficiency of Agrobacterium-mediated genetic transformation has been the main factor that restricts the study of functional genes and transgenic breeding in foxtail millet. In this study, foxtail millet variety Jigu 11 panicle primordia were used as explants. Young panicles of 0.5-1.0 cm in length were picked and cut into small pieces. The young embryos were cultured in modified MS medium for inducing embryogenic calli, totally forming 3120 embryogenic calli in 15-20 days. Soaking the calli in the infection suspension prior to transformation, and the heat treatment at 45°C for 3 min could effectively improve the transient genetic transformation efficiency by 26.1%. The transformed calli were screened with phosphinothricin (PPT), in which 513 were resistant calli, with the resistant calli rate of 16.4%. Seven herbicide-resistant plants were obtained after resistant calli differentiation and seedling culture. Six T0 transgenic positive plants were identified by PCR and Southern blot. PPT resistance analysis was carried out on leaves in T3 generation of transformed plants, and combined with Bar protein antibody test strip identification, the results confirmed that the Bar gene stably incorporated into the genome of foxtail millet seedlings. This study established a stable genetic transformation system in foxtail millet, which is of great significance in improving the efficiency of molecular breeding, and prompting foxtail millet as a new model plants.

Key words: foxtail millet, Agrobacterium, genetic transformation, heat shock, herbicide-resistant

表1

农杆菌介导谷子愈伤组织转化培养基配方"

组分
Composition
诱导培养基
IM
侵染液
IL
共培养基
CM
恢复培养基RM 筛选培养基
SM
分化培养基DM 壮苗培养基
SSM
MS 4.43 0.443 0.443 4.43 4.43 4.43 2.215
L-Glu 0.5 0.5 0.5
CEH 0.8 0.8 0.8 0.8 0.8
MES 1.95 0.5 0.5 1.95 1.95
inositol 0.1 0.1 0.1 0.1
VCa 0.01 0.01
Glucose 36 10
Sucrose 68.5 20 30
Maltose 40 40 40
CuSO4a 0.0006
AgNO3a 0.005 0.005 0.005 0.005
2,4-Da 0.002 0.002 0.002 0.002
KTa 0.0005 0.005 0.0005 0.0005 0.002
NAAa 0.0005
ASa 0.1962, L-1
Cefa 0.1
Carba 0.25 0.25
Tima 0.15 0.15
PPTa 0.005/0.01 0.001
Agar 5 8 5 5
Phytagel 2.5 2

表2

遗传转化热激处理方式"

热激温度
Heat temperature (°C)
热激时间
Heat time (min)
冰浴时间
Ice bath time (min)
25(CK)
37 3 1
45 3 1
47 3 1

图1

幼穗大小及愈伤组织状态 A: 诱导7 d后愈伤组织; B: 诱导20 d后愈伤组织; C: 诱导40 d后愈伤组织; D: 不同长度幼穗。"

表3

幼穗诱导培养15 d后愈伤组织诱导效率的比较"

幼穗大小
Panicle size (cm)
愈伤组织数量
Calli number
幼穗数量
Panicle number
愈伤组织诱导率
Calli induction rate (%)a
≤ 0.5 23 30 74.35±2.35
18 25
20 27
0.5-1.0 181 198 92.74±1.13
190 204
207 221
1.1-1.5 104 137 75.14±4.11
97 123
77 109
1.6-2.0 43 96 39.16±4.98
39 103
31 89
≥ 2.0 17 75 21.54±1.85
13 68
21 92

图2

愈伤组织诱导培养时间对转化效率的影响 A: 诱导7 d后愈伤组织; B: 诱导15 d后愈伤组织; C: 诱导30 d后愈伤组织; D: GUS瞬时转化效率; E: 诱导15 d愈伤组织GUS染色; F: 诱导30 d愈伤组织GUS染色。*, **分别表示在P ≤ 0.05和P ≤ 0.01水平上的显著差异。"

图3

谷子愈伤组织热激处理GUS瞬时转化 A: 不同温度下热激3 min的GUS瞬时表达率; B: 25°C (CK) GUS染色; C: 45°C热激下GUS染色; D: 45°C热激温度下不同热激时间的GUS瞬时表达率; E: 45°C热激1.5 min GUS染色; F: 45°C热激3 min GUS染色。*和**分别表示在P ≤ 0.05和P ≤ 0.01水平上显著差异。"

图4

T0代转基因植株鉴定 A: 愈伤组织分化; B: 再生植株; C: 壮苗; D: 再生植株移栽; E: Bar基因PCR检测, 1~7为T0代转化单株; F: T0代转化株Southern blot, 1~5: 经Sac I酶切, 7~11: 经Hind III酶切, 6: 野生型。M: marker DL2000; H: 水对照; WT: 野生型; P: 质粒。"

图5

T3代转基因株bar基因抗性试验 A: 2.5 g L-1 PPT溶液涂抹叶片; B: 2.5 g L-1 PPT 溶液喷洒叶片, 左侧转化株, 右侧未转化株; C: Bar蛋白抗体试纸条鉴定结果。CK: 未转化阴性对照; Vegative: 转基因阴性株; Positive: 转基因阳性株。"

[1] Li H W, Li C H, Pao W K . Cytogenetical and genetical studies of the interspecific cross between the cultivated foxtail millet, Setaria italica(L.) Beauv., and the green foxtail millet S. viridis L. J Am Soc Agron, 1945,37:32-54
[2] Zhang C, Zhang H, Li J X . Advances of millet research on nutrition and application. J Chin Cereals Oils Assoc, 2009,22:51-55
[3] Doust A N, Kellogg E A, Devos K M, Bennetzen J L . Foxtail millet: A sequence-driven grass model system. Plant Physiol, 2009,149:137-141
doi: 10.1104/pp.108.129627 pmid: 19126705
[4] Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Eck J V . Setaria viridis: a model for C4 photosynthesi. Plant Cell, 2010,22:2537-2544
[5] 董云洲, 段胜军, 赵连元, 杨秀海, 贾士荣 . 用基因枪转化花粉获得转基因谷子与玉米. 中国农业科学, 1999,32(2):112-115
Dong Y Z, Duan S J, Zhao L Y, Yang X H, Jia S R . Production of transgenic millet and maize plants by particle bombardment. Sci Agric Sin, 1999, 32(2):112-115 (in Chinese with English abstract)
[6] Dong Y Z, Duan S J . Production of transgenic millet plants via particle bombardment. Acta Bot Boreali-Occident Sin, 2000,20:175-178
[7] Diao X M, Chen Z L, Duan S J, Liu Y L, Zhao L Y, Sun J S . Factors influencing foxtail millet embryogenic calli transformation by particle bombardments. Acta Agric Boreali-Sin, 1999,14:31-36
doi: 10.3321/j.issn:1000-7091.1999.03.007
[8] Wang Y F, Li W, Diao X M . Genetic transformation of foxtail millet mediated by Agrobacterium tumefaciens. J Hebei Agric Sci, 2003,7:1-6
[9] Liu Y H, Feng X Y, Xu Y G, Yu J L, Ao G M, Peng Z M, Zhao Q . Overexpression of millet ZIPlike gene (SiPf40) affects lateral bud outgrowth in tobacco and millet. Plant Physiol Biochem, 2009,47:1051-1060
[10] Qin F F, Zhao Q, Ao G M, Yu J J . Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica, 2008,163:103-111
[11] 李丛 . 谷子DREB类转录因子SiARDP功能及其表达调控研究. 中国农业大学博士学位论文, 北京, 2014
Li C . The Function and Regulation of the Foxtail Millet DREB-type Transcriptional Factor SiARDP. PhD Dissertation of China Agricultural University, Beijing, China, 2014 ( in Chinese with English abstract)
[12] Martins P K, Ribeiro A P, Cunha B A D B, Kobayashi A K, Molinari H B C . A simple and highly efficientAgrobacterium- mediated transformation protocol for Setaria viridis. Biotechnol Rep, 2015,6:41-44
[13] Martins P K, Nakayama T J, Ribeiro A P, Cunha B A D B D, Nepomuceno A L, Harmon F G, Kobayashi A K, Molinari H B C . Setaria viridis floral-dip: a simple and rapid Agrobacterium- mediated transformation method. Biotechnol Rep, 2015, 6:61-63
[14] Saha P, Blumwald E . Spike-dip transformation of Setaria viridis. Plant J, 2016,86:89-101
[15] Ortiz J P A, Reggiardo M I, Ravizzini R A, Ahabe S G, Cervigni G D L, Spitteler M A, Morata M M, Elias F E, Valleios R H . Hygromycin resistance as an eficient selectable marker for wheat stable transformation. Plant Cell Rep, 1996,15:877-881
doi: 10.1007/BF00231579 pmid: 24178266
[16] Bevan M W, Flavell R B, Chihon M D . A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature, 1983,304:184-187
doi: 10.1038/304184a0
[17] Thompson C J, Mowa N R, Tizard R, Crameri R, Davies J E, Lauwcreys M, Botterman J . Characterization of the herbicide- resistance gene bar from Streptomyees hygroseopicus. EMBO J, 1987,6:2519-2523
[18] Howe A R, Gasser C S, Brown S M, Padgette S R, Hart J, Parker G B, Fromm M E, Armstrong C L . Glyphosate as a selective agent for the production of fertile transgenie maize (Zea mays L.) plants. Mol Breed, 2002,10:153-164
[19] 孙敬三, 陈维伦 . 植物生物技术和作物改良. 北京: 中国科学技术出版杜, 1990. pp 5-14
Sun J S, Chen W L. Plant Biotechnology and Crop Improvement. Beijing: China Science and Technology Press, 1990. pp 5-14(in Chinese)
[20] 王天宇 . 抗除草剂基因在作物杂种优势中的利用及进展. 作物杂志, 1998, ( 5):33-34
Wang T Y . Utilization and progress of herbicide resistant genes in crop heterosis. Crops, 1998, ( 5):33-34 (in Chinese)
[21] 张晓东, 李冬梅, 徐文英, 蒋有绎, 胡道芬, 韩立新 . 利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株. 遗传, 1998, ( 增刊1):5-10
Zhang X D, Li D M, Xu W Y, Jiang Y Y, Hu D F, Han L X . Transgenic plants were obtained by introducing the HMW glutenin subunit gene and the herbicide Basta resistance gene into different explants of wheat using gene gun. Hereditas, 1998, ( suppl-1):5-10 (in Chinese)
[22] 傅荣昭, 曹光诚, 马江生, 李文彬, 孙勇加, 陈占宽, 易明林, 郅玉宝, 林作辑 . 用基因枪法将人工雄性不育基因导入小麦的研究初报. 遗传学报, 1997,24:358-361
doi: 10.1007/BF02951625
Fu R Z, Cao G C, Ma J S, Li W B, Sun Y J, Chen Z K, Yi M L, Zhi Y B, Lin Z Y . Preliminary study of transferring engineered male sterile gene into wheat via microgrojectile bombardment. J Genet Genomics, 1997,24:358-361 (in Chinese with English abstract)
doi: 10.1007/BF02951625
[23] Huang D N, Zhang S Q, Xue R, Hua Z H, Xie X B, Wang X L . A new method to identify and improve the purity of hybrid rice with herbicide resistant gene. Chin Rice Res Newsl, 1998,6:1
[24] 王天宇, 石云素, 辛志勇, Darmency H . 抗除草剂谷子新种质的创制、鉴定与利用. 中国农业科技导报, 2000, ( 5):62-66
Wang T Y, Shi Y S, Xin Z Y, Darmency H . Establishment, identification and utilization of new herbicide-resistant millet germplasm. J Agric Sci Tech China, 2000, ( 5):62-66 (in Chinese)
[25] Naciri Y, Darmency H, Belliard J, Dessaint F, Pernès J . Breeding strategy in foxtail millet, Setaria italica L.Beauv. following interspecific hybridization. Euphytica, 1992,60:97-103
[26] Wang T Y, Darmency H . Dinitroaniline herbicide cross -resistance in resistant Setaria italica lines selected from interspecific cross with S. viridis. Pest Manage Sci, 1997,49:277-283
[27] Heap I M, Morrison I N . Resistance to aryloxyphenoxpropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis). Weed Sci, 1996,44:25-30
[28] Wang T Y, Darmency H . Cross -resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in foxtail millet(Setaria italica). Pestic Biochem Physiol, 1997,59:81-88
[29] Maniatis T, Fritsch E F, Sambrook J F E F . Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory Press, 1989. pp 304-331
[30] 柳琳 . 根癌农杆菌介导的谷子遗传转化体系的构建. 河北师范大学硕士学位论文, 河北石家庄, 2010
Liu L . Agrobacterium-tumefaciens Mediated Transformation of Millet Genetic System. MS Thesis of Hebei Normal University, Shijiazhuang, China, 2010 ( in Chinese with English abstract)
[31] Hiei Y, Ishida Y, Kasaoka K, Komari T . Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection withAgrobacterium tumefaciens. Plant Cell, 2006,87:233-243
[32] 徐游 . 农杆菌介导Hi-II玉米幼胚遗传转化效率及高效再生体系的研究. 江西农业大学硕士学位论文, 江西南昌, 2013
Xu Y . Agrobacterium-mediated Maize Immature Embryo Hi-II Genetic Transformation Efficiency and Efficient Regeneration System. MS Thesis of Jiangxi Agricultural University, Nanchang, China, 2013 ( in Chinese with English abstract)
[33] Liu Y H, Yu J J, Zhao Q, Zhu D Y, Ao G M . Genetic transformation of millet (Setaria italica) by Agrobacterium-mediated. J Agric Biotechnol, 2005,13:32-37
[34] Lambe P, Dinant M, Matagne R . Differential long term expression and methylation of the hygromycin phosphotrans pherase (hph) and(β-glucuronidase) calli. Plant Sci, 1995,108:51-62
[35] 牛玉红 . 谷子抗除草剂基因Srf的分子标记. 河北农业大学硕士学位论文, 河北保定, 2001
doi: 10.7666/d.y385779
Niu Y H . Molecular Tagging of Srf, A Gene Conferring Sethoxydim Resistance in Foxtail Millet (Setaria italica (L.) Beauv.). MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2001 ( in Chinese with English abstract)
doi: 10.7666/d.y385779
[1] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[5] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[6] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[7] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[8] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[9] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[10] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[11] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[12] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[13] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[14] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[15] 陈雪娇,张旭东,韩治中,张鹏,贾志宽,连延浩,韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献[J]. 作物学报, 2018, 44(7): 1055-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!